
AbU: A Calculus for Distributed Event-driven Programming with
Attribute-based Interaction

Michele Pasquaa,∗, Marino Miculanb

aUniversity of Verona, Strada le Grazie 15, Verona - 37134, Verona, Italy
bUniversity of Udine, Via delle Scienze 206, Udine - 33100, Udine, Italy

Abstract

In recent years, event-driven programming languages, in particular those based on Event Condition Action
(ECA) rules, have emerged as a promising paradigm for implementing ubiquitous and pervasive systems.
These implementations are mostly centralized, where a single server (often in the cloud) collects and processes
all the inputs from the environment. In fact, placing the computation on the nodes interacting with the
environment requires suitable abstractions for effective communication and coordination of (possibly large)
ensembles of these distributed components —abstractions that current ECA languages are still missing.

To this end, in this paper we present AbU, a calculus for modeling and reasoning about ECA-based
systems with attribute-based communication. The latter is an interaction model recently introduced for the
coordination of (possibly large) families of nodes: communication is similar to broadcast but the actual
receivers are selected on the spot, by means of predicates over nodes properties. Thus, the programmer
can specify interactions between nodes in a declarative way, abstracting from details such as nodes identity,
number, or even their existence, without the need for a central server: the computation is moved on the
“edge”, thus improving reliability, scalability, privacy and security.

After having defined syntax and formal semantics of AbU, we showcase its expressiveness by providing
some example applications and the encoding of AbC, the archetypal calculus with attribute-based communi-
cation. Then, we focus on two key properties of reactive systems: stabilization (i.e., termination of internal
steps) and confluence. For both these properties we provide formal semantic definition, sufficient syntactic
conditions on AbU systems, and algorithms to statically check such conditions. Hence, AbU is both a basis
for the formal analysis of event-driven architectures with attributed-based interaction, and a reference model
for a full-fledged language for IoT and edge computing.

Keywords: ECA rules, Attribute-based communication, Distributed systems, Formal methods, Edge
computing, IoT programming

1. Introduction

The ever-growing ubiquitous and pervasive systems, like the (Industrial) Internet of Things, smart homes,
smart cities, autonomous agents, etc, are characterized by many complex computational aspects, such as
distributed computing, dynamic network topologies, context-awareness, real-time data generated by sensors
and users, strict latency bounds, etc. In order to deal with these aspects, applications for ubiquitous and
pervasive systems have to efficiently handle events, such as sensor inputs, context changes, and changes in
the internal state of components. It is therefore not surprising that event-driven programming has emerged
as the prominent paradigm for the development of ubiquitous and pervasive applications [1, 2]; indeed, this
paradigm can be found in various commercial frameworks like IFTTT, Samsung SmartThings, Microsoft

∗Corresponding author
Email addresses: michele.pasqua@univr.it (Michele Pasqua), marino.miculan@uniud.it (Marino Miculan)

Draft accepted to Theoretical Computer Science April 4, 2023

D
RA

FT

Power Automate, Zapier, etc. In this approach, the behavior of a system is defined by a set of rules (called
also “applets”, “zaps”, “routines”, “flows”, and so on) following the well-known Event Condition Action
(ECA) structure, originally from the field of active databases [3]:

on Event if Condition do Action

Intuitively, the meaning of this rule is: when Event occurs, if Condition is satisfied then execute Action.
Thus, an ECA system can react to an event (e.g., a variable change or a signal from a sensor) by executing
one or more actions, which can update the internal state of the node or act on the environment via some
actuator. Of course, the effect caused by the action of a rule can trigger other rules, and so on.

However, in most current models and implementations of this paradigm, the rules are stored on, and
executed by, a central computing entity, possibly hosted on some server on the cloud and accessible via the
Internet. The devices of the system do not communicate and coordinate with each other but with this central
node/cloud service only. Although simple, such a centralized architecture suffers of several disadvantages.
First, it does not scale well: the increase of IoT and smart devices is going to produce a massive amount
of data [4], and transferring, storing and processing this data in cloud data centers will overload network
channels. As a consequence, cloud servers will not be able to guarantee acceptable transfer rates and response
times; moreover, sending all this data back and forth on the network is a big waste of energy. Secondly, the
dependence on Internet connections and of a central node/cloud service hinders availability, which is also a
critical requirement for many IoT and other pervasive and autonomic applications; e.g., a smart door lock
may be stuck because the server is not reachable. Third, smart and IoT devices often deal with sensible and
personal data (think of, for instance, health sensors, surveillance cameras, etc) that the user would prefer
to not share with some untrusted server on the cloud. Finally, the dependence of external services increases
the attack surface of the smart system; e.g., an attacker can open a house front door, taking advantage of
some vulnerability on the server communicating with the door, and unknown to the user.

For all these reasons, in recent years there is a strong and growing interest in the so-called edge computing
paradigm [4, 5], which aims to move the computation away from cloud data centers towards the “edge” of
the network, i.e., the smart objects which are the sources of data. This approach allows to mitigate the
previous issues, as it reduces data transfers between the edge and the center of the network —in fact, there
can be no center at all, thus increasing scalability, resilience, and security.

At the same time, placing the application logic on many nodes in a truly distributed and decentralized
setting, introduces new issues and challenges. In particular, it requires suitable mechanisms and abstractions
for communication and coordination of (possibly large) ensembles of distributed components. Traditional
point-to-point communication mechanisms (like sockets, request/reply protocols or agent-like message pass-
ing) are not quite suited because they require strong coupling between parties, increasing the burden on the
programmer, and are hardly scalable to large sets of components. A novel mechanism recently introduced
to overcome these limitations is attribute-based communication [6, 7, 8], a loosely coupled message-oriented
interaction model specifically designed for coordinating large numbers of components. The key aspect of
attribute-based communication is that the actual receivers are selected “on the fly” by means of predicates
over node attributes; dually, a node can “filter” incoming messages by means of predicates. Using a syntax
similar to AbC [6] (the archetypal calculus for attribute-based communication), 〈e@ Π〉.P means “send (the
value of) e to all nodes satisfying Π, then continue as P”; dually, (x |Π).P means “when receiving a message
x satisfying Π, continue as P”. Many interaction models used in smart systems, such as channels, agents,
pub/sub, broadcast and multicast, can be readily implemented using attribute-based communication [8].

Therefore, putting together all the pieces, a promising paradigm for smart systems and edge computing
could be obtained by merging the tradition of event-based programming with a new distributed coordination
mechanism akin attribute-based communication. Nevertheless, integrating attribute-based communication
in the ECA paradigm is not obvious. We could try to add some send/receive primitives similar to AbC’s, but
this would yield a disharmonious patchwork of different paradigms, i.e., memory-based events vs message-
passing: the latter is best suited to (possibly stateless) agent-oriented models; while most ECA-based systems
are meant to react to (internal or external) changes of nodes state, caused by memory updates or inputs.

For solving this conundrum, in this paper we present AbU (for “Attribute-based memory Updates”),
a calculus integrating ECA programming with loosely coupled attribute-based interaction. In this model,

2

D
RA

FT

interactions are reduced to events of the same kind ECA programs already deal with, i.e., memory updates.
More precisely, an AbU system is composed by a set of agents, called nodes, each endowed with a local state
(representing local memory, sensors, actuators, etc) and programmed with a set of ECA rules. When a rule
of the form x1, . . . , xn m Π : act is triggered on a given node due to a change in some local variable xi, the
action act can update the state of that node (like in normal ECA programming), but it can also update the
state of other nodes, selected upon their states by the predicate Π. For instance, a rule like the following:

accessTime m @(role = logger) : log← log + accessTime

means “when (my local) variable accessTime changes, add its value to the variable log of all nodes whose
variable role has value logger”. Clearly, the update of log may trigger other rules on these (remote) nodes,
and so on. We call this mechanism attribute-based memory updates, and it can be seen as the memory-based
counterpart of attribute-based communication, built upon message-passing.

Notice that, in this paradigm memory updates are directly “pushed” to remote nodes: a rule can change
the state of a remote node without any corresponding “input” step on that node. Clearly, allowing for
any update from anyone would be too liberal, as a node may want to keep incoming data under control.
In attribute-based communication of AbC, this control is done by filtering incoming messages by means of
predicates in input primitives —but in attribute-based memory updates, there are no input primitives. The
solution we adopt arises from the observation that very often in state-based machines we can identify a subset
of invalid states, which should be avoided for consistency or safety reasons; this is particularly common in
IoT and smart systems, where nodes state also effects to the surrounding environment. Formally, the set of
valid states of a node can be specified by means of a state invariant, i.e., a predicate over nodes states which
should be kept valid during the whole execution. Therefore, any update (possibly from other nodes) leading
to an invalid state, i.e., violating the local invariant, have to be rejected. So, invariants in attribute-based
memory updates can be seen as the counterpart of message filtering in attribute-based communication.

The importance of a calculus like AbU is twofold. On one hand, it can be used as a reference model for
the implementation of full-fledged programming language, or extensions of existing languages, for IoT and
edge computing; as an example, a prototypal implementation in Golang of AbU is available at [9]. On the
other hand, it is the basis for the investigation of important properties of event-driven architectures with
attributed-based interaction, and for the development of formal methods for guaranteeing these properties.
In this paper, we investigate two of these properties, namely stabilization and confluence, both very relevant
in IoT and smart systems: the first guarantees that a chain of rule executions triggered by an external event
will eventually terminate; the second guarantees that the effects of the rules are eventually deterministic and
do not depend on the rule execution order. For both these properties we provide formal semantic definition,
sufficient syntactic conditions on AbU programs, and algorithms to statically check such conditions.

Synopsis. After a summary of related work in Section 2, in Section 3 we introduce the syntax and operational
semantics of AbU, together with an encoding of a Turing complete computational model. In order to
showcase the expressiveness of AbU, in Section 4 we provide various examples of application scenarios for
AbU in the IoT. In Section 5 we show how to encode AbC components into AbU, providing encoding
correctness and examples. Then, in Section 6 we define stabilization and confluence of AbU systems, discuss
correctness requirements for these properties, and provide algorithms for their verification. A distributed
implementation for AbU is presented in Section 7. Finally, conclusions and directions for future work are in
Section 8. Full proofs of the results are collected in Appendix A.

2. Related Work

To the best of our knowledge, the only previous work aiming at merging the ECA programming paradigm
with attribute-based interaction is the conference version of the present paper [10]. Here, the calculus
presented in [10] is enhanced with invariants, namely conditions that nodes have to guarantee during run-
time. Furthermore, we slightly modify the semantics of the calculus, extending system labels with the
committed updates. In this way, when a node performs an input or an execution step, the corresponding

3

D
RA

FT

update committed is recorded by the semantics. This is necessary to define complex correctness requirements
for AbU systems. In particular, in the present work we revise the termination guarantee of [10], defining
stabilization, and we introduce the concept of confluence for AbU systems, that can be seen as a form of
determinism in the effects of rule executions. Furthermore, we introduce two sufficient conditions for the
verification of such requirements, together with soundness proofs, and we provide algorithms to verify these
conditions. Finally, in the present work we have a section for AbU examples, where we revise the example
presented in [10], we add a new application scenario and we discuss Turing completeness of the calculus.
Full proof of the results, not present in the conference version, are reported in the appendix of this work.

An approach close in spirit to ours is that based on associative memories, that is tuple spaces, as in the
Linda language [11] and the KLAIM calculus [12]. In fact, also tuple spaces have events (insertion or deletion
of tuples) that can be notified to nodes. Furthermore, tuple spaces can be inspected via pattern matching,
which can be seen as a restricted form of attribute-based lookup. Despite these analogies, tuple spaces and
AbU differ on many aspects: the latter is based on ECA rules, attribute-based interaction is implemented by
means of remote memory updates (and hence transparent to the nodes involved in the distributed system)
and the logic for predicating over attributes is more expressive than simple pattern matching.

The Field Calculus [13, 14] is a computational model aiming to the same goal of AbU, i.e., programming
large scale systems of agents that should self-coordinate, in a distributed and decentralized manner. However,
the two calculi differ in the programming abstractions they provide. In the Field Calculus, aggregate behavior
of a system of agents (where a dynamic neighboring relation represents physical or logical proximity) is
specified by a functional composition of operators that manipulate a computational field. All agents are
equipped with the same code, but they can behave differently due to their different positions (in a particular
time frame) with respect to other agents (the “field”); and all agents contribute to reach a goal function,
modeling a unified behavior of the system. Instead, in AbU each agent (i.e., each node) has its own code,
and coordination and communication is carried out by means of an attribute-based interaction, in a way
that is transparent to the programmer. On the other hand, AbU does not provide a way for defining a
global goal (if any) to be achieved by the agents taken as whole.

Another similarity is about termination and stabilization. The Field Calculus is provided with a typing
system such that well-typed programs are guaranteed to terminate. This corresponds to (wave) stabilization
of AbU systems, which is guaranteed by a different static check. Similarly, (wave) convergence for AbU
corresponds to self-stabilization in the Field Calculus.

Concerning ECA programming, [15, 16] introduce IRON, a language based on ECA rules for the IoT
domain. Following other work about ECA languages, [17, 18] present verification mechanisms to check
properties on IRON programs, such as termination, confluence, redundant or contradicting rules. Other
work proposes approaches to verify ECA programs by using Petri Nets [19] and BDD [20]. In [21, 1], the
authors present a tool-supported method for verifying and controlling the correct interactions of ECA rules.
All these works do not deal with distributed systems, hence communication is not taken into account.

AbC has been introduced and studied in [6, 8, 7] as a core calculus for SCEL [22], a language à la
KLAIM with collective communication primitives parametric in predicates over node attributes. Focusing
on the latter primitives, i.e., on Attribute-based Communication, AbC is well-suited to model Collective
Adaptive Systems (CAS) [23] from a process calculi standpoint, as opposed to Multi-Agents Systems (MAS)
that follow a logical approach [24]; we refer to [8] for more details. Various extensions of AbC has been
proposed [25, 26], as well as correct implementations in Erlang [27] and Golang [28, 29]. AbC, and its parent
languages, adopt a message-passing communication mechanism and a sequential, process-centric, execution
flow, which are orthogonal with respect to the ECA rules setting. Since the goal of the present work is
to extend the ECA programming style with attributed-based interaction mechanisms, we will focus on the
most fundamental primitives of AbC, omitting features not strictly necessary. We will study the connections
between our work and AbC in Section 5.

Some work combining message-passing primitives and shared-memory mechanisms have been recently
proposed [30, 31]. In particular, the m&m model of [30] allows processes to both pass messages and share
memory. This approach is increasingly used in practice (e.g., in data centers), as it seems to have great
impact on the performance of distributed systems. An example application is given by Remote Direct
Memory Access (RDMA) [31], that provides processes primitives both for send/receive communication,

4

D
RA

FT

and for direct remote memory access. This mixed approach has been recently applied also in the MAS
context [32], where the local behavior of agents is based on shared variables and the global behavior is
based on message-passing. These results could be very helpful for the implementation of AbU, since a
message-passing with shared-memory approach perfectly fits the attribute-based memory updates setting.

Finally, recent work [33, 34] on the Reactive Data model adopts a declarative attribute-based interaction
similar to AbU’s. In this model, ECA rules are given by declarative response relations (introduced in DCR
Graphs [35]), while attribute-based interaction is obtained by using dynamic end-points of the relations,
defined by graph query languages (e.g., XPath). The papers come with prototype implementations, which
are however not distributed.

3. The AbU Calculus

We present here AbU, a calculus merging a prominent event-driven programming paradigm, i.e., Event
Condition Action (ECA) rules, with attribute-based interaction. This solution embodies the programming
simplicity prerogative of ECA rules, but it is expressive enough to model complex coordination scenarios,
typical of distributed systems. Furthermore, the calculus is fully decentralized, hence perfectly suitable for
edge computing. The name AbU is an acronym for Attribute-based memory Updates that is, as we will see
in the following, the distributed interaction mechanism on which the calculus relies on.

3.1. Syntax

An AbU system S is either a node, of the form R, ι〈Σ,Θ〉, or a parallel composition S1 ‖ S2 of systems,
which is associative and commutative1. A state Σ ∈ X −→ V, is a map from resources in X to values in V,
while an execution pool Θ ⊆

⋃
n∈N Un is a set of updates. An update upd is a finite list of pairs (x, v) ∈ U,

meaning that the resource x will take the value v after the execution of the update. Moreover, each node
is equipped with: an invariant ι (i.e., a boolean expression) that the node has to satisfy at run-time; and a
non-empty finite list R of ECA rules, generated by the following grammar.

rule ::= evt m act, task ECA rules

evt ::= x | evt evt rule events

act ::= ε | x← ε act | x← ε act actions

task ::= cnd : act rule tasks

cnd ::= ϕ | @ϕ task conditions

ϕ, ι ::= F | T | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ε ./ ε boolean expressions / invariants

ε ::= v | x | x | ε ⊗ ε value expressions

An ECA rule evt m act, task is guarded by an event evt, which is a non-empty finite list of resources.
When one of these resources is modified, the rule is fired : the default action act and the task are evaluated.
Evaluation does not change resources state immediately; instead, it yields update operations which are
added to the execution pools, and applied later on.

An action is a finite (possibly empty) list of assignments of value expressions to local x or remote x
resources. The default action can access and update only local resources. On the other hand, a task consists
in a condition cnd and an action act. A condition is a boolean expression, optionally prefixed with the
modifier @. If @ is not present, the task is local : all resources in the condition and in the action refer to
the local node (thus variables of the form x cannot occur). So, the condition is evaluated locally; if it holds,
the action is processed. Otherwise, if @ is present, then the task is remote: the task @ϕ : act reads as “for

1In particular, ‖ is associative and commutative with respect to the AbU systems semantics relation of Figure 1; e.g.,
S1 ‖ S2 and S2 ‖ S1 exhibit exactly the same execution steps.

5

D
RA

FT

all external nodes where ϕ holds, do act”. On every node where the condition holds, the action is evaluated
yielding an update to be added to that node pool. So, in remote tasks each assignment in act is on remote
resources only, but still they can use values from the local node. As an example, the task @T : x ← x + x
means “add the value of this node’s x to the x of every other node”.

In the syntax for boolean expressions ϕ (and invariants) and value expressions ε we let implicit comparison
operators, e.g., ./∈ {<,≤, >,≥,=, 6=}, and binary operations, e.g., ⊗∈ {+,−, ∗, /}. In expressions we can
have both local and remote instance of resources, although the latter can occur only inside remote tasks.

Rules of the form evt m ε, task, i.e., with empty default action, are written more concisely as evt m task.
Finally, we implicitly extend the (binary) parallel composition operator to its n-ary version. For instance,
when we write S1 ‖ S2 ‖ S3 we actually mean (S1 ‖ S2) ‖ S3, which is equivalent, due to associativity, to
S1 ‖ (S2 ‖ S3). With a little abuse of notation, we denote with ‖ the binary and the non-binary versions of
the parallel composition.

3.2. Semantics

Given a list R = rule1 . . . rulen of ECA rules and a set X of resources that have been modified, we define
the set of active rules as Active(R,X) , {rulei | ∃i ∈ [1..n] . rulei = evtmact, task∧ evt∩X 6= ∅}, namely the
rules in R that listen on resources in X and, hence, that may be fired. Given an action act, its evaluation
JactK in the state Σ returns an update. Formally: Jx1 ← ε1 . . . xn ← εnKΣ , (x1, Jε1KΣ) . . . (xn, JεnKΣ). The
evaluation semantics for value expressions ε is standard. As we will see in a moment, the semantic function
J·K is applied only to local actions, that do not contain instances of external resources x. The default updates
are the updates originated from the default actions of active rules in R, namely:

DefUpds(R,X,Σ) , {JactKΣ | ∃evt m act, task ∈ Active(R,X)}

Similarly, the local updates are the updates originated from the tasks of the active rules in R that act only
locally (@ is not present in the task condition) and whose condition is satisfied by the node state, namely:

LocalUpds(R,X,Σ) , {Jact2KΣ | ∃evt m act1, ϕ : act2 ∈ Active(R,X) .Σ |= ϕ}

The satisfiability relation for boolean expressions (and, indeed, for invariants) is defined as: Σ |= ϕ ,
JϕKΣ = tt (the evaluation semantics for boolean expressions ϕ is standard as well).

When we have a task containing the modifier @, an external node is needed to evaluate the task condi-
tion2. In our semantics, when a node needs to evaluate a task involving external nodes, it partially evaluates
the task (with its own state) and then it sends the partially evaluated task to all other nodes. The latter,
receive the task and complete the evaluation, potentially adding updates to their pool. In particular, the
partial evaluation of tasks works as follows. With {|task|}Σ we denote the task obtained from task with each
occurrence of a resource x in the task condition and the right-hand side of assignments in the task action
replaced with the value Σ(x). After that, each instance of x in the task action is replaced with x and the
modifier @ is dropped. For instance, {|@(x ≤ x) : y ← x + y|}[x 7→ 1 y 7→ 0] = (1 ≤ x) : y ← 1 + y. Note
that, once the task is partially evaluated and sent to other nodes, it becomes “syntactically local” for the
receiving nodes, i.e., its action can be evaluated with the semantic function J·K.

Finally, we define the external tasks as:

ExtTasks(R,X,Σ) , {|task1|}Σ . . . {|taskn|}Σ

given that for each i ∈ [1..n] there exists a rule evt m act, taski ∈ Active(R,X) such that taski = @ϕ : act,
namely the tasks of active rules in R whose condition contains @ (i.e., tasks that require an external node
to be evaluated).

2When such node does not exist, the update is simply discarded.

6

D
RA

FT

(Exec)

upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ′ = Σ[v1/x1 . . . vk/xk] Σ′ |= ι Θ′′ = Θ \ {upd}
X = {xi | i ∈ [1..k] ∧ Σ(xi) 6= Σ′(xi)} Θ′ = Θ′′ ∪ DefUpds(R,X,Σ′) ∪ LocalUpds(R,X,Σ′) T = ExtTasks(R,X,Σ′)

R, ι〈Σ,Θ〉 updBT
R, ι〈Σ′,Θ′〉

(Exec-Fail)
upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ′ = Σ[v1/x1 . . . vk/xk] Σ′ 6|= ι Θ′ = Θ \ {upd}

R, ι〈Σ,Θ〉 updBε
R, ι〈Σ,Θ′〉

(Input)

v1, . . . , vk ∈ V Σ′ = Σ[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
Θ′ = Θ ∪ DefUpds(R,X,Σ′) ∪ LocalUpds(R,X,Σ′) T = ExtTasks(R,X,Σ′)

R, ι〈Σ,Θ〉 (x1,v1)...(xk,vk)IT
R, ι〈Σ′,Θ′〉

(Disc)
Θ′′ = {JactKΣ | ∃i ∈ [1..n] . taski = ϕ : act ∧ Σ |= ϕ} Θ′ = Θ ∪Θ′′

R, ι〈Σ,Θ〉 task1...taskn R, ι〈Σ,Θ′〉

(StepL)
S1

α S′1 S2
T S′2

S1 ‖ S2
α S′1 ‖ S′2

α∈{updBT,updIT} (StepR)
S1

T S′1 S2
α S′2

S1 ‖ S2
α S′1 ‖ S′2

α∈{updBT,updIT}

Figure 1: AbU semantics for nodes and systems.

Operational (small-step) semantics. The small-step operational semantics of an AbU system is modeled as
a labeled transition system (LTS). In particular, S1

α S2 means that the AbU system S1 evolves to the
AbU system S2, producing the LTS label (or simply, label) α. Here, LTS labels are given by:

α ::= T | upd B T | upd I T

where T is a finite (possibly empty) list of tasks and upd an update. As we will see in a moment, the labels T
identify a discovery phase, the labels updBT an update execution and the labels updIT an external input.
A transition can modify the state and the execution pool of the nodes of the AbU system. The semantics
is distributed, in the sense that each node semantics does not have a global knowledge about the system.
The transition rules are in Figure 1. A rule (Exec) executes an update picked from the pool; while a rule
(Input) models an external modification of some resources. The execution of an update, or the modification
of resources in general, may trigger some other ECA rules in the system. Hence, after updating a node
state, the semantics of a node launches a discovery phase, with the goal of finding new updates to add to
the local pool (or some pools of remote nodes), given by the activation of some ECA rules. The discovery
phase is composed by two parts, the local and the remote one. A node R, ι〈Σ,Θ〉 performs a local discovery
by means of the functions DefUpds and LocalUpds, that add to the local pool Θ all updates originated by
the activation of some rules in R. Then, by means of the function ExtTasks, the node computes a list of
tasks that may update external nodes and sends it to all nodes in the system. This is modeled with the
labels updBT , produced by the rule (Exec), and updIT , produced by the rule (Input). On the other side,
when a node receives a list of tasks (executing the rule (Disc) with a label T) it evaluates them and adds to
its pool the actions generated by the tasks whose condition is satisfied. The rule (Step) completes (on all
nodes in the system) a discovery phase launched by a given node.

Note that, not necessarily all nodes have to modify their pool (indeed, a task condition may not hold
in an external node). At the same time, the rule synchronizes the whole discovery phase, originated by a
change in the state of a node of the system. When a node executes an action originating only local updates,
the rule (Step) is applied with S′2 = S2, producing the label updBε or the label updIε (i.e., with an empty
tasks list). The latter, is matched by a label T = ε, that all nodes can generate by applying the rule (Disc).

The semantics also checks the fulfillment of invariants, at run-time. Indeed, when a node tries to perform
an update that would break an invariant, the rule (Exec) is not applicable. Instead, the rule (Exec-Fail)

is performed, that ignores the update (which is removed from the pool but it is not executed); this fact

7

D
RA

FT

is observable by the label upd B ε. Note that, we do not distinguish the case when an update breaks the
invariant from the case when the update is idempotent (i.e., when resources hold the same values that the
update try to assign).

Remark 1. Invariants have been introduced to enforce node safety properties at run-time, namely not
reaching erroneous states (e.g., a thermostat can allow its temperature to be set only to values within a
given range). In fact, by means of AbU node invariants we can implement some form of access control. For
instance, a node can accept updates originated only by white-listed nodes in this way: every update will
save in an attribute last-writer the id of the originating node; the invariant will require last-writer to be
always in a fixed set (the white-list). We will see in Section 5 that an application of invariants will be the
encoding of selective inputs of AbC.

In this respect, we can define the set of all possible AbU execution states that satisfy a given invariant,
dubbed legal execution state.

Definition 1 (Legal execution states). Given an AbU invariant ι, we define the set of legal execution
states for ι as: legalι , {Σ ∈ X −→ V | Σ |= ι}.

Then, an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 is said admissible when its execution state
is legal for the corresponding invariants. Formally: admissible(S) , ∀i ∈ [1..n] .Σi ∈ legalιi .

Note that, admissible systems are defined in terms of system invariants only, and invariants do not change
during execution. It is easy to note that the semantics in Figure 1 guarantees that the execution steps of
an AbU system involve admissible systems only.

Proposition 1. Let S be an admissible AbU system. If S
upd1BT1

S1 upd2BT2
. . .

updkBTk
Sk then each

Si, with i ∈ [1..k], is admissible. In other words, admissible(S) implies that admissible(Si), for all i ∈ [1..k].

Wave (big-step) semantics. Initially, the pools of all nodes of an AbU system are empty, namely the system
is stable, and to start the computation an input (i.e., an external modification of the environment) is needed.

Definition 2 (Stable system). An AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 is stable when
no more execution steps can be performed, namely when all execution pools Θi, for i ∈ [1..n], are empty.

We will often use R, ι〈Σ〉 as a shorthand for R, ι〈Σ,∅〉. Hence, a system is stable when it is of the form
R1, ι1〈Σ1〉 ‖ . . . ‖ Rn, ιn〈Σn〉. In the case of stable systems, only the rule (Input) can be applied, i.e., an
external environment change is needed to (re)start the computation.

We can define a sort of big-step semantics S
upd

S′ between stable systems, dubbed wave semantics,
in terms of the small-step semantics. Let

∗
be the transitive closure of , without occurrences of

labels of the form upd I T , namely
∗

denotes a finite sequence of internal execution steps (with the
corresponding discovery phases), without interleaving input steps. The wave semantics for a system S is:

(Wave)
S = R1, ι1〈Σ1〉 ‖ . . . ‖ Rn, ιn〈Σn〉 S

updIT
S′′

∗
S′ S′ = R1, ι1〈Σ′1〉 ‖ . . . ‖ Rn, ιn〈Σ′n〉

S
upd

S′

The idea is that a stable system reacts to an external stimulus by executing a series of tasks, which
propagate across the nodes like a “wave”, until it becomes stable again, waiting for the next stimulus. Note
that, in the wave semantics inputs do not interleave with internal steps: this leaves the system the time to
reach stability before the next input. Note also that, it could be the case that, after a particular update,
an AbU system never becomes stable, since the AbU semantics allows systems to perform infinitely many
execution steps. In Figure 2 we have a graphical representation of the AbU execution model.

Remark 2. If we allow arbitrary input steps during the computation, possibly a system may never reach
stability since the execution pools could be never emptied. This assumption is justified by the fact that,
in the IoT context, usually, external changes (in sensors) take much more time than internal computation

8

D
RA

FT

(E
xe
c)

(D
is
c)

(E
xec)

(D
isc)

. . .

. . .
(E
xe
c)

(D
is
c)

(E
xec)

(D
isc)

(E
xe
c)

(D
is
c)

(Exec)

(Disc) (E
xec)

(D
isc)(Input) (Input) (Input)

(Wave) (Wave) (Wave)

Not stable systemStable system

.

Figure 2: A graphical representation of the AbU execution model. An AbU system is represented by the local state and pool of
all nodes (here represented by dots). A stable system moves to a not stable one due to an (Input); then it executes only (Exec)
steps, until it possibly reaches a new stable system. The transitions between stable systems are represented by a (Wave).

steps [36], or, equivalently, hardware is chosen fast enough to keep the pace of the environment changes.
As an example, LoRaWAN connected IoT sensors can transmit their data with intervals of the order of
minutes. In this scenario, the devices receive inputs with a very low rate. Therefore, we can assume that
AbU nodes have been provided with enough computational power to complete their execution steps before
the next input: the faster the inputs happen, the more powerful the nodes have to be.

We point out that environment changes possibly happening during an execution phase are not lost;
instead, these inputs are queued and processed in FIFO order when the execution phase terminates. Never-
theless, we plan to relax the constraint assuming the mutual exclusion between input and execution phases
as a future extension of AbU.

Remark 3. Since the semantics in Figure 1 is labeled, one can think of AbU as a calculus with message-
passing. Nevertheless, LTS labels are not actual messages exchanged by AbU nodes, in the sense that such
messages are not part of the AbU syntax (has it happens for message-passing process calculi). Indeed, nodes
code is not aware of LTS labels and it cannot manipulate them. Clearly, in a distributed network of agents,
communication must be implemented by means of messages exchange, but this is an implementation detail.
Our point is that AbU does not require messages exchange at design level, namely programmers are not
forced to use a message-passing mechanism to coordinate nodes (even if the underlying communication may
be implemented by means of a protocol based on message-passing).

3.3. On the Expressiveness of AbU

During the presentation of AbU we deliberately left implicit the full definition of boolean and value
expressions. Indeed, the latter deeply affect the expressive power of the calculus. It is easy to provide AbU
with expressions that make the calculus Turing complete. For instance, adding some simple constructs to
value expressions we can easily encode semi-Thue systems, non-deterministic rewriting systems over strings
which are Turing complete [37]. In brief, a semi-Thue system is composed by a (finite) alphabet of symbol
and a (finite) set of rewriting rules of the form u → v, where u and v are strings (i.e., finite sequences of
symbols) over the alphabet. Computation is carried out transforming strings: we can transform a string s1

into a string s2 if s1 = xuy, s2 = xvy and there exists a rewriting rule u → v in the semi-Thue system.
Note that, the substitution is non-deterministic, in the sense that if s1 contains multiple occurrences of u,
the occurrence to modify is selected non-deterministically.

Suppose to have the following binary operators on value expressions: #[s] computing the number of
elements of the string value s, e.g., #[‘str’] = 3; s1 :: s2 concatenating the two string values s1 and s2,
e.g., ‘str’ :: ‘ing’ = ‘string’; s[- : i] computing the string value composed of the first i elements of the string
value s, e.g., ‘string’[- : 3] = ‘str’; s[i : -] computing the string value composed of the last i elements of
the string value s, e.g., ‘string’[3 : -] = ‘ing’; and s1

?|s2 returning the first index in the string value s1 of
one occurrence of the string value s2 in s1, chosen non-deterministically3, e.g., ‘abuabu’ ?|‘bu’ can return,

3Note that, we do not strictly need non-deterministic substitutions, since also deterministic semi-Thue systems are Turing
complete [38]. In this case, we may define x ?|y to return the first index of the left-most occurrence of y in x [38].

9

D
RA

FT

non-deterministically, either 2 or 5. When s2 does not occur in s1, then s1
?|s2 returns −1. By means of

these operators we can implement non-deterministic string substitutions. Consider the following AbU rule:

xm (x
?|y 6= −1) : x← x[- : x

?|y − 1] :: z :: x[#[x] − (x
?|y + #[y]) : -] (1)

The rule substitutes one occurrence of the string value pointed by y in the string value pointed by x,
chosen non-deterministically, with the string value pointed by z. For instance, consider the state [x 7→
‘abuabu’ y 7→ ‘bu’ z 7→ ‘bc’]. When the rule (1) is fired, and its update executed, we have that x can
contain, non-deterministically, either ‘abcabu’ or ‘abuabc’. Note that, since the evaluation of a rule action
is atomic, we assume that all instances of x

?|y in a given action compute the same value (i.e., an index of

x is non-derministically chosen, but it is the same for all occurrences of x
?|y in the action). By using the

rule (1), we can easily encode into AbU a generic semi-Thue system, we just have to encode into AbU its
rewriting relation. In particular, for each rewriting rule u→ v we generate an AbU rule of the form:

inputm (input
?|‘u’ 6= −1) : input← input[- : input

?|‘u’ − 1] :: ‘v’ :: input[#[input] − (input
?|‘u’ + #[‘u’]) : -]

where ‘u’ and ‘v’ are the string values of AbU corresponding to the strings u and v of the semi-Thue system,
respectively. The AbU resource input is initialized with the input string that would be passed to the semi-
Thue system to execute. Each time the resource input is modified, in the pool of the AbU node all updates of
the rules are added, then the AbU scheduler will chose non-deterministically which substitution to apply, as
exactly happens for a semi-Thue system. Note that, a semi-Thue system has, by definition, a finite number
of rewriting rules, hence we can fully encode any semi-Thue system into AbU. Hence, AbU equipped with
non-deterministic string substitutions is Turing complete.

Conversely, if we limit the value domains in expressions to have finite cardinality, then the language loses
Turing completeness. Indeed, we have a finite number of rules, a finite number of nodes and a finite number
of resource (in AbU we cannot dynamically allocate memory, namely fresh resources). If we also have a
finite set of possible values for resources, then we can encode each AbU system into a NFA, hence losing
Turing completeness.

Proposition 2. If the value domains of resources in AbU expressions have finite cardinality, then each AbU
system corresponds to a NFA.

Proof (Sketch). The encoding of an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 into a NFA
is straightforward, we provide here just a simple sketch.

The states of the automaton are given by all possible configurations of the 2n-tuple (Σ1,Θ1, . . . ,Σn,Θn),
composed by execution states and execution pools of all nodes in the system. The transitions of the
automaton are given by the ECA rules in the nodes of the system.

Each execution state Σi can range over a finite set, whose cardinality is given by its attributes and the
corresponding sets of possible values (which are finite by hypothesis). Each pool Θi is a subset of the set
of all possible updates, and these are finite because each update is a finite list of assignments whose right
hand values are finite, and are generated by ECA rules which are finite as well. Therefore, the set of states
of the automaton defined above is finite, yielding a NFA. 2

Corollary 3. If the value domains of resources in AbU expressions have finite cardinality, then the AbU
calculus is not Turing complete.

4. AbU in Practice

In this section, we provide practical examples of IoT scenarios modeled with AbU, to help the reader to
get familiar with the AbU syntax and to understand its semantics. Furthermore, these examples showcase
the simplicity of AbU in modeling complex scenarios.

10

D
RA

FT

. . .
(I)

Ra〈Σ1〉
upd1IT Ra〈Σ′1〉

. . .
(D)

Ra〈Σ2〉 T Ra〈Σ2〉
(S)

S1 ‖ S2
upd1IT S′1 ‖ S2

. . .
(D)

Rl〈Σ3〉 T Rl〈Σ3,Θ〉
(S)

S1 ‖ S2 ‖ S3
upd1IT S′1 ‖ S2 ‖ S′3

. . .
(D)

Rl〈Σ4〉 T Rl〈Σ4,Θ〉
(S)

S1 ‖ S2 ‖ S3 ‖ S4
upd1IT S′1 ‖ S2 ‖ S′3 ‖ S′4

. . .
(E)

Rl〈Σ3,Θ〉
upd2Bε Rl〈Σ′3〉

. . .
(D)

Ra〈Σ′1〉
ε Ra〈Σ′1〉

(S)

S′3 ‖ S′1
upd2Bε S′′3 ‖ S′1

. . .
(D)

Ra〈Σ2〉 ε Ra〈Σ2〉
(S)

S′3 ‖ S′1 ‖ S2
upd2Bε S′′3 ‖ S′1 ‖ S2

. . .
(D)

Rl〈Σ4,Θ〉 ε Rl〈Σ4,Θ〉
(S)

S′3 ‖ S′1 ‖ S2 ‖ S′4
upd2Bε S′′3 ‖ S′1 ‖ S2 ‖ S′4

Figure 3: Derivation trees for AbU semantic steps of Subsection 4.1: (Input) [top] and (Exec) [bottom]. For space reasons,
we abbreviate semantic rule names and omit the premises of leaf semantic rules.

4.1. Intrusion Detection System

Let us consider the scenario sketched in the introduction, where an “access” node aims at sending its
local access time to all “logger” nodes in the system. The access node is activated when accessT changes,
namely when a user performs access; the node aims at sending the IP address of the user and the name of
the accessed resource, together with a time-stamp. On the other side, the logger nodes record the access
time, the IP address and the resource name. Furthermore, suppose that these nodes contain a black-list of
IP addresses. This list can be updated at run-time, by external entities communicating with logger nodes,
so it may be the case that different logger nodes have different black-lists. A logger node that notices an
access from a black-listed IP is in charge of notifying the intrusion detection system (IDS).

The system is formalized with AbU as follows. We suppose to have two access nodes and two logger
nodes. We also suppose that log is a structured type, i.e., a list of records of the form 〈IP, accessT, res〉. An
append to the list log is given by append log 〈IP, accessT, res〉; while with 〈IP, accessT, res〉.IP we denote the
access of the field IP , and with tail log we denote the last record inserted in the list log. Given a list of
(black-listed) IP addresses Blist, we denote with IP ∈ Blist the fact that IP is an element of the list.

The four AbU nodes are the following, where Ra〈Σ1〉 and Ra〈Σ2〉 are the access nodes, while Rl〈Σ3〉
and Rl〈Σ4〉 are the logger nodes.

S1 , Ra〈Σ1〉 = Ra〈[IP 7→ε accessT 7→00:00:00 res 7→camera]〉
S2 , Ra〈Σ2〉 = Ra〈[IP 7→ε accessT 7→00:00:00 res 7→lock]〉
S3 , Rl〈Σ3〉 = Rl〈[role 7→logger log 7→ε Blist 7→ε IDS 7→ε]〉
S4 , Rl〈Σ4〉 = Rl〈[role 7→logger log 7→ε Blist 7→167.123.23.2 IDS 7→ε]〉
Ra , accessT m @(role = logger) : log← append log 〈IP, accessT, res〉
Rl , log m (tail log . IP ∈ Blist) : IDS← tail log

At the beginning, the AbU system S1 ‖ S2 ‖ S3 ‖ S4 is stable, since all pools are empty. At some point, an
access is made on the resource camera, and it is recorded by first access node. Hence, the rule (Input) can

be applied by S1, namely Ra〈Σ1〉
upd1IT Ra〈Σ′1〉, where:

11

D
RA

FT

upd1 = (accessT, 15:07:00)(res, camera)(IP, 167.123.23.2)

Σ′1 = [accessT 7→15:07:00 res 7→camera IP 7→167.123.23.2]

T = (role = logger) : log← append log 〈167.123.23.2, 15:07:00, camera〉

Now, a discovery phase is performed on all other nodes. In particular, we have that Ra〈Σ2〉 T Ra〈Σ2〉,
Rl〈Σ3〉 T Rl〈Σ3,Θ〉 and Rl〈Σ4〉 T Rl〈Σ4,Θ〉, with Θ = {(log, 〈167.123.23.2, 15:07:00, camera〉)}. Now,
let S′1 = Ra〈Σ′1〉, S′3 = Rl〈Σ′3,Θ〉 and S′4 = Rl〈Σ′4,Θ〉. The derivation tree for the resulting system S′1 ‖ S2 ‖
S′3 ‖ S′4 is depicted in Figure 3[top].

Now, the third and the fourth nodes can apply an execution step, since their pools are not empty. Sup-
pose the third node is chosen, namely we have Rl〈Σ3,Θ〉

upd2Bε Rl〈Σ′3〉, by applying the rule (Exec),
with Σ′3 = [role 7→ logger log 7→ 〈167.123.23.2, 15:07:00, camera〉 Blist 7→ ε IDS 7→ ε] and upd2 =
(log, 〈167.123.23.2, 15:07:00, camera〉). Note that, in this case, no rule is triggered by the executed up-
date. Since there is nothing to discover, all the other nodes do not have to update their pool and the
derivation tree for the resulting system S′1 ‖ S2 ‖ S′′3 ‖ S′4, where S′′3 = Rl〈Σ′3〉 is given in Figure 3[bottom].

Finally, the fourth node can execute, namely Rl〈Σ4,Θ〉
upd2Bε Rl〈Σ′4,Θ′〉, by applying the rule (Exec).

Here, Σ′4 = [role 7→ logger log 7→ 〈167.123.23.2, 15:07:00, camera〉 Blist 7→ 167.123.23.2 IDS 7→ ε] and
Θ′ = {(IDS, 〈167.123.23.2, 15:07:00, camera〉)}. In this case, the execution of the update triggers a rule of
the node but the rule is local so, also in this case, the discovery phase does not have effect.

The derivation tree for this step is analogous to the derivation tree for the previous one. Finally,
with a further execution on the fourth node, we obtain the system S′1 ‖ S2 ‖ S′′3 ‖ S′′4 , where S′′4 =
Rl〈Σ′′4〉 and Σ′′4 = [role 7→ logger log 7→ 〈167.123.23.2, 15:07:00, camera〉 Blist 7→ 167.123.23.2 IDS 7→
〈167.123.23.2, 15:07:00, camera〉]. Since all pools are empty, the resulting system is stable. This means that
we can perform a wave semantics step (where upd3 = (IDS, 〈167.123.23.2, 15:07:00, camera〉)):

(Wave)
S1 ‖ S2 ‖ S3 ‖ S4

upd1IT S′1 ‖ S2 ‖ S′3 ‖ S′4
upd2Bε S′1 ‖ S2 ‖ S′′3 ‖ S′4

upd2Bε . . .
upd3Bε S′1 ‖ S2 ‖ S′′3 ‖ S′′4

S1 ‖ S2 ‖ S3 ‖ S4
upd1 S′1 ‖ S2 ‖ S′′3 ‖ S′′4

4.2. Swarm of Robots

Consider now a scenario where a swarm of drones is in charge of taking specific measurements, randomly
picked in a large uninhabited area. Each drone is equipped with a battery that periodically needs to be
recharged by returning to a docking station. It may happen that a drone runs out of energy before returning
to the charging spot. In this case, the low-battery drone asks for help from its neighbors. If a drone has
some energy to share and it is close enough to the requester, it will enter the “rescue” mode. A drone in
“rescue” mode will reach the drone in distress, sharing with it some energy. This phase is not modeled in
the example for space reasons. We can model this scenario in AbU as follows.

Suppose to have four drones. For each drone we have an AbU node with a resource battery, indicating
the battery level of the drone; a resource position, indicating where is located the drone; a resource mode,
indicating in which operative state is the drone; and a resource helpPos, indicating the position of a drone
that needs help. Formally, the AbU system modeling the drone-swarm scenario is R〈Σ1〉 ‖ R〈Σ2〉 ‖ R〈Σ3〉 ‖
R〈Σ4〉, where R contains, among the others, the following two AbU rules:

battery m @(battery < 5 ∧ battery > 80) : helpPos← position

helpPos m (|position− helpPos| < 7.0) : mode← rescue

Now suppose that the execution states of the drones are the following:

Σ1 = [battery 7→4 position 7→2.0 mode 7→normal helpPos 7→0.0]

Σ2 = [battery 7→81 position 7→15.0 mode 7→normal helpPos 7→0.0]

Σ3 = [battery 7→97 position 7→6.0 mode 7→normal helpPos 7→0.0]

Σ4 = [battery 7→65 position 7→8.0 mode 7→normal helpPos 7→0.0]

12

D
RA

FT

m1

v1 v2

v3 v4

m2

v1 v2

v3 v4

m3

v1 v2

v3 v4

m4

v1 v2

v3 v4

m5

v1 v2

v3 v4

m6

v1 v2

v3 v4

m7

v1 v2

v3 v4

m8

v1 v2

v3 v4

m9

v1 v2

v3 v4

m10

v1 v2

v3 v4

m11

v1 v2

v3 v4

m12

v1 v2

v3 v4

m13

v1 v2

v3 v4

m14

v1 v2

v3 v4

m15

v1 v2

v3 v4

Figure 4: A vineyard irrigation system divided in fifteen zones. Each zone has a moisture sensor mi, with i ∈ [1..15], and it
covers four vines. Each vine in a zone has a dedicated water valve vi, with i ∈ [1..4].

The first rule says that when the current drone battery level is low (i.e., when battery < 5), then the
current drone have to send to all neighbors (using @) that have some energy to share (i.e., that have
battery > 80) its position, performing a remote update (i.e., helpPos ← position). In the example, the first
node can fire the rule, since its battery level is low. Then, it pre-evaluates the task condition, yielding
(4 < 5 ∧ battery > 80), which is sent to the other nodes, together with the pre-evaluation of the task
action, i.e., helpPos ← 2.0. Among all receivers, only the second and the third nodes are interested in the
communication, since they are the only nodes with battery level greater than 80. So, they both add to their
pool the update (helpPos, 2.0). This ends the discovery phase originated by the first node.

The second rule, instead, is fired when a drone receives a help request (i.e., when its resource helpPos
changes) and basically checks if the current drone position is close to the requester node position (i.e.,
when |position − helpPos| < 7.0). If it is the case, the current drone enters the rescue mode performing a
local update (mode ← rescue). In the example, when the second and the third nodes execute the update
(helpPos, 2.0), the task of the rule may be executed. For the second node this does not happen, since
|15.0− 2.0| < 7.0 is not true (the node is too far from the first node). Instead, |6.0− 2.0| < 7.0 is true and
the third node can execute the rule task, adding to its pool the update (mode, rescue).

4.3. A Vineyard Irrigation System

Finally, let us consider a scenario where a winegrower wants to optimize the irrigation system of a
vineyard. Optimization here means that the system should irrigate each vine with the correct amount of
water, maintaining the moisture level of the soil within a given range. The system is composed by a set of
water valves, each one attached to a vine. The vineyard is divided in zones, as depicted in Figure 4, each
one equipped with a moisture sensor. The vines falling into a given zone are watered depending on the
moisture level of the corresponding sensor: when the zone soil is too dry, the water valves of the vines in
the zone are opened; dually, the valves are closed when the zone soil is sufficiently moist.

The system also provides to the winegrower a console, to monitor (and log) the status of the water valves
(open/close). Furthermore, from the console it is possible to change the moisture range of the sensors. We
can model this scenario in AbU as follows.

As depicted in Figure 4, suppose to have sixty vines, divided in fifteen zones. This means that the
irrigation system comprises fifteen moisture sensors and sixty water valves. Note that, even if in Figure 4
sensors (mi) and valves (vi) have a name, in AbU the nodes are typically anonymous.

Indeed, we have fifteen (unnamed) AbU nodes representing the moisture sensors, each one equipped
with a resource position, indicating where is located the sensor; a resource range indicating the size of area

13

D
RA

FT

covered by the sensor; a resource moisture, indicating the (average) moisture level of the soil; and two
resources minMoist and maxMoist, indicating the minimum and the maximum moisture levels, respectively.
Furthermore, we have sixty (unnamed) AbU nodes representing the water valves, each one equipped with a
resource position, indicating where is located the valve; and a resource valve, indicating if the valve is open
or close. We also have an AbU node representing the console, equipped with a resource log, to record the
actions performed on the valves in the system; and two resources deltaMin and deltaMax, indicating the
variation of the lower and upper moisture level bounds to be applied to sensors, respectively. Finally all
nodes have a resource node, to indicate if a node is a moisture sensor (sensor), a water valve (valve) or a
console (console).

Formally, the AbU system modeling the vineyard irrigation system is Rs, ιv〈Σs,1〉 ‖ . . . ‖ Rs, ιs〈Σs,15〉 ‖
Rv〈Σv,1〉 ‖ . . . ‖ Rv〈Σv,60〉 ‖ Rc〈Σc〉, where Σs,i, with i ∈ [1..15], are the execution states of moisture sensor
nodes; Σv,i, with i ∈ [1..60], are the execution states of water valve nodes; and Σc is the execution state of
the console node.

Σs,1 = [node 7→sensor position 7→2.0 scope 7→9.0 moisture 7→3.1 minMoist 7→2.5 maxMoist 7→5.3]

. . .

Σs,15 = [node 7→sensor position 7→32.0 scope 7→9.0 moisture 7→3.7 minMoist 7→2.7 maxMoist 7→5.8]

Σv,1 = [node 7→valve position 7→1.0 valve 7→close]

. . .

Σv,60 = [node 7→valve position 7→33.0 valve 7→close]

Σc = [node 7→console log 7→ε deltaMin 7→0.0 deltaMax 7→0.0]

The system is controlled by means of the following AbU rules, where Rs are those equipped on moisture
sensor nodes; Rv are those equipped on water valve nodes; and Rc are those equipped to the console node.

Rs , moisture m @(moisture > maxMoist ∧ |position− position| < scope) : valve← close

moisture m @(moisture < minMoist ∧ |position− position| < scope) : valve← open

Rv , valve m @(node = console) : log← append log 〈position, valve〉
Rc , button m @(node = zone) : minMoist← minMoist + deltaMin maxMoist← maxMoist + deltaMax

The first rule in Rs basically closes a water valve when a moisture sensor detects a change in the soil moist,
and the new moisture level is above the maximum allowed level. The selected valves to close are those falling
in the area covered by the sensor, i.e., valves with position position such that |position− position| < scope.
The second rule in Rs is the dual, that opens a water valve when the new moisture level is below the
minimum allowed level.

The rule in Rv notify the console, when a water valve changes status, by selecting all nodes with
node = console. The console resource log is appended with current (water valve) node position and the new
status of the valve. Finally, the rule in Rc modifies the minimum and maximum moisture level boundaries
of all sensors, by deltaMin and deltaMax, respectively. The latter values can be set by the winegrower at
any time, then the rule is fired when a button on the console is pressed.

Finally, to avoid misconfigurations due to improper usage of the console, sensor nodes have an invariant
guaranteeing that lower and upper moisture level bounds always form a valid numeric interval:

ιs , (minMoist + 1.0) < maxMoist

Indeed suppose that a sensor node has minMoist 7→2.5 and maxMoist 7→5.3, and suppose that the console
sends, by mistake, un update with deltaMin 7→ 3.0 and deltaMax 7→ 0.0. If applied, the update would yield
[5.5, 5.3], that is not a valid interval, possibly corrupting the sensor intended behavior. This scenario is

14

D
RA

FT

prevented by the invariant ιs. Indeed, such update would fire the semantic rule (Exec-Fail), discarding the
update, instead of the semantic rule (Exec).

Remark 4. Note that, nodes in AbU are anonymous, and they are programmed by means of predicates. For
instance, we can select groups of nodes by changing (at any time) the sensors area (i.e., the zones) or the
sensors moisture level boundaries, without knowing the actual water valves position. This is particularly
useful in the context of large IoT systems, where the huge number of nodes makes unfeasible to identify a
precise node and where the nodes topology frequently changes (nodes may change their position or can be
lost and must be replaced). Nevertheless, we can still adopt a classic single node programming strategy in
AbU, by just keeping each node name in a dedicated resource and defining a predicate selecting the nodes
with a particular name.

5. Encoding Attribute-based Communication into AbU

To showcase the generality of our calculus, in this section we encode the archetypal calculus AbC [6]
into AbU. Our aim is not to prove that AbU subsumes AbC: the two calculi adopt different programming
paradigms, with different peculiarities, that fit different application scenarios. Our goal here is to show that
we can model attribute-based communication within the ECA programming paradigm.

5.1. The AbC Calculus

We focus on a minimal version of AbC [6], for which we define an operational semantics, as in [8]. As
already pointed out, we do not target a full-fledged version of AbC, since the aim of this section is to encode
into AbU the essence of the attribute-based communication, comprehensively expressed by the core version
of AbC that we will present in the following paragraphs.

An AbC component C can be a process paired with an attribute environment, written Γ : P , or the
parallel composition of components, written C1 ‖ C2. An attribute environment Γ maps attributes a ∈ A
to values v ∈ V. Our syntax of AbC processes is as follows.

P ::= 0 | (x |Π).P | 〈e@ Π〉.P | [a := e]P | [Π]P | Pa + Pb | K
Π ::= ff | tt | Π1 ∨Π2 | Π1 ∧Π2 | ¬Π | e ./ e ./ ∈ {<,≤, >,≥,=, 6=}
e ::= v | a | x | this.a | e⊗ e ⊗ ∈ {+,−, ∗, /}

In particular, the input (x | Π) receives a message that satisfies the predicate Π, savint it in the variable
x. The output 〈e @ Π〉 sends (the value of) the expression e to all components that satisfy the predicate
Π. The awareness process [Π]P waits until Π is satisfied and then continues the execution as P . The other
constructs are exactly as in [6]: the inactive process 0; the non-deterministic choice between Pa + Pb; and
the process call K. Predicates Π and expressions e are standard. We refer the reader to [6] for more details.

We now briefly explain the semantics for AbC. JeK(Γ) evaluates an expression e in the environment Γ
and yields a value, while JΠK(Γ) evaluates a predicate Π in Γ and yields tt or ff. Their formal definition is
straightforward, the only interesting cases are: JaK(Γ) = Jthis.aK(Γ) = Γ(a). When JΠK(Γ) is tt we say that
Γ satisfies Π, written Γ |= Π. We assume that processes do not have free variables, i.e., x is always under
the scope of an input (x | Π). Finally, in {|Π|}(Γ) we substitute expressions of the form this.a with Γ(a).
The semantics for processes (Figure 5[top]) and for components (Figure 5[bottom]) is given by a labeled
transition system, where a process label δ is of the form Π〈v〉 (output) or Π(v) (input) and a component
label λ can be either a process label δ or a silent action τ (i.e., a communication to a false predicate).
Transitions rules in Figure 5 are self-explanatory (symmetric rules are omitted).

Note that, if the rule (Comm) is applicable then Π cannot be false, since the rule (Rcv) cannot be applied
with false predicates. When Π is false, (Int) is applied, representing an internal execution step of C1. This
rule also applies when C2 is not ready (or it does not want) to communicate, allowing C1 to progress.

15

D
RA

FT

(Brd)
{|Π′|}(Γ) = Π JeK(Γ) = v

Γ : 〈e@ Π′〉.P Π〈v〉−−−→ Γ : P
(Aware)

Γ |= Π Γ : P
δ−→ Γ′ : P ′

Γ : [Π]P
δ−→ Γ′ : P ′

(Rcv)
Γ |= Π Γ |= Π′[v/x]

Γ : (x |Π′).P Π(v)−−−→ Γ : P [v/x]

(Sum)
Γ : Pa

δ−→ Γ′ : P ′1

Γ : Pa + Pb
δ−→ Γ′ : P ′1

(Zero)
−

Γ : 0
ff〈0〉−−−→ Γ : 0

(Upd)
JeK(Γ) = v Γ[v/a] : P

δ−→ Γ[v/a]′ : P ′

Γ : [a := e]P
δ−→ Γ[v/a]′ : P ′

(Rec)
K , P Γ : P

δ−→ Γ′ : P ′

Γ : K
δ−→ Γ′ : P ′

(Comp)
Γ : P

δ−→ Γ′ : P ′

Γ : P δ Γ′ : P ′

(Sync)
C1

Π(v)
C ′1 C2

Π(v)
C ′2

C1 ‖ C2
Π(v)

C ′1 ‖ C ′2
(Comm)

C1
Π〈v〉

C ′1 C2
Π(v)

C ′2

C1 ‖ C2
Π〈v〉

C ′1 ‖ C ′2
(Int)

C1
Π〈v〉

C ′1 C2
Π(v)

C1 ‖ C2
τ C ′1 ‖ C2

Figure 5: AbC semantics for processes [top] and components [bottom] (symmetric rules are omitted).

5.2. Encoding AbC into AbU

Given a AbC component Γ1 : P1 ‖ . . . ‖ Γn : Pn, we define an AbU system R1, ι1〈Σ1〉 ‖ . . . ‖ Rn, ιn〈Σn〉
composed by n nodes, where the state Σi of the ith node is given by the ith attribute environment Γi (with
some modifications that we will see in a moment). The execution pools of all nodes are initially empty.
In order to simulate process communication, we add to each node a special resource msg. If a node wants
to communicate a message, it has to update the msg resource of all the selected communication partners.
The execution of each AbC component is inherently sequential while AbU nodes follow an event-driven
architecture. In order to simulate AbC causality, we associate each generated AbU rule with a special
resource, a rule flag, whose purpose is to enable and disable the rule. The sequential execution flow of an
AbC component is reconstructed modifying the active flag of the rules: this simulates a “token” that rules
have to hold in order to be executed. Formally, the state of the ith nodes is augmented as follows:

Σi = Γi ∪ {(msg, 0)} ∪
⋃
j∈[1..n]Resj(Pj)

A rule is generated for each process instance present in the AbC component to be encoded. To this
end, each node is augmented with all rule flags, of all rules, given by the translation of all processes of
the AbC component. Rule flags are resource of the form Phri, with h ∈ [1..n] and i ≥ 0, representing
the ith rule generated from the component h. The function Resh, given a process of the component h,
with h ∈ [1..n], computes the resources to add to the nodes. Here, Resh is parametric in h since rules
are binded to the component generating them. In particular, Resh returns ∅ for the inactive process and
for process calls, i.e., Resh(0) , Resh(K) , ∅, and nothing is added. For the other processes, it returns
Resh(P) , {(Phr0,ff)} ∪ Resh(P, 0). The flag Phr0 is the starting point of the computation, indeed it does
not represent any actual rule, and it is set to tt in order to start the computation. The function Resh(P, i),
for i ≥ 0, is defined inductively on the structure of P . In the base cases P = 0 and P = K, it returns ∅
(i.e., nothing is added), otherwise it is defined as follows, where the auxiliary function Next generates a fresh
index for the next rule to add. Let Next(i) = j and Next(j) = k, then:

Resh(P, i) ,

{(x, 0), (Phrj ,ff)} ∪ Resh(P ′, j) if P = (x |Π).P ′

{(Phrj ,ff), (Phrk,ff)} ∪ Resh(Pa, j) ∪ Resh(Pb, k) if P = Pa + Pb

{(Phrj ,ff) ∪ Resh(P ′, j) if P = [Π]P ′ or P = [a := e]P ′

or P = 〈e@ Π〉.P ′

In particular, if the process is an input, we add the flag for the current rule and another resource for
the variable x. If the process is a non-deterministic choice, we add two flags, one for each branch, that will
originate two different rules. In all other cases, we just add the flag for the current rule.

16

D
RA

FT

Concerning the translation of AbU rules, we adopt the following mechanism. The ith generated rule,
of the component h, listens on the rule flag Phri: when the latter becomes tt, the rule can execute. Its
execution disables Phri (it is set to ff) and enables the next rule, setting the flag Phrj , with j = Next(i), to

tt. In this way, the execution token can be exchanged between rules. The function Ench, given a process
of the component h, with h ∈ [1..n], generates the rules to add to the translation. It relies on Next, that
outputs a fresh index for the next rule to generate. We assume that Next in Ench is consistent with Next
in Resh, i.e., they have to produce the same sequence of indexes given a specific process. The function
Ench(P, i), for i ≥ 0, is defined inductively on the structure of P . In the base case P = 0, it returns ε (i.e.,
nothing is added), otherwise it is defined as follows.

If the process is a call to K, a new call rule is added. This rule enables the first flag (the dummy rule
r0) of the called process, defined by K. In other words, given K , Pk:

Ench(K, i) , Phri m (Phri = T) : Phri ← FPkr0 ← T

If the process is an input x on the predicate Π, a new receive rule is added. The rule checks the condition
given by the translation of the predicate Π. Here, Repl replaces, in a given AbU boolean expression, every
instance of a specific variable (x in this case) with msg. As an example, the predicate Π = x < n is translated
to Repl(Enc(Π), x) = msg < n. When the condition is satisfied, the rule saves the value msg received from
the sender (in the resource x), ends the communication and enables the next rule. In other words, given
j = Next(i):

Ench((x |Π).P ′, i) , Phri m (Phri = T ∧ Repl(Enc(Π), x)) : x← msg Phri ← F Phrj ← T Ench(P ′, j)

If the process is a non-deterministic choice between Pa and Pb, two new choice rules are added. Both
rules listen to the same flag, so the scheduler can choose non-deterministically the one to execute. The
action of the first choice rule enables the next rule given by the translation of Pa, while the action of the
second choice rule enables the next rule given by the translation of Pb. In other words, given j = Next(i)
and k = Next(j):

Ench(Pa + Pb, i) , Phri m (Phri = T) : Phri ← F Phrj ← T Ench(Pa, j)

Phri m (Phri = T) : Phri ← F Phrk ← T Ench(Pb, j)

If the process is waiting on the predicate Π (awareness), a new awareness rule is added, that listens on
the resources contained in Π. The latter are retrieved by the function Vars that inspects the predicate Π
and returns a list of resource identifiers. In particular, variables x are left untouched, while AbC expressions
a and this.a are both translated to the resource a. The condition in the rule task is the translation of Π.
When it is satisfied, the next rule is enabled. In other words, given j = Next(i):

Ench([Π]P ′, i) , Phri Vars(Π) m (Phri = T ∧ Enc(Π)) : Phri ← F Phrj ← T Ench(P ′, j)

If the process updates the attribute a with the expression e, an update rule is added, assigning the
translation of e to a and enabling the next rule. In other words, given j = Next(i):

Ench([a := e]P ′, i) , Phri m (Phri = T) : a← Enc(e) Phri ← F Phrj ← T Ench(P ′, j)

If the process is an output of the expression e on the predicate Π, a new send rule is added. The rule
checks the condition given by the translation of the predicate Π. Note that, in the AbC semantics, the
predicate is partially evaluated before the send, namely expressions of the form this.a are substituted with
Γ(a). To simulate this mechanism in AbU we use an auxiliary transformation Ext that takes a AbC predicate
Π and returns its translation Enc(Π) where each instance (in Π) of an attribute a not prefixed by this. is
translated to a. As an example, the predicate Π = this.n < n is translated to Ext(Π) = n < n. For each
external node satisfying the predicate Π, the rule writes the translation of e to the external node resource
msg (with msg← Enc(e)). Outputs are non-blocking, so the rule has a default code, executed without caring

17

D
RA

FT

SEND v to @ϕ1

node1
msg 7→ 0
x 7→ 0

node2
msg 7→ v
x 7→ 0

node3
msg 7→ v
x 7→ 0

node4
msg 7→ 0
x 7→ 0

satisfyϕ1

msg ← v

msg ←
v

ignored

RECV x from ϕ2

node2 checks ϕ2, and x← msg is executed
msg 7→ v x 7→ v

node1 selected, and ϕ2 satisfied

RECV x from ϕ3

node3 checks ϕ3, but nothing is executed
msg 7→ v x 7→ 0

node1 selected, but ϕ3 not satisfied

Figure 6: Attribute-based communication in AbU, a receive phase (right) after a send phase (left).

about the satisfaction of the condition. It disables the current rule and enables the next one. In other words,
given j = Next(i):

Ench(〈e@ Π〉.P ′, i) , Phri m Phri ← F Phrj ← T,@(Phri = T ∧ Ext(Π)) : msg← Enc(e) Ench(P ′, j)

Finally, the translation of predicates Enc(Π) and expressions Enc(e) is recursively defined on Π and e,
respectively. Its definition is straightforward, the only interesting cases are: Enc(this.a) , Enc(a) , a. To
start the execution of the translated system, an (Input) is needed, enabling all rule flags Phr0, of all nodes.

In the following, we denote with Enc(C) the AbU encoding of C, where node states are defined as
explained above, node pools are empty and nodes ECA rules are generated by Enc (for each process of C).

In Figure 6 we graphically explain how an attribute-based communication is performed in AbU, by means
of attribute-based memory updates. The node node1 aims to send the value v to nodes node2 and node3,
since they satisfy ϕ1 = Ext(Π1). So, it updates with v the resource msg on the remote nodes node2 and
node3. On the other side, node2 and node3 check if some node aims to communicate and node1 is indeed
selected. Since node1 satisfies ϕ2 = Repl(Enc(Π2), x) and does not satisfy ϕ3 = Repl(Enc(Π3), x), only node2
accepts the value v, saving it in the resource x, while node3 ignores the communication.

Encoding example. We now show an example encoding of an AbC component into AbU. The example is
taken from [27] (Subsection 2.1). Given N agents, each associated with an integer in [1..N], we wish to
find one holding the maximum value. This problem can be modeled in AbC by using one component type
P with two attributes: s, initially set to 1, indicating that the current component is the max; and n, that
stores the component value. Formally, the process P (with Max , P) is:

P = [s = 1] (〈n@ n ≤ this.n〉 .Max + (x | x ≥ this.n) . [s := 0]0)

Basically, P waits until s becomes 1 and then either: it sends its own value n to all other components with
smaller n; or it receives (on x) a value from another component with a greater n and sets s to 0. Supposing
N = 3, the problem is modeled in AbC with the component Cmax = [s 7→ 1 n 7→ 1] : P ‖ [s 7→ 1 n 7→ 2] :
P ‖ [s 7→ 1 n 7→ 3] : P . This AbC component translates to AbU as follows.

R = P1r0 m (P1r0 = T ∧ s = 1) : P1r0 ← F P1r1 ← T aware rule

P1r1 m (P1r1 = T) : P1r1 ← F P1r2 ← T choice1 rule

P1r1 m (P1r1 = T) : P1r1 ← F P1r3 ← T choice2 rule

P1r2 m P1r2 ← F P1r4 ← T,@(P1r2 = T ∧ n ≤ n) : msg← n send rule

P1r4 m (P1r4 = T) : P1r4 ← F P1r0 ← T call rule

P1r3 m (P1r3 = T ∧msg ≥ n) : x← msg P1r3 ← F P1r5 ← T receive rule

P1r5 m (P1r5 = T) : s← 0 P1r5 ← F P1r6 ← T update rule

18

D
RA

FT

R〈[msg 7→0 n 7→1 x 7→0 s 7→0 P1r0 7→ff P1r1 7→ff P1r2 7→ff P1r3 7→ff P1r4 7→ff P1r5 7→ff P1r6 7→ff]〉
R〈[msg 7→0 n 7→2 x 7→0 s 7→0 P1r0 7→ff P1r1 7→ff P1r2 7→ff P1r3 7→ff P1r4 7→ff P1r5 7→ff P1r6 7→ff]〉
R〈[msg 7→0 n 7→3 x 7→0 s 7→0 P1r0 7→ff P1r1 7→ff P1r2 7→ff P1r3 7→ff P1r4 7→ff P1r5 7→ff P1r6 7→ff]〉

5.3. Correctness of the Encoding

We finally provide a correctness result for the previously defined encoding. In particular, we prove
that translated AbU systems preserve the semantics of the original AbC components. Since an AbU node
contains auxiliary resources, in addition to those corresponding to AbC attributes, we have to establish a
notion of compatibility between AbU node states and AbC attribute environments. Given an AbU node
state Σ and an AbC attribute environment Γ, we say that Σ is compatible with Γ, written Σ � Γ, when for
each (a, v) ∈ Γ there exists (a, v) ∈ Σ (i.e., when Γ ⊆ Σ). This basically means that Σ agrees, at least, on
all attributes of Γ. This notion can be extended to systems and components.

Definition 3 (AbU to AbC compatibility). Given an AbC component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn and
an AbU system S = R1〈Σ1,Θ1〉 ‖ . . . ‖ Rn〈Σn,Θn〉, we say that S is compatible with C, written S � C,
when Σi � Γi, for each i ∈ [1..n].

The AbU translation Enc(C) of C yields n (one for each process) initial rule flags P1r0, . . . , Pnr0, initially
set to ff. In order to start the computation of Enc(C), the latter have to be initialized (i.e., set to tt). In
this regards, we assume an initial input phase, comprising n AbU (Input) steps, enabling all initial rule flags
(without interleaving execution steps). Let

∗
be the transitive closure of without occurrences of

labels of the form updBT . In other words,
∗

denotes a finite sequence of internal input steps (with the
corresponding discovery phases), without interleaving execution steps.

Now we are ready to state the correctness of the AbC encoding. The following Theorem 4 says that
if an AbC component performs some computation steps, producing a residual component C ′, then the
AbU translation of C, after an initial input phase, is able to perform an arbitrary number of computation
steps, yielding a residual system attribute compatible with C ′. This basically means that Enc(C) is able to
“simulate” each possible execution of C.

Theorem 4 (AbC to AbU correctness). For any AbC component C, let S = Enc(C); then for all C ′

such that C
∗
C ′ there exists an AbU system S′ such that S

∗ ∗
S′ and S′ � C ′.

Proof. The proof is quite complex and it requires some preliminary results. In order to simplify the
reading, we moved the full proof to Appendix A.1.

6. Correctness Requirements for AbU Systems

Correctness requirements aim at preventing the nodes of an AbU system to exhibit unintended behaviors.
For instance, the wave semantics (and, hence, an AbU system) may exhibit internal divergence: once an
input step starts the computation, the subsequent execution steps may not reach a stable system, even if
no other inputs are performed.

As a motivating example, consider the curious case of the book “The Making of a fly”, that reached the
stellar selling price of $23,698,655.93 on Amazon, in 20014. Two Amazon retailers, profnath and bordeebook,
used Amazon automatic pricing primitives to set the price of their book copy, depending on the competitor
book price. The strategy of profnath was to automatically set the price 0.99 times the bordeebook price;
conversely, the strategy of bordeebook was to set the price 1.27 times the profnath price. Obviously, each
retailer was not aware of the competitor’s strategy. This scenario can be modeled by means of the following
(informal) ECA rules:

4https://www.michaeleisen.org/blog/?p=358.

19

D
RA

FT

https://www.michaeleisen.org/blog/?p=358

� when bordeebook-price changes, set profnath-price as bordeebook-price decreased by 1%

� when profnath-price changes, set bordeebook-price as profnath-price increased by 27%

that translate to AbU as:

bordeebook-price m (T) : profnath-price← bordeebook-price ∗ 0.99

profnath-price m (T) : bordeebook-price← profnath-price ∗ 1.27

It is easy to see that these rules generate a loop, leading to an uncontrolled raise of the book price (as
it happened). In order to prevent these situations, we may define a syntactic condition on the rules that
guarantees (internal) termination. In other words, each system satisfying the condition eventually becomes
stable, after an initial input and without further interleaving inputs.

Another quite import requirement for AbU systems is confluence, that can be seen as a sort of scheduler-
independence. In other words, confluence says that no matter which is the order of execution of the updates
in the pools (given by the AbU scheduler), the system eventually produces a unique result. This can be
useful in contexts where the final result of rules application must be predictable.

In the following, we first formally define stabilization and confluence requirements, then we provide
syntactic sufficient condition that guarantee the satisfaction of these requirements by a given AbU system.

6.1. Stabilization and Confluence

Before formally defining the correctness requirements, we have to introduce some notions and notations.
Given the set N of natural numbers, with cardinality |N| = ω, we denote with N∗ and Nω the set of finite
sequences and infinite sequences, respectively, over naturals. We denote with N∞ , N∗ ∪ Nω the set of
(finite and infinite) sequences over naturals and with ε the empty sequence. Given a sequence n ∈ N∞, we
define the set of its (finite) prefixes as:

pref(n) ,
{
n′ ∈ N∗

∣∣ ∃n′′ ∈ N∞ ∪ {ε} . n′ n′′ = n
}

An infinite sequence n ∈ Nω approximates (to the limit) a set of finite sequences X ⊆ N∗ when n have
an infinite number of prefixes in common with X. In this case, n is exactly the Eilenberg limit [39, 40] of
X, and it is formally defined as:

E-limit(X) , {n ∈ Nω | |pref(n) ∩X| = ω}

As an example, the Eilenberg limit of the (infinite) set
⋃
i∈N{(5 7)i} = {ε, 5 7, 5 7 5 7, 5 7 5 7 5 7, . . .} is the

infinite sequence (5 7)ω. Note that, E-limit(X) = ∅ when X is finite.
Given a set of sets X, we denote with max(X) , {X ∈ X | ∀X ′ ∈ X . X ⊆ X ′ ⇒ X = X ′} the set of

maximal elements of X. Then, given a set X, we define the set of its maximal subsets as:

℘max(X) , {X ⊆ ℘(X) | max(X) = X ∧
⋃

X = X}

where the symbol ℘ denotes the powerset operator. In other words, each element of ℘max(X) is closed under
maximal elements and saturates X.

As we will see in a moment, to reason about complex AbU system behaviors we need a detailed notion
of system trace, that comprises execution states, execution pools and LTS labels. We want to stress the
fact that the usage of labels in the semantics and in the definition of system trace does not imply that
AbU is based on messages exchange. LTS labels are used by the AbU semantics only to record nodes state
variation, they do not carry any actual semantic information regarding nodes. In other words, what we
actually observe of the AbU semantics is not the messages (LTS labels) exchanged but, rather, the variation
of nodes state.

We now formally define the internal termination requirement, that we call stabilization. We denote with
ExecLabels the set of all possible execution labels, namely AbU labels of the form upd B T , for some upd
and T . Recall that, S

∗
S′ means that that S′ can be obtained from S by applying execution steps only,

20

D
RA

FT

namely in
∗

we can only have labels belonging to ExecLabels. Note that, when S
∗

S′ then there
exists k ∈ N such that S

α0 . . .
αk−1

S′. The latter is a finite computation (of length k) originated by
S. A finite computation may lead to a stable system (i.e., all pools in S′ are empty) or to a not stable
system (i.e., we have at least one non-empty pool in S′). Stabilization states that after some execution steps
a system becomes stable.

Definition 4 (Weak stabilization). An AbU system S is weakly stabilizing when there exists S′ such that
S

∗
S′ and S′ is stable.

Weak stabilization does not exclude that S may originate both computations leading to a stable system
and computations not leading to any stable system. Indeed, we can have an infinite sequence of applications
of the AbU semantics involving execution steps only. In other words, S may originate an infinite computation
S

α0 S0 α1 . . . (with αi ∈ ExecLabels and i ∈ N) that does not lead to any stable system.

Definition 5 (Stabilization). An AbU system S is stabilizing when there are no infinite computations,
namely S cannot originate infinite sequences S

α0 S0 α1 . . . (with αi ∈ ExecLabels and i ∈ N).

In other words, a weakly stabilizing system may become stable, i.e., there exists a scheduling that yields a
stable system; while a stabilizing system must become stable, i.e., all possible schedulings yield, eventually,
a stable system. The reader familiar with Term Rewriting Systems can note that stable AbU systems are
conceptually analogous to terms in normal form [41]. Indeed, a term is in normal form when no rewriting
rules can be applied to it; analogously, an AbU system is stable when no (Exec) rules can be applied to it.
Similarly, weak stabilization is analogous to weak normalization [41] (all terms admit a normal form) and
stabilization is analogous to strong normalization [41] (all rewriting sequences are finite).

We now define the second requirement for AbU systems, i.e., confluence, that can be seen as a sort of
scheduler-independence. In other words, confluence says that no matter which is the order of execution of
the updates in the pools (given by the AbU scheduler), the system eventually produces a unique result.

Definition 6 (Confluence). An AbU system S is confluent when for all S1 and S2 such that S
∗

S1

and S
∗

S2 there exists S′ such that S1
∗

S′ and S2
∗

S′.

In other words, if S
∗

S1 and S
∗

S2, for different systems S1 and S2, we have two different
scheduling that we can apply from S. Nevertheless, if S is confluent, both scheduling eventually yield a
unique system S′. Note that, confluence does not implies that the system stabilizes, indeed, we can have
confluent systems that generates infinite computations.

Definition 7 (Convergence). An AbU system S is convergent when it is confluent and stabilizing.

Convergence means that a system eventually stabilizes, yielding an unique result, no matter what schedul-
ing have been chosen. Continuing the previous parallelism, AbU confluence and convergence are analogous
to the Church-Rosser property5 and convergence [41] of Term Rewriting Systems, respectively. Indeed, the
latter holds when a Term Rewriting System is both strongly normalizing and Church-Rosser, like AbU
convergence holds when a system is both stabilizing and confluent.

Definition 8 (Wave weak stabilization, stabilization, confluence and convergence). A stable AbU
system S is wave weakly stabilizing, wave stabilizing, wave confluent or wave convergent when for all input upd
we have that S

updIT
S′ implies S′ is weakly stabilizing, stabilizing, confluent or convergent, respectively.

Wave weak stabilization means that given an input, then the system may become stable again, after
executing that input. In other words, if S

updIT
S′′ then there exists S′ such that S

upd
S′. Wave stabi-

lization means that given an input, then the system must become stable again, after executing that input.

5Very often called confluence even in the case of Term Rewriting Systems.

21

D
RA

FT

In other words, if S
updIT

S′ then all execution path starting from S′ eventually yield a stable system.
Wave confluence means that given an input, then system eventually reaches a unique system after executing
that input. In other words, if S

updIT
S′ then S′ eventually reaches a unique system (possibly not stable).

Finally, wave convergence means that given an input, then system eventually stabilizes to an unique system
after executing that input.

As we have seen in Subsection 3.3, AbU is in general Turing complete, hence checking requirements as
stabilization and confluence is an undecidable problem. For instance, if we were able to decide stabilization
for AbU with non-deterministic substitutions we were also able to decide termination of Turing machines.
Similarly, if we were able to decide confluence for AbU with non-deterministic substitutions we were also able
to decide confluence of rewriting systems, which is known to be undecidable in general [42]. Nevertheless,
we can still aim for verification procedures for stabilization and confluence that are sound but possibly not
complete, i.e., they may fail to recognize stabilizing or confluent systems as such. In the following we will
present two sound verification mechanisms for checking stabilization and confluence of AbU systems.

6.2. Verifying Stabilization

We now show how stabilization can be statically checked, for a given AbU system, namely we provide
a verification mechanism that can be used before the deployment of the system. It basically consists in
checking if there are chains of AbU rules in the system that form cycles.

The output resources of an AbU rule, namely the resources involved in the actions performed by the
rule, are given by the resources assigned in the default action and in the rule task. The output resources of
an action act are the set Out(act) , {x | ∃i ∈ N . act[i] = x← ε ∨ act[i] = x← ε}. So, the output resources
of a rule are Out(evt m act1, cnd : act2) , Out(act1) ∪ Out(act2).

The input resources of an AbU rule are the resources that the rule listen on, namely the set In(evt m
act, task) , {x | ∃i ∈ N . evt[i] = x}. Given a list R of AbU rules, its output resources Out(R) are the union
of the output resources of all rules in the list. Analogously, its input resources In(R) are the union of the
input resources of all rules in the list. More formally:

Out(rule1 . . . rulen) ,
⋃

i∈[1..n]

Out(rulei) and In(rule1 . . . rulen) ,
⋃

i∈[1..n]

In(rulei)

Definition 9 (ECA dependency graph). Given an AbU system S=R1, ι1〈Σ1,Θ1〉 ‖ . . .‖ Rn, ιn〈Σn,Θn〉,
the ECA dependency graph of S is a directed graph (V,E) where vertices (or nodes) V and edges E are:

V ,
⋃

i∈[1..n]

In(Ri) ∪ Out(Ri) and E ,

{
(x1, x2)

∣∣∣∣ ∃i ∈ [1..n]∃j ∈ [1..k] . Ri = rule1 . . . rulek
∧x1 ∈ In(rulej) ∧ x2 ∈ Out(rulej)

}

The sufficient syntactic condition for the termination of the wave semantics (i.e., stabilization) consists
in the acyclicity of the ECA dependency graph.

Theorem 5 (Soundness for stabilization). Given a stable AbU system S, if the ECA dependency graph
of S is acyclic, then S is wave stabilizing.

Proof. The proof is quite long and involved and it requires some preliminary results. For sake of readability,
we moved the full proof to Appendix A.2.

A naive termination verification mechanism consists in computing the transitive closure E+ of E and
to check if it contains reflexive pairs, i.e., elements of the form (x, x), for a resource x. If there are no
reflexive elements then the graph is acyclic and the condition is fulfilled. A more efficient solution consists
in Algorithm 1. It is a DFS-based algorithm to check cycles in directed graphs. It maintains a stack of
visited nodes in the DFS to check back edges. If a back edge in the DFS-traversing of the graph is found,
then the graph is not acyclic (Algorithm 1 returns False). The time complexity of Algorithm 1 is mainly
due to the DFS search, hence it is O(|V | + |E|), in the worst case. Notice that, in V each variable is

22

D
RA

FT

Algorithm hasCycles(V,E)
1 visited := [notVisited]
2 cycle := False
3 for v ∈ V and cycle = False do
4 if visited[v] = notVisited then
5 S := []
6 S. push(v)
7 visited[v] := inStack
8 cycle := hasCyclesDFS(V,E, S, visited)

end

end
9 return cycle

Procedure hasCyclesDFS(V,E, S, visited)
1 cycle := False
2 for v ∈ adjacent(V, S.top) and cycle = False do
3 if visited[v] = inStack then
4 cycle := True

else
5 if visited[v] = notVisited then
6 S. push(v)
7 visited[v] := inStack
8 cycle := hasCyclesDFS(V,E, S, visited)

end

end

end
9 return cycle

Algorithm 1: Detect cycles in an ECA dependency graph using a DFS search.

counted once even if it is present in more than one node; hence, |V | counts the number of different variables
appearing in the whole system. On the other hand, |E| is bound by the total number of rules of the system.
Nevertheless, between each pair of variables there can be at most one edge; hence different rules connecting
the same pairs of resources are counted once.

All three AbU systems presented in Section 4 are wave stabilizing, and our verification mechanism is
able to correctly state that the systems satisfy the requirement. Indeed, all ECA dependency graphs in the
examples are acyclic.

Remark 5. Note that, in some cases, the proposed approach based on the ECA dependency graph may be too
restrictive. For instance, many distributed algorithms (e.g., the Bracha-Toueg crash consensus algorithm [43]
or the Franklin’s election algorithm [44]) are based on rounds, thus requiring some synchronization between
nodes. AbU is asynchronous by design, but round computations can be simulated by using indexed variables:
each resource x can be an array of variables x1 x2 . . . and at round i + 1, events and updates read from i-
th elements of the array (i.e., xi) and update the i + 1-th. For instance, an update x ← x ∗ 2 at round
i + 1 would be translated to xi+1 ← xi ∗ 2. This round-based mechanism introduces a cyclic dependency
on resources, thus failing the proposed stabilization check. This is, in principle, not necessarily bad since
rounds-based algorithms may diverge, if not properly designed, and convergence can be proved in different
ways (as for [43, 44]). Nevertheless, the static condition we have proposed, based on the acyclicity of the
ECA dependency graph, is a sufficient but not necessary condition for stabilization. As future work, we plan
to develop more precise solutions, i.e., allowing also for some programs having a cyclic ECA dependency
graph but that are not actually diverging (as in the case of [43, 44]).

6.3. Verifying Confluence

In order to verify confluence, the information contained in the ECA dependency graph is not sufficient.
Indeed, we need to track not only which resource depends on another, but the ECA rule introducing that
dependency as well. We can extend the ECA dependency graph with a label on arcs containing the rule
that justifies the dependency. An arc of the form (x, rule, y) means: modifying x we may modify y as well,
by applying the rule rule. In the following, we denote an AbU rule of an AbU system by means of a numeric
index: r〈i,j〉 stands for the jth rule of the ith node of the system.

Definition 10 (Labeled ECA dependency graph). Given an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖
Rn, ιn〈Σn,Θn〉, the labeled ECA dependency graph of S is a directed graph (V, `E) where vertices (or nodes)
V and labeled edges `E are:

V ,
⋃

i∈[1..n]

In(Ri) ∪ Out(Ri) and `E ,

{
(x1, r

〈i,j〉, x2)

∣∣∣∣ ∃i ∈ [1..n]∃j ∈ [1..k] . Ri = rule1 . . . rulek
∧x1 ∈ In(rulej) ∧ x2 ∈ Out(rulej)

}

23

D
RA

FT

A finite walk in the labeled ECA dependency graph between the resources x and y is a sequence of
rules that connect the two resources (a sort of transitive dependency) and it is given by the labels of the
graph. Roughly speaking, a finite walk in the labeled ECA dependency graph represents a possible schedule
of updates execution. More formally, given a labeled ECA dependency graph (V, `E), two arcs (x, r, y) and
(x′, r′, y′) are joinable, written (x, r, y) _ (x′, r′, y′), when y = x′. We then define the finite walks between
two resources x and y as:

finite-walks(x, y) , {r1 . . . rn | ∃z1, . . . , zn−1 ∈ V . (x, r1, z1) _ . . . _ (zn−1, rn, y)}

Note that, all sequences in the set finite-walks(x, y) are finite, but the set may have an infinite number of
elements (meaning that x and y are involved in a cycle). In order to precisely verify confluence, we have to
separate finite computations from computations involved in cycles, that not necessarily break confluence. In
this respect, since a finite walk is a sequence of indexes (i.e., natural numbers), we can use the Eilenberg-limit
in order to represent an infinite set of finite walks by means of a finite set of infinite walks. In particular,
we define the set of limit walks between the resources x and y as:

limit-walks(x, y) , E-limit(finite-walks(x, y))

In this way, we can distinguish finite computations from infinite ones, involved in cycles. Hence, we can
formally define the walks that link two resources, consisting in the limit walks, together with the finite walks
that are not approximated by any limit walk. Formally, the walks between the resources x and y are:

walks(x, y) , limit-walks(x, y) ∪ finite-walks(x, y) \
{
n ∈ pref(n′)

∣∣ n′ ∈ limit-walks(x, y)
}

The sufficient syntactic condition for the confluence of the AbU semantics consists in checking the
cardinality of the walks in the labeled ECA dependency graph between all pairs of nodes. Indeed, if
|walks(x, y)| > 1, we have different sequences of rules (i.e., scheduling) that may lead to a modification of y
when we modify x, hence possibly breaking confluence.

Unfortunately, confluence depends also on the input that has been performed, not only on the syntactic
structure of the AbU rules. Consider the following two rules:

xm (T) : y ← 1 and z m (T) : y ← 2 (2)

that seems to be confluent (and, indeed, we have at most 1 walk between each pair of resources). Actually
we may have different results if an input changes x and z simultaneously. Indeed, the final value for y
can be either 1 or 2, depending on the scheduling. For this reason, we need to augment the labeled ECA
dependency graph with dummy vertices and arcs, simulating simultaneous inputs.

Let inputS ,
⋃
i∈[1..n] In(Ri) be the input resources of the system S=R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉.

We define an input sampling family as an element F ∈ ℘max(inputS). The latter corresponds to the possible
combination of inputs (of S) that can be simultaneously changed by the environment. Chosen a sampling
family F = {S1, . . . , Sk}, which is a finite set, we add to the labeled ECA dependency graph of S all the arcs
(si, r

input, x) such that: i ∈ [1..k] and x ∈ Si. Here si, for i ∈ [1..k], are dummy fresh resources not present
in S, and rinput represents a dummy rule not present in S. The best case corresponds to the sampling family
such that |F| = |inputS|, namely when F contains only singletons. In this case, we have that we can change
only one resource at each input step6. Conversely, the worst case corresponds to the sampling family such
that |F| = 1, namely when F contains only the set inputS. In this case, we have that we can simultaneously
change all (input) resources at each input step.

Continuing the example with the AbU rules in Equation (2), suppose to have a sampling family F =
{{x, z}}, namely x and y can be simultaneously changed by input steps. The augmented labeled ECA
dependency graph of the system can be depicted as:

6Indeed, the added dummy resources and rules are not useful and therefore can be removed.

24

D
RA

FT

x

y

z

d

r xy

rxy: index of xm (T) : y ← 1

rz
y

rzy: index of z m (T) : y ← 2

ri
nput

r input

with walks(d, y) = 2, hence we can find the confluence fail. Indeed, with the augmented labeled ECA
dependency graph, the cardinality of the walks between each pair of resources provides us a verification
mechanism for confluence.

Theorem 6 (Soundness for confluence). Given a stable system S, if for each pair of resources x, y in
the (augmented) labeled ECA dependency graph of S we have that |walks(x, y)| ≤ 1, then S is wave confluent.

Proof. The proof is quite long and involved and it requires some preliminary results. For sake of readability,
we moved the full proof to Appendix A.2.

A confluence verification mechanism consists in computing the cardinality of the sets walks(x, y), for
each pair of resources x and y. Algorithm 2 checks if the number of walks between each pair of resources
in the labeled ECA dependency graph is greater than 1 (in that case it returns False). The algorithm first
initializes the adjacent matrix adj of the graph (line 1) and then computes the successive powers of the
adjacent matrix (lines 2..6), in order to find multiple finite walks. Indeed, in each element (i, j) of adjn we

have the number of finite walks of length n between the nodes vi and vj . Hence, computing adj|V |−1 we
obtain all the possible finite walks, since we cannot have walks longer than, or equal to, the number of nodes,
if we exclude cycles. At each iteration, in line 4 we check if we already have multiple walks between the
resources: if it is the case then the algorithm says that the system is not confluent. Once we have checked
the finite walks, we need to check eventual multiple limit walks (lines 7..8). If no cycles are detected, then

the system is confluent. When adj|V | is not zero, then we have a walk of length |V | involving at most |V |
nodes, hence we have a cycle. In this case, we check the out-degree of the nodes in the (initial) adjacent

matrix involved in cycles (lines 9..12). To select such nodes, we look at adj|V |, selecting its columns that
have at least one non-zero element. Indeed, if a column i has a non-zero element then the corresponding
node vi is the last step of a walk with length |V |, hence it is involved in (or it is reachable from) a cycle.
For the selected nodes, we compute the out-degree, making the sum of the corresponding row in the initial
adjacent matrix adj. If for all nodes the out-degree is less than 2 we have confluence.

The time complexity of the procedure multipleWalks is O(|V |2), in the worst case. Matrix multiplication
can be implemented in O(|V |3), hence the total time complexity of the loop at lines 3..6 is O(|V |4), in the
worst case. The loop at lines 9..12 has time complexity O(|V |2), in the worst case. Finally, the time
complexity of the procedure initWalksCount is O(|V |2 + |`E|), in the worst case. Indeed, the computation
of the direct dependencies between resources in the procedure initWalksCount requires to access all elements
of `E, that may have a cardinality less, equal or greater than the cardinality of V . Hence, the time complexity
of the whole Algorithm 2 is O(|V |4 + |`E|), in the worst case.

All three AbU systems presented in Section 4 are wave confluent, but our verification mechanism is able
to correctly state that the systems satisfy the requirement only for the first two. Indeed, for the vineyard
example, we have two (finite) walks between the resources moisture and valve (one originated by the rule in
Rs that opens the valve and another originated by the rule in Rs that closes the valve). Nevertheless, these
two rules cannot yield non-confluent behaviors, since their conditions are disjoint (the two conditions cannot
be true at the same time). In this case we have a false positive, since the verification mechanism flags as
not correct a system that actually fulfills the requirement. We plan to improve our verification mechanism
with more “semantic” checks as a future work.

7. Towards a Distributed Implementation

In this section, we discuss how the proposed calculus AbU can be implemented. We can basically follow
two approaches. We can implement the calculus from scratch, dealing with all the problems related to a

25

D
RA

FT

Algorithm hasMultipleWalks(V, È)
1 adj := initWalksCount(|V |, È)
2 walks := adj
3 for i from 1 to |V | − 1 do
4 if multipleWalks(|V |,walks) then
5 return False

end
6 walks := matrixMult(walks, adj)

end
7 if walks = 0 then
8 return True

end
9 for i from 1 to |V | do

10 if selectColumn(walks, i) 6= 0 then
11 if sumRow(adj[i]) > 1 then
12 return False

end

end

end
13 return True

Procedure initWalksCount(n, È)
1 for i from 1 to n do
2 for j from 1 to n do
3 walks[i][j] := 0

end

end
4 for (vi, r, vj) ∈ È do
5 walks[i][j] := walks[i][j] + 1

end
6 return walks

Procedure multipleWalks(n,walks)
1 for i from 1 to n do
2 for j from 1 to n do
3 if walks[i][j] > 1 then
4 return True

end

end

end
5 return False

Algorithm 2: Detect multiple walks between all pairs of resources in a labeled ECA dependency graph.

distributed infrastructure; or we can extend an existing distributed language with an abstraction layer to
support ECA rules and their event-driven behavior. The latter approach can be less efficient, but more
suitable for fast prototyping.

In any case, we have to deal with the intrinsic issues of distributed systems. In particular, by the CAP
theorem [45] we cannot have, at the same time, consistency, availability and partition-tolerance. Hence,
some compromises have to be taken, depending on the application context. For instance, in a scenario with
low network traffic we can aim for correctness, implementing a robust, but slow, communication protocol.
Vice versa, when nodes exchange data at a high rate (or when the network is not stable), communication
should take very short time, hence we may prefer to renounce to consistency in favor of eventual consistency.

For these reasons, a flexible and modular implementation is mandatory, where modules can be imple-
mented in different ways, depending on the application context. Hence, we present a modular architecture
suitable to implement AbU nodes, that is summarized in Figure 7.

An AbU node consists in a state (mapping resources to values), an execution pool (a set of updates to
execute) and a list of ECA rules (modeling the node behavior). An ECA Rules Engine module is in charge
of executing the updates in the pool and to discover new rules to trigger, potentially on external nodes
(distributed discovery). This module also implements the attribute-based memory updates mechanism and
deals with IoT inputs (from sensors) and outputs (to actuators), which are accessed by means of a dedicated
interface. A separate Device Drivers module translates low-level IoT devices primitives to high-level signals
for the rule engine and vice versa.

The Distribution module is in charge of joining a cluster of AbU nodes and exchanging messages with
them. It embodies all distributed infrastructure-related aspects, that can be tuned to meet the desired
context-related requirements. Moreover, it provides the communication APIs needed by the rule engine to
implement the (distributed) discovery phase (and, in turn, attributed-based memory updates). For instance,
the labels upd I T and upd B T of the AbU semantics generate a broadcast communication.

In some respects, AbU is quite close to AbC, so we can borrow from one of its implementation the
mechanisms that can be easily adapted to AbU. In particular, we can exploit the GoAt [28, 29] library, in order
to implement the Distribution module. GoAt is written in Golang, so we can delegate the communication
layer to a Go routine, encapsulating the send and receive primitives of AbC and the cluster infrastructure,
both provided by GoAt. Finally, the Device drivers module can be built on top of GOBOT [46], a mature
Go library for the IoT ecosystem, with a great availability of IoT devices drivers. Indeed, in Figure 7 the

26

D
RA

FT

AbU node

Device drivers Distribution

ECA Rules Engine

sensors/actuators
other AbU nodes

network

Communication layerIoT interface

Attribute-based memory updatesDistributed discovery

Figure 7: High-level view of a AbU node implementation.

Device Drivers and the Distribution modules can exploit GOBOT and GoAt, respectively.

Remark 6. Filling the gap between the theoretical model provided by AbU and an actual implementation of
the calculus is not a trivial task. Indeed, some crucial implementation choices should be made. For instance,
the implementation should be space-uncoupled: apart from an operation to allow a new node to join an AbU
system, the implementation shall provide complete location transparency. In particular, a user shall not
(need to) know the address of any node in the system and shall program interactions using AbU primitives
only. This requires the development of a suitable distribution module enforcing such requirement; e.g.,
membership and of member failure detection can be implemented by using a SWIM-like [47] gossip-based
protocol. As another example, in the operational semantics of AbU, the discovery phase is executed in a
single atomic step. This implies that the partially evaluated tasks must be delivered, to the other nodes,
with an atomic “all or none” operation, similarly to causally ordered reliable broadcast. We can enforce such
requirement by means of distributed transactions, viewing an AbU system as a distributed data store and
performing the discovery phase using a two-phase commit protocol [48]. We refer to [49] for more details
about the design and implementation of a DSL based on AbU.

At the time of writing, we are developing a prototype implementation for the AbU calculus, written in
Golang and following the modular architecture sketched above. The Distribution module is now based on
HashiCorp’s Memberlist [50], a popular Go library for cluster membership and failures detection that uses a
gossip based protocol. We plan to integrate the module with GoAt in the near future.

8. Conclusion

In this paper we have presented AbU, a calculus merging the simplicity of ECA programming with
attribute-based memory updates, This new loosely-coupled interaction mechanism can be seen as the memory-
based counterpart of attribute-based communication hinged on message-passing, and fits neatly within the
ECA programming paradigm. Therefore, AbU aims to be a formal programming paradigm for smart sys-
tems, IoT scenarios and edge computing. To showcase the expressiveness and generality of this calculus,
we have modeled with AbU some application situations typical of IoT and smart systems, discussed the
Turing completeness of the calculus, and encoded AbC, the paradigmatic calculus for attribute-based com-
munication, into AbU. This result is not meant to prove that AbU subsumes AbC, but to highlight that it
is possible to encode attribute-based communication within the ECA rules programming paradigm.

Then, we have used AbU for studying stabilization and confluence, two properties very relevant for IoT
and smart devices: the first guarantees that a chain of rule executions triggered by an external event will
eventually terminate; the second guarantees that the effects of the rules are eventually deterministic and
do not depend on the rule execution order. For both these properties we have provided formal definition,
sound syntactic verification criteria, and effective algorithms to statically check such criteria.

Summarizing, AbU, as a formal model, is the basis for investigating important properties of event-driven
architectures with attributed-based interaction, and for the development of formal methods for guaranteeing
these properties.

Moreover, due to its decentralized nature, AbU helps IoT systems in being more scalable, dropping
the dependency on a central controlling service and allowing inter-node (direct) communication. This

27

D
RA

FT

also mitigates availability issues, since no Internet connection and no external controlling nodes, prune
to failures, are needed in local executions. In addition, not having the necessity to interact with external
unknown/untrusted parties (e.g., the central controlling service on the cloud) results in a more secure setting,
by design. Indeed, actual IoT systems should implement complex mechanisms to enforce privacy and security
(e.g., by using an encrypted communication), since data is continuously sent on the cloud. Unfortunately,
very often these mechanisms are weak, or not present at all, opening to potential attacks. In AbU this
problem is mitigated, since no communication to external/untrusted parties is mandatory. Nevertheless, in
contexts where an external communication is required, also in the case of AbU suitable security mechanisms
should be deployed.

Finally, AbU can be used as a reference model for the implementation of full-fledged programming
language, or extensions of existing languages, for IoT and edge computing. Finally, the new interaction
model we have introduced in this paper, namely attribute-based memory updates, can be of interest also in
other settings and applications, beyond IoT and edge computing.

Future work. The present work is the basis for several research directions. First, we can use AbU for defining
suitable behavioral equivalences, e.g., based on bisimulations, to compare systems with their specifications
and to specify other properties, such as non-interference. Some results in this direction for verifying safety
and security requirements, have been presented in [51].

The smooth integration of attribute-based communication within the ECA paradigm makes easier to
extend to the distributed setting many known results and techniques from the literature. In particular, we
are interested in porting to AbU the verification techniques developed for ECA languages, such as IRON, a
real-world ECA language for IoT [19, 17, 18]. This will also go in par with refining the verification techniques
for stabilization and confluence proposed in Section 6, which are sound but sometimes too restrictive; e.g.,
programs which stabilize even if their ECA dependency graph is cyclic, are ruled out by these conditions.

Concerning implementations, a prototype in Golang of AbU is under development [9, 49], as discussed in
Section 7. Efficient distributed implementations of AbU could be obtained using RPCs or message-passing,
taking inspiration from the implementations of AbC [28, 27, 29].

Another important subject is distributed run-time verification and monitoring ; this would allow us to
detect at run-time the violations of given properties, e.g., expressed in temporal logics like the modal µ-
calculus [52]. These would be useful, for instance, to extend (and refine) the criteria presented in Section 6.

Most IoT systems relies on a notion of time to operate. We can reason about AbU system time aspects
externally, by counting, for instance, the number of inter-node communications or the internal execution
steps. But, an AbU semantics directly embedding a notion of time, possibly stochastic, would result in a
more effective and elegant way of reasoning about time aspects of AbU systems. As a future work, we plan
to apply the general approach presented in [53, 54] to our calculus.

Finally, we plan to investigate the connection between the Field Calculus [13, 14] and AbU, in particular
whether it is possible to encode the former in our calculus. This would require to define a notion of global
goal function (if any) for an AbU system, that is carried out by AbU system nodes taken as whole.

Acknowledgement

This work was partially supported by Italian MIUR project PRIN 2017FTXR7S IT MATTERS (Methods
and Tools for Trustworthy Smart Systems), and project SERICS (PE00000014) under the NRRP MUR
program funded by the EU—NGEU.

References

[1] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz, L. Gurgen, ECA rules for IoT environment: A case study in safe design, in:
Proceedings of the 8th Int. Conf. on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), IEEE Computer
Society, USA, 2014, pp. 116–121. doi:10.1109/SASOW.2014.32.

[2] M. Balliu, M. Merro, M. Pasqua, M. Shcherbakov, Friendly fire: Cross-app interactions in IoT platforms, ACM Trans.
Priv. Secur. 24 (3) (2021). doi:10.1145/3444963.

28

D
RA

FT

https://doi.org/10.1109/SASOW.2014.32
https://doi.org/10.1145/3444963

[3] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M. J.
Carey, M. Livny, R. Jauhari, The HiPAC project: Combining active databases and timing constraints, SIGMOD Rec.
17 (1) (1988) 51–70. doi:10.1145/44203.44208.

[4] IDC, Data age 2025 (2018).
URL https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html

[5] B. Gill, D. Smith, The edge completes the cloud: A Gartner trend insight report (2018).
URL https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-
gartner-trend-insight-report.pdf

[6] Y. Abd Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, R. Vigo, A calculus for attribute-based communication, in: Pro-
ceedings of the 30th Annual ACM Symposium on Applied Computing, ACM, New York, NY, USA, 2015, pp. 1840–1845.
doi:10.1145/2695664.2695668.

[7] Y. Abd Alrahman, R. De Nicola, M. Loreti, On the power of attribute-based communication, in: E. Albert, I. Lanese
(Eds.), Formal Techniques for Distributed Objects, Components, and Systems, Springer, Cham, 2016, pp. 1–18.

[8] Y. Abd Alrahman, R. De Nicola, M. Loreti, Programming interactions in collective adaptive systems by relying on
attribute-based communication, Sci. Comput. Program. 192 (2020) 102428. doi:10.1016/j.scico.2020.102428.

[9] The AbU Language, GoAbU (2023).
URL https://github.com/abu-lang/goabu

[10] M. Miculan, M. Pasqua, A calculus for attribute-based memory updates, in: A. Cerone, P. Ölveczky (Eds.), Proc. ICTAC,
Vol. 12819 of Lecture Notes in Computer Science, Springer, 2021, pp. 366–385.

[11] N. Carriero, D. Gelernter, The s/net’s linda kernel (extended abstract), in: Proc. of the 10th ACM Symposium on
Operating Systems Principles, SOSP ’85, ACM, New York, NY, USA, 1985, p. 160. doi:10.1145/323647.323643.

[12] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: a kernel language for agents interaction and mobility, IEEE Transactions
on Software Engineering 24 (5) (1998) 315–330. doi:10.1109/32.685256.

[13] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From field-based coordination to aggregate computing,
in: G. D. M. Serugendo, M. Loreti (Eds.), Coordination Models and Languages - 20th IFIP WG 6.1 International Con-
ference, COORDINATION 2018, Held as Part of the 13th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings, Vol. 10852 of Lecture Notes in Computer
Science, Springer, 2018, pp. 252–279. doi:10.1007/978-3-319-92408-3\ 12.

[14] G. Audrito, M. Viroli, F. Damiani, D. Pianini, J. Beal, A higher-order calculus of computational fields, ACM Trans.
Comput. Logic 20 (1) (jan 2019). doi:10.1145/3285956.

[15] F. Corradini, R. Culmone, L. Mostarda, L. Tesei, F. Raimondi, A constrained ECA language supporting formal verification
of WSNs, in: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
2015, pp. 187–192. doi:10.1109/WAINA.2015.109.

[16] D. R. Cacciagrano, R. Culmone, Formal semantics of an IoT-specific language, in: 32nd Int. Conf. on Advanced Information
Networking and Applications Workshops (WAINA), 2018, pp. 579–584. doi:10.1109/WAINA.2018.00148.

[17] C. Vannucchi, M. Diamanti, G. Mazzante, D. R. Cacciagrano, F. Corradini, R. Culmone, N. Gorogiannis, L. Mostarda,
F. Raimondi, vIRONy: A tool for analysis and verification of ECA rules in intelligent environments, in: 2017 International
Conference on Intelligent Environments, IE 2017, Seoul, Korea (South), August 21-25, 2017, IEEE, 2017, pp. 92–99.
doi:10.1109/IE.2017.32.

[18] C. Vannucchi, M. Diamanti, G. Mazzante, D. R. Cacciagrano, R. Culmone, N. Gorogiannis, L. Mostarda, F. Raimondi,
Symbolic verification of event-condition-action rules in intelligent environments, J. Reliab. Intell. Environ. 3 (2) (2017)
117–130. doi:10.1007/s40860-017-0036-z.

[19] X. Jin, Y. Lembachar, G. Ciardo, Symbolic verification of ECA rules, in: D. Moldt (Ed.), Proceedings of the International
Workshop on Petri Nets and Software Engineering (PNSE’13), Milano, Italy, June 24-25, 2013, Vol. 989, CEUR-WS.org,
2013, pp. 41–59.

[20] D. Beyer, A. Stahlbauer, BDD-based software verification, Int. J. Softw. Tools Tech. Transf. 16 (5) (2014) 507–518.
doi:10.1007/s10009-014-0334-1.

[21] J. Cano, G. Delaval, E. Rutten, Coordination of ECA rules by verification and control, in: E. Kühn, R. Pugliese (Eds.),
Coordination Models and Languages, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 33–48.

[22] R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri, M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi,
A. Vandin, The SCEL language: Design, implementation, verification, in: M. Wirsing, M. Hölzl, N. Koch, P. Mayer
(Eds.), Software Engineering for Collective Autonomic Systems, Vol. 8998 of LNCS, Springer, 2015, pp. 3–71. doi:

10.1007/978-3-319-16310-9\ 1.
[23] S. Anderson, N. Bredeche, A. Eiben, G. Kampis, M. van Steen, Adaptive collective systems: herding black sheep,

Bookprints, 2013.
[24] M. Wooldridge, Reasoning about rational agents. Intelligent robotics and autonomous agents, The MIT Press, Cambridge,

Massachussetts/London (2000).
[25] Y. Abd Alrahman, R. De Nicola, M. Loreti, A calculus for collective-adaptive systems and its behavioural theory, Infor-

mation and Computation 268 (2019) 104457. doi:10.1016/j.ic.2019.104457.
[26] Y. Abd Alrahman, G. Garbi, A distributed API for coordinating AbC programs, International Journal on Software Tools

for Technology Transfer (feb 2020). doi:10.1007/s10009-020-00553-4.
[27] R. De Nicola, T. Duong, M. Loreti, Provably correct implementation of the AbC calculus, Science of Computer Program-

ming 202 (2021) 102567. doi:10.1016/j.scico.2020.102567.
[28] Y. Abd Alrahman, R. De Nicola, G. Garbi, GoAt: Attribute-based interaction in Google Go, in: T. Margaria, B. Steffen

(Eds.), Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems - 8th Int. Symp.,

29

D
RA

FT

https://doi.org/10.1145/44203.44208
https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1016/j.scico.2020.102428
https://github.com/abu-lang/goabu
https://github.com/abu-lang/goabu
https://doi.org/10.1145/323647.323643
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1145/3285956
https://doi.org/10.1109/WAINA.2015.109
https://doi.org/10.1109/WAINA.2018.00148
https://doi.org/10.1109/IE.2017.32
https://doi.org/10.1007/s40860-017-0036-z
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1007/s10009-020-00553-4
https://doi.org/10.1016/j.scico.2020.102567

ISoLA 2018, Limassol, Cyprus, Nov 5-9, 2018, Proceedings, Part III, Vol. 11246 of LNCS, Springer, 2018, pp. 288–303.
doi:10.1007/978-3-030-03424-5\ 19.

[29] giulio-garbi.github.io, GoAt (2018).
URL https://giulio-garbi.github.io/goat/

[30] M. K. Aguilera, N. Ben-David, I. Calciu, R. Guerraoui, E. Petrank, S. Toueg, Passing messages while sharing memory,
in: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC ’18, ACM, New York, NY,
USA, 2018, pp. 51–60. doi:10.1145/3212734.3212741.

[31] M. K. Aguilera, N. Ben-David, R. Guerraoui, V. Marathe, I. Zablotchi, The impact of RDMA on agreement, in: Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19, ACM, New York, NY, USA, 2019,
pp. 409–418. doi:10.1145/3293611.3331601.

[32] Y. Abd Alrahman, G. Perelli, N. Piterman, Reconfigurable interaction for mas modelling, in: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’20, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, 2020, pp. 7–15.

[33] J. Costa Seco, S. Debois, T. Hildebrandt, T. Slaats, RESEDA: Declaring live event-driven computations as REactive
SEmi-structured DAta, in: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC),
2018, pp. 75–84. doi:10.1109/EDOC.2018.00020.

[34] L. Galrinho, J. Costa Seco, S. Debois, T. Hildebrandt, H. Norman, T. Slaats, ReGraDa: Reactive graph data, in:
F. Damiani, O. Dardha (Eds.), Coordination Models and Languages, Springer International Publishing, Cham, 2021,
pp. 188–205.

[35] T. Hildebrandt, M. Marquard, R. R. Mukkamala, T. Slaats, Dynamic condition response graphs for trustworthy adaptive
case management, in: Y. T. Demey, H. Panetto (Eds.), On the Move to Meaningful Internet Systems: OTM 2013
Workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 166–171.

[36] D. R. Cacciagrano, R. Culmone, IRON: Reliable domain specific language for programming IoT devices, Internet Things
9 (2020) 100020. doi:10.1016/j.iot.2018.09.006.

[37] D. I. Cohen, Introduction to Computer Theory, 2nd Edition, John Wiley & Sons, Inc., USA, 1996.
[38] V. Halava, Deterministic semi-thue systems and variants of post correspondence problem, in: J. Karhumäki, A. Lepistö,

L. Q. Zamboni (Eds.), Combinatorics on Words - 9th International Conference, WORDS 2013, Turku, Finland, September
16-20. Proceedings, Vol. 8079 of Lecture Notes in Computer Science, Springer, 2013, pp. 4–13. doi:10.1007/978-3-642-
40579-2\ 3.

[39] S. Eilenberg, Automata, Languages, and Machines, Academic Press, Inc., Orlando, FL, USA, 1974.
[40] M. Pasqua, I. Mastroeni, On topologies for (hyper)properties, in: D. Della Monica, A. Murano, S. Rubin, L. Sauro (Eds.),

Joint Proceedings of the 18th Italian Conference on Theoretical Computer Science and the 32nd Italian Conference on
Computational Logic, Naples, Italy, September 26-28, 2017, Vol. 1949 of CEUR Workshop Proceedings, CEUR-WS.org,
2017, pp. 150–161.

[41] J. W. Klop, Term Rewriting Systems, Oxford University Press, Inc., USA, 1993, Ch. 1, pp. 1–116.
[42] Terese, Term Rewriting Systems, Vol. 55 of Cambridge Tracts in Theoretical Computer Science, Cambridge University

Press, 2003.
[43] G. Bracha, S. Toueg, Asynchronous consensus and broadcast protocols, J. ACM 32 (4) (1985) 824–840. doi:10.1145/

4221.214134.
[44] R. Franklin, On an improved algorithm for decentralized extrema finding in circular configurations of processors, Commun.

ACM 25 (5) (1982) 336–337. doi:10.1145/358506.358517.
[45] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services, ACM

SIGACT News 33 (2) (2002) 51–59.
URL https://doi.org/10.1145/564585.564601

[46] gobot.io, GOBOT (2021).
URL https://gobot.io/

[47] A. Das, I. Gupta, A. Motivala, SWIM: scalable weakly-consistent infection-style process group membership protocol,
in: Proceedings International Conference on Dependable Systems and Networks, 2002, pp. 303–312. doi:10.1109/
DSN.2002.1028914.

[48] J. Gray, Notes on data base operating systems, in: Operating Systems, An Advanced Course, Springer-Verlag, Berlin,
Heidelberg, 1978, pp. 393–481.

[49] M. Pasqua, M. Comuzzo, M. Miculan, The AbU language: IoT distributed programming made easy, IEEE Access 10
(2022) 132763–132776.

[50] hashicorp.com, Memberlist (2022).
URL https://github.com/hashicorp/memberlist/

[51] M. Pasqua, M. Miculan, On the security and safety of AbU systems, in: R. Calinescu, C. S. Pasareanu (Eds.), Software
Engineering and Formal Methods - 19th International Conference, SEFM 2021, Proceedings, Vol. 13085 of Lecture Notes
in Computer Science, Springer, 2021, pp. 178–198. doi:10.1007/978-3-030-92124-8\ 11.

[52] M. Miculan, On the formalization of the modal µ-calculus in the Calculus of Inductive Constructions, Inf. Comput. 164 (1)
(2001) 199–231. doi:10.1006/inco.2000.2902.

[53] M. Miculan, M. Peressotti, GSOS for non-deterministic processes with quantitative aspects, in: Proc. QAPL, Vol. 154 of
EPTCS, 2014, pp. 17–33.

[54] M. Miculan, M. Peressotti, Structural operational semantics for non-deterministic processes with quantitative aspects,
Theor. Comput. Sci. 655 (2016) 135–154.

30

D
RA

FT

https://doi.org/10.1007/978-3-030-03424-5_19
https://giulio-garbi.github.io/goat/
https://giulio-garbi.github.io/goat/
https://doi.org/10.1145/3212734.3212741
https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1109/EDOC.2018.00020
https://doi.org/10.1016/j.iot.2018.09.006
https://doi.org/10.1007/978-3-642-40579-2_3
https://doi.org/10.1007/978-3-642-40579-2_3
https://doi.org/10.1145/4221.214134
https://doi.org/10.1145/4221.214134
https://doi.org/10.1145/358506.358517
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://gobot.io/
https://gobot.io/
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://github.com/hashicorp/memberlist/
https://github.com/hashicorp/memberlist/
https://doi.org/10.1007/978-3-030-92124-8_11
https://doi.org/10.1006/inco.2000.2902

Appendix A. Proofs

Appendix A.1. Proofs of Section 5

Proof of Theorem 4. In order to prove the theorem, we need some supporting lemmas and some preliminary
notions. Given an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉, we denote with S[R′k, ι

′
k〈Σ′k,Θ′k〉 �

Rk, ιk〈Σk,Θk〉], for k ∈ [1..n], the system S where Rk, ιk〈Σk,Θk〉 is replaced by R′k, ι
′
k〈Σ′k,Θ′k〉. We use the

same notation for replacing AbC components, namely we denote with C[Γ′k : P ′k � Γk : Pk], for k ∈ [1..n],
the component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn where Γk : Pk is replaced by Γ′k : P ′k. Given an AbC

component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn, the translation functions Resh and Ench, with h ∈ [1..n], retrieve
all the auxiliary resources and the AbU rules, respectively, needed to model the behavior of the processes
Ph (see Section 5 for the definition of such functions). In particular, the function Resh retrieves, among
other resources, all the rule flags of the process Ph. The functions Resh and Ench are inductively defined on
the structure of each Ph. Indeed, there is a one-to-one correspondence between the AbC process instances
in Ph and the generated AbU rules (see again Section 5). The latter, have an unique rule flag, of the
form Phri, with h ∈ [1..n] and i ≥ 0. Hence, for each residual process P ′h of Ph, i.e., a process we can
obtain applying zero or more times the rewriting semantics of AbC, we can associate a firing rule firing(P ′h),
namely the rule flag that must be active, in order to execute the process P ′h. Note that, Ph is a residual
of Ph itself. The notion of residual can be extended to components: C ′ is a residual of C if we can obtain
C ′ applying zero or more times the rewriting semantics of AbC to C. We can then define the firing rules
set firing(C ′) of the residual component C ′ = Γ′1 : P ′1 ‖ . . . ‖ Γ′n : P ′n as {firing(P ′h) | h ∈ [1..n]}. Note that,
firing(C) = {firing(P1), . . . , firing(Pn)} = {P1r0, . . . , Pnr0}, by definition.

Definition 11 (Firing AbU system). An AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 is firing
for the AbC component C ′ = Γ′1 : P ′1 ‖ . . . ‖ Γ′n : P ′n, residual of C, when all the following hold, for each
k ∈ [1..n]:

� firing(P ′k) = Phri, for some h ∈ [1..n] and i ≥ 0

� Σk(Phri) = tt

� DefUpds(Rk, {Phri},Σk) ∪ LocalUpds(Rk, {Phri},Σk) ⊆ Θk

� ExtTasks(Rk, {Phri},Σk) = task1 . . . taskm

� ∀j ∈ [1..n] \ {k} . {JactKΣj | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σj |= ϕ} ⊆ Θj

Proposition 7. We can formulate the following observations, assuming a component C = Γ1 : P1 ‖ . . . ‖
Γn : Pn of AbC and an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉, such that Ri = Enci(Pi) for
i ∈ [1..n].

A Let Γ : P be a residual of Γi : Pi, with i ∈ [1..n], and e an expression. If Σi � Γ : P and JeK(Γi) = v,
for some v, then JEnc(e)K(Σi) = v.

B Let Γ : P be a residual of Γi : Pi, with i ∈ [1..n], and Π a predicate. If Σi � Γ : P , Γ |= Π[v/x], for
some v, and Σi(msg) = v, then Σi |= Repl(Enc(Π), x).

C Let C ′ = Γ′1 : P ′1 ‖ . . . ‖ Γ′n : P ′n be residual of C, Γ′1 : P ′1
δ−_ Γ′′1 : P ′′1 , for some AbC process label δ, and

S � C ′. If S
∗

S′, for some S′ = R1, ι1〈Σ′1,Θ′1〉 ‖ . . . ‖ Rn, ιn〈Σ′n,Θ′n〉, by executing the AbU rule
translation of P ′1, then no updates on attributes of Γ′i on the AbU node i, for i ∈ [2..n], are performed
and no rule flags on the AbU node i, with i ∈ [2..n], are modified. In other words: Σi(a) = Σ′i(a), for
all attributes a of Γ′i, with i ∈ [2..n]; and Σi(Pkrj) = Σ′i(Pkrj), for all i ∈ [2..n], k ∈ [1..n] and j ≥ 0.

D Let Γ′i : P ′i and Γ′j : P ′j be residuals of Γi : Pi and Γj : Pj, respectively, with i, j ∈ [1..n], and Π a
predicate. If Σi � Γ′i : P ′i , Σj � Γ′j : P ′j, {|Π|}(Γ′i) = Π′ and Γ′j |= Π′, then Σj |= {|Ext(Enc(Π))|}Σi.

31

D
RA

FT

Proof. Observations A and B are trivial, they hold by definition of the translation function Enc. For the
observation C, we can note, by the definition of Enc, that each action in the translated rule originated from
P ′1 is local, hence all modifications are on the current node 1. This means that no updates on attributes
and rule flags are made on other nodes i, with i ∈ [2..n]. The only rules updating external nodes are the
send rules, with the action msg← Enc(e), which modifies a state in a node i such that i ∈ [2..n]. But, msg
is an auxiliary resource introduced by the translation, it is not an attribute of any Γi, with i ∈ [2..n], nor
a rule flag of any i, with i ∈ [2..n]. Finally, for the observation D, we have that {|Π|}(Γ′i) substitutes the
instances this.a with Γ′i(a) = v in Π, and lets untouched the instances a. Instead, Ext(Π) substitutes the
instances of a not prefixed by this. (in Π) with a (and then apply the translation Enc). It is easy to note
that in Γ′j |= Π′ each original instance of this.a in Π now takes the value Γ′i(a) and each instance of a takes
the value Γ′j(a). Similarly, in Σj |= {|Ext(Enc(Π))|}Σi each original instance of this.a in Π takes the value
Σi(a) and each instance of a takes the value Σj(a). But, by the observation A, we have that Γ′i(a) = Σi(a)
and Γ′j(a) = Σj(a).

Lemma 8. Consider an AbC component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn and an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖
. . . ‖ Rn, ιn〈Σn,Θn〉, such that Ri = Enci(Pi), for i ∈ [1..n]. Let C ′ = Γ′1 : P ′1 ‖ . . . ‖ Γ′n : P ′n be a residual
of C such that S � C ′ and S is firing for C ′. Let Γ : P be a component of C ′, namely Γ : P = Γ′k : P ′k,
for k ∈ [1..n]. Then, for all Γ′, P ′ such that Γ : P δ Γ′ : P ′, for some δ, there exists an AbU system
S′ = R1, ι1〈Σ′1,Θ′1〉 ‖ . . . ‖ Rn, ι1〈Σ′n,Θ′n〉 such that S

∗
S′, S′ � C ′′ and S′ is firing for C ′′, with

C ′′ = C ′[Γ : P � Γ′ : P ′].

Proof. The only rule applicable is (Comp), namely Γ : P δ Γ′ : P ′ is obtained from Γ : P
δ−→ Γ′ : P ′.

The proof is by induction on the derivation tree for Γ : P
δ−→ Γ′ : P ′. Depending on the last rule used in the

derivation, we have the following cases.

Case (Zero). Then: δ = ff〈0〉; P ′ = P = 0; and Γ′ = Γ. Setting S′ = S, we have the conclusion, since
C ′ = C.

Case (Brd). Then: δ = Π〈v〉, for some Π and v; P = 〈e@ Π′〉.P ′′, for some P ′′, Π′ such that {|Π′|}(Γ) = Π
and e such that JeK(Γ) = v; P ′ = P ′′; and Γ′ = Γ. Let Phri = firing(P) be the firing rule of P and
j = Next(i). The translation of P generates the following AbU rule:

Phri m Phri ← F Phrj ← T,@(Phri = T ∧ Ext(Π)) : msg← Enc(e) (A.1)

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the AbU
translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the update upd =
(Phri,ff)(Phrj , tt), by definition of DefUpds(Rk, {Phri},Σk). Since Rule (A.1) is not local we have
that LocalUpds(Rk, {Phri},Σk) = ∅. For the same reason, we have that ExtTasks(Rk, {Phri},Σk) =
T , with T = (Ext(Π)) : msg ← v, given JEnc(e)KΣk = v (justified by Proposition 7A). Fur-
thermore, for all w ∈ [1..n] \ {k} we have that Θw is a superset of {(msg, v) | Σw |= Ext(Π)}.
When the AbU semantics evolves with the rule (StepL) (or, equivalently, with the symmetric rule
(StepR)) applied to the system S, performing an execution step (Exec), the update upd is commit-
ted, obtaining Σ′k = Σk[ff/Phri tt/Phrj]. The discovery phase launched during (StepL) computes
Θ′k = Θk \ {upd} ∪ DefUpds(Rk, {Phri, Phrj},Σ′k) ∪ LocalUpds(Rk, {Phri, Phrj},Σ′k). By definition
of Enc and since Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that Θ′k is a su-
perset of DefUpds(Rk, {Phrj},Σ′k) ∪ LocalUpds(Rk, {Phrj},Σ′k). The last two requirements of Def-
inition 11 are satisfied by the definition of (StepL), that guarantees to perform the discovery of
T ′ = ExtTasks(Rk, {Phri, Phrj},Σk) by applying the rule (Disc) with T ′ on all nodes w ∈ [1..n] \ {k}.
This means that S′ = S[Rk, ιk〈Σ′k,Θ′k〉 � Rk, ιk〈Σk,Θk〉] is firing for C ′′. Furthermore, no attributes
of Γ are modified (only auxiliary resources added by the translation are involved in the update). Hence,
we also have that S′ � C ′′, concluding the proof for this case.

Case (Rcv). Then: δ = Π(v), for some Π such that Γ |= Π and v; P = (x | Π′).P ′′, for some P ′′ and Π′

such that Γ |= Π′[v/x]; P ′ = P ′′[v/x]; and Γ′ = Γ. Let Phri = firing(P) be the firing rule of P and

32

D
RA

FT

j = Next(i). The translation of P generates the following AbU rule:

Phri m (Phri = T ∧ Repl(Enc(Π), x)) : x← msg Phri ← F Phrj ← T (A.2)

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the
AbU translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the up-
date upd = (x, v)(Phri,ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri},Σk), given Σk(msg) = v.
Note that, the satisfiability of the condition Repl(Enc(Π), x)) is guaranteed by Proposition 7B. Since
Rule (A.2) is local and it does not have default actions, we have that DefUpds(Rk, {Phri},Σk) = ∅
and ExtTasks(Rk, {Phri},Σk) = ε. When the AbU semantics evolves with the rule (StepL) (or,
equivalently, with the symmetric rule (StepR)) applied to the system S, performing an execution
step (Exec), the update upd is committed, obtaining Σ′k = Σk[v/x ff/Phri tt/Phrj]. The discov-
ery phase launched during (StepL) computes Θ′k = Θk \ {upd} ∪ DefUpds(Rk, {x, Phri, Phrj},Σ′k) ∪
LocalUpds(Rk, {x, Phri, Phrj},Σ′k). By definition of Enc and since Next(i) = j, we have that firing(P ′′) =
Phrj . Hence, we have that Θ′k is a superset of DefUpds(Rk, {Phrj},Σ′k) ∪ LocalUpds(Rk, {Phrj},Σ′k).
The last two requirements of Definition 11 are satisfied by the definition of (StepL), that guarantees
to perform the discovery of T ′ = ExtTasks(Rk, {x, Phri, Phrj},Σk) by applying the rule (Disc) with T ′

on all nodes w ∈ [1..n] \ {k}. This means that S′ = S[Rk, ιk〈Σ′k,Θ′k〉 � Rk, ιk〈Σk,Θk〉] is firing for C ′′

(the substitution [v/x] in P ′′ is recorded by updating the resource x with the value v). Furthermore,
no attributes of Γ are modified (only auxiliary resources added by the translation are involved in the
update). Hence, we also have that S′ � C ′′, concluding the proof for this case.

Case (Upd). Then: P = [a := e]P ′′, for some P ′′ and e; Γ′ = Γ[v/a]′, given JeK(Γ) = v and Γ[v/a] : P ′′
δ−→

Γ[v/a]′ : P ′. Let Phri = firing(P) be the firing rule of P and j = Next(i). The translation of P
generates the following AbU rule:

Phri m (Phri = T) : a← Enc(e) Phri ← F Phrj ← T (A.3)

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the
AbU translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the up-
date upd = (a, v)(Phri,ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri},Σk). Here, the value v
in (a, v) is justified by Proposition 7A. Since Rule (A.3) is local and it does not have default ac-
tions, we have that DefUpds(Rk, {Phri},Σk) = ∅ and ExtTasks(Rk, {Phri},Σk) = ε. When the
AbU semantics evolves with the rule (StepL) (or, equivalently, with the symmetric rule (StepR))
applied to the system S, performing an execution step (Exec), the update upd is committed, ob-
taining Σ′′k = Σk[v/a ff/Phri tt/Phrj]. The discovery phase launched during (StepL) computes
Θ′′k = Θk \ {upd} ∪ DefUpds(Rk, {a, Phri, Phrj},Σ′′k) ∪ LocalUpds(Rk, {a, Phri, Phrj},Σ′′k). By defi-
nition of Enc and since Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that Θ′′k is
a superset of DefUpds(Rk, {Phrj},Σ′′k) ∪ LocalUpds(Rk, {Phrj},Σ′′k). The last two requirements of
Definition 11 are satisfied by the definition of (StepL), that guarantees to perform the discovery of
T = ExtTasks(Rk, {a, Phri, Phrj},Σk) by applying the rule (Disc) with T on all nodes w ∈ [1..n] \ {k}.
This means that S′′ = S[Rk, ιk〈Σ′′k ,Θ′′k〉 � Rk, ιk〈Σk,Θk〉] is firing for C ′′′ = C ′[Γ : P � Γ[v/a] : P ′′].
Furthermore, the only attribute modified in Γ is a, which is updated with the value v by the AbU seman-
tics in Σ′′k . Hence, we also have that S′′ � C ′′′. Since the derivation tree for Γ[v/a] : P ′′

δ−→ Γ[v/a]′ : P ′

is smaller than the derivation tree for Γ : P
δ−→ Γ[v/a]′ : P ′, by inductive hypothesis we have that there

exists S′ such that S′ � C ′′ and S′ is firing for C ′′, noting that C ′′ = C ′′′[Γ[v/a] : P ′′ � Γ[v/a]′ : P ′].
This concludes the proof for the case.

Case (Aware). Then: P = [Π]P ′′, for some P ′′ and Π such that Γ |= Π, given Γ : P ′′
δ−→ Γ′ : P ′. Let

Phri = firing(P) be the firing rule of P and j = Next(i). The translation of P generates the following
AbU rule:

Phri Vars(Π) m (Phri = T ∧ Enc(Π)) : Phri ← F Phrj ← T (A.4)

33

D
RA

FT

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the AbU
translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the update upd =
(Phri,ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri},Σk). Since Rule (A.4) is local and it does not
have default actions, we have that DefUpds(Rk, {Phri},Σk) = ∅ and ExtTasks(Rk, {Phri},Σk) = ε.
When the AbU semantics evolves with the rule (StepL) (or, equivalently, with the symmetric rule
(StepR)) applied to the system S, performing an execution step (Exec), the update upd is com-
mitted, obtaining Σ′′k = Σk[ff/Phri tt/Phrj]. The discovery phase launched during (StepL) com-
putes Θ′′k = Θk \ {upd} ∪ DefUpds(Rk, {Phri, Phrj},Σ′′k) ∪ LocalUpds(Rk, {Phri, Phrj},Σ′′k). By def-
inition of Enc, and Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that Θ′′k is
a superset of DefUpds(Rk, {Phrj},Σ′′k) ∪ LocalUpds(Rk, {Phrj},Σ′′k). The last two requirements of
Definition 11 are satisfied by the definition of (StepL), guaranteeing to perform the discovery of
T = ExtTasks(Rk, {Phri, Phrj},Σk) by applying the rule (Disc) with T on all nodes w ∈ [1..n] \ {k}.
This means that S′′ = S[Rk, ιk〈Σ′′k ,Θ′′k〉 � Rk, ιk〈Σk,Θk〉] is firing for C ′′′ = C ′[Γ : P � Γ : P ′′]. Fur-
thermore, no attributes of Γ are modified (only auxiliary resources added by the translation are involved

in the update). Hence, we also have that S′′ � C ′′′. Since the derivation tree for Γ : P ′′
δ−→ Γ′ : P ′ is

smaller than the derivation tree for Γ : P
δ−→ Γ′ : P ′, by inductive hypothesis we have that there exists

S′ such that S′ � C ′′ and S′ is firing for C ′′, noting that C ′′ = C ′′′[Γ : P ′′ � Γ′ : P ′]. This concludes
the proof for the case.

Case (Sum). Then: P = Pa + Pb, for some Pa and Pb, given Γ : Pa
δ−→ Γ′ : P ′. The symmetric case is

analogous. Let Phri = firing(P) be the firing rule of P , j = Next(i) and w = Next(j). The translation
of P generates the following AbU rules:

Phri m (Phri = T) : Phri ← F Phrj ← T (A.5)

Phri m (Phri = T) : Phri ← F Phrk ← T (A.6)

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the AbU
translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the update upd =
(Phri,ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri},Σk), and assuming that AbC and AbU sched-
ulers make the same decisions (i.e., Pa and Rule (A.5) are chosen). Since Rule (A.5) and Rule (A.6)
are local and they do not have default actions, we have that DefUpds(Rk, {Phri},Σk) = ∅ and
ExtTasks(Rk, {Phri},Σk) = ε. When the AbU semantics evolves with the rule (StepL) (or, equivalently,
with the symmetric rule (StepR)) applied to the system S, performing an execution step (Exec), the
update upd is committed, obtaining Σ′′k = Σk[ff/Phri tt/Phrj]. The discovery phase launched during
(StepL) computes Θ′′k = Θk \{upd}∪DefUpds(Rk, {Phri, Phrj},Σ′′k)∪LocalUpds(Rk, {Phri, Phrj},Σ′′k).
By definition of Enc and since Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that Θ′′k is a
superset of DefUpds(Rk, {Phrj},Σ′′k)∪LocalUpds(Rk, {Phrj},Σ′′k). The last two requirements of Defini-
tion 11 are satisfied by definition of the semantic rule (StepL), that guarantees to perform the discovery
of T = ExtTasks(Rk, {Phri, Phrj},Σk) by applying the rule (Disc) with T on all nodes w ∈ [1..n] \ {k}.
This means that S′′ = S[Rk, ιk〈Σ′′k ,Θ′′k〉 � Rk, ιk〈Σk,Θk〉] is firing for C ′′′ = C ′[Γ : P � Γ : Pa].
Furthermore, no attributes of Γ are modified (only auxiliary resources added by the translation are in-

volved in the update). Hence, we also have that S′′ � C ′′′. Since the derivation tree for Γ : Pa
δ−→ Γ′ : P ′

is smaller than the derivation tree for Γ : P
δ−→ Γ′ : P ′, by inductive hypothesis we have that there exists

S′ such that S′ � C ′′ and S′ is firing for C ′′, noting that C ′′ = C ′′′[Γ : Pa � Γ′ : P ′]. This concludes
the proof for the case (the symmetric counterpart where the scheduler chooses Pb is analogous).

Case (Rec). Then: P = K, given K , Pw, with w ∈ [1..n], and Γ : Pw
δ−→ Γ′ : P ′. Let Phri = firing(P) be

the firing rule of P . The translation of P generates the following AbU rule:

Phri m (Phri = T) : Phri ← FPkr0 ← T (A.7)

We assumed that Γ : P is the AbC component Γ′k : P ′k of C ′, so we are on the node k of the AbU
translation, i.e., Rk, ιk〈Σk,Θk〉. Since S is firing for C ′, we have that Θk contains the update upd =

34

D
RA

FT

(Phri,ff)(Pwr0, tt), by definition of LocalUpds(Rk, {Phri},Σk). Since Rule (A.7) is local and it does not
have default actions, we have that DefUpds(Rk, {Phri},Σk) = ∅ and ExtTasks(Rk, {Phri},Σk) = ε.
When the AbU semantics evolves with the rule (StepL) (or, equivalently, with the symmetric rule
(StepR)) applied to the system S, performing an execution step (Exec), the update upd is committed,
obtaining Σ′′k = Σk[ff/Phri tt/Pwr0]. The discovery phase launched during (StepL) computes Θ′′k =
Θk \ {upd} ∪ DefUpds(Rk, {Phri, Pwr0},Σ′′k) ∪ LocalUpds(Rk, {Phri, Pwr0},Σ′′k). By definition of Enc,
we have that firing(Pw) = Pwr0. Hence, we have that Θ′′k is a superset of DefUpds(Rk, {Pwr0},Σ′′k) ∪
LocalUpds(Rk, {Pwr0},Σ′′k). The last two requirements of Definition 11 are satisfied by the definition of
(StepL), that guarantees to perform the discovery of T = ExtTasks(Rk, {Phri, Pwr0},Σk) by applying
the rule (Disc) with T on all nodes w ∈ [1..n] \ {k}. This means that S′′ = S[Rk, ιk〈Σ′′k ,Θ′′k〉 �
Rk, ιk〈Σk,Θk〉] is firing for C ′′′ = C ′[Γ : P � Γ : Pw]. Furthermore, no attributes of Γ are modified
(only auxiliary resources added by the translation are involved in the update). Hence, we also have

that S′′ � C ′′′. Since the derivation tree for Γ : Pw
δ−→ Γ′ : P ′ is smaller than the derivation tree for

Γ : P
δ−→ Γ′ : P ′, by inductive hypothesis we have that there exists S′ such that S′ � C ′′ and S′ is firing

for C ′′, noting that C ′′ = C ′′′[Γ : Pw � Γ′ : P ′]. This concludes the proof for the case.

Lemma 9. Consider an AbC component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn and an AbU system S = R1, ι1〈Σ1,Θ1〉 ‖
. . . ‖ Rn, ιn〈Σn,Θn〉, such that Ri = Enci(Pi), for i ∈ [1..n]. Let C ′′ be a residual of C. If S � C ′′ and S
is firing for C ′′, then for all C ′ such that C ′′

Π(v)
C ′, for some Π and v, there exists an AbU system S′

such that S
∗

S′, S′ � C ′ and S′ is firing for C ′.

Proof. Since C ′′ is a residual of C, it is of the form Γ′′1 : P ′′1 ‖ . . . ‖ Γ′′n : P ′′n , with Γ′′i : P ′′i residuals of

Γi : Pi, for i ∈ [1..n]. Then, C ′ = Γ′1 : P ′1 ‖ . . . ‖ Γ′n : P ′n, given Γ′′i : P ′′i
Π(v)

Γ′i : P ′i , for each i ∈ [1..n].
By Lemma 8, we have that there exists S1 such that S

∗
S1, S1 � C1 and S1 is firing for C1, where

C1 = C ′′[Γ′′1 : P ′′1 � Γ′1 : P ′1]. Applying again Lemma 8, we have that there exists S2 such that S1 ∗
S2,

S2 � C2 and S2 is firing for C2, where C2 = C1[Γ′′2 : P ′′2 � Γ′2 : P ′2]. We can repeat this reasoning n − 2
times and prove that there exists Sn such that Sn−1 ∗

Sn, Sn � Cn and Sn is firing for Cn, where
Cn = Cn−1[Γ′′n : P ′′n � Γ′n : P ′n]. Note that, for each step i, with i ∈ [1..n], we have that no modifications of
the state of the nodes j, with j ∈ [1..n] \ {i}, are made on attributes and rule flags (by Proposition 7C). At
this point we can note that Cn = C ′, hence we have that S′ � C ′ and S′ is firing for C ′, taking S′ = Sn.

Lemma 10. Consider an AbC component C = Γ1 : P1 ‖ . . . ‖ Γn : Pn and an AbU system S =
R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉, such that Ri = Enci(Pi), for i ∈ [1..n]. Let C ′′ be a residual of
C. If S � C ′′ and S is firing for C ′′, then for all C ′ such that C ′′ λ C ′ there exists an AbU system S′ such
that S

∗
S′, S′ � C ′ and S′ is firing for C ′.

Proof. Since C ′′ is a residual of C, it is of the form Γ′′1 : P ′′1 ‖ . . . ‖ Γ′′n : P ′′n , with Γ′′i : P ′′i residuals of
Γi : Pi, for i ∈ [1..n]. Let Cr = Γ′′2 : P ′′2 ‖ . . . ‖ Γ′′n : P ′′n , i.e., C ′′ = Γ′′1 : P ′′1 ‖ Cr. The proof is by case
analysis on λ.

Case λ = τ . Then, C ′ = Γ′1 : P ′1 ‖ Cr, given Γ′′1 : P ′′1
Π〈v〉

Γ′1 : P ′1, for some Π and v, and Cr
Π(v)

,

i.e., Γ′′i : P ′′i
Π(v)

for each i ∈ [2..n]. By Lemma 8, we have that there exists S′ such that S
∗

S′,
S′ � C1 and S′ is firing for C1, where C1 = C ′′[Γ′′1 : P ′′1 � Γ′1 : P ′1]. Since no modifications of the state
of the node i, with i ∈ [2..n], are made on attributes and rule flags (by Proposition 7C), we have that
S′ � Cr and S′ is firing for Cr. Since Cr is unmodified, we can conclude that S′ � C ′ and S′ is firing
for C ′.

Case λ = Π〈v〉. Then, C ′ = Γ′1 : P ′1 ‖ C ′r, given Γ′′1 : P ′′1
Π〈v〉

Γ′1 : P ′1, for some Π and v, C ′r = Γ′2 : P ′2 ‖
. . . ‖ Γ′n : P ′n and Cr

Π(v)
C ′r, i.e., Γ′′i : P ′′i

Π(v)
Γ′i : P ′i for each i ∈ [2..n]. By Lemma 8, there

exists S1 such that S
∗

S1, S1 � C1 and S1 is firing for C1, where C1 = C ′′[Γ′′1 : P ′′1 � Γ′1 : P ′1].
Since no modifications of the state of the nodes i, with i ∈ [2..n], are made on attributes and rule flags
(by Proposition 7C), we have that S1 � Cr and S1 is firing for Cr. Then, applying Lemma 9 on Cr,

35

D
RA

FT

we have that there exists S′ such that S′ � C ′r and S′ is firing for C ′r. So, we can conclude that S′ � C ′
and S′ is firing for C ′, noting that C ′ = C1[Cr � C ′r].

Case λ = Π(v). Then, C ′ = Γ′1 : P ′1 ‖ C ′r, given Γ′′1 : P ′′1
Π(v)

Γ′1 : P ′1, for some Π and v, C ′r = Γ′2 : P ′2 ‖
. . . ‖ Γ′n : P ′n and Cr

Π(v)
C ′r, i.e., Γ′′i : P ′′i

Π(v)
Γ′i : P ′i for each i ∈ [1..n]. By Lemma 8, there

exists S1 such that S
∗

S1, S1 � C1 and S1 is firing for C1, where C1 = C ′′[Γ′′1 : P ′′1 � Γ′1 : P ′1].
Since no modifications of the state of the nodes i, with i ∈ [2..n], are made on attributes and rule flags
(by Proposition 7C), we have that S1 � Cr and S1 is firing for Cr. Then, applying Lemma 9 on Cr,
we have that there exists S′ such that S′ � C ′r and S′ is firing for C ′r. So, we can conclude that S′ � C ′
and S′ is firing for C ′, noting that C ′ = C1[Cr � C ′r].

Lemma 11. Consider an AbC component C and its corresponding AbU encoding S = Enc(C). Then there
exists S′ such that S

∗
S′, S′ is firing for C and S′ � C.

Proof. Suppose that C is composed by n components, i.e., C = Γ1 : P1 ‖ . . . ‖ Γn : Pn. Consider its
AbU translation S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 = Enc(C). By definition, we have that Ri =
Enci(Pi), for i ∈ [1..n]. The translation yields n (one for each component) initial rule flags P1r0, . . . , Pnr0,
initially set to ff (i.e., Σi(Pir0) = ff, for i ∈ [1..n]). Suppose to perform an input (Input) on the node 1,
setting P1r0 to tt, namely Σ′1 = Σ1[tt/P1r0] and Θ1 = DefUpds(R1, {P1r0},Σ′1)∪LocalUpds(R1, {P1r0},Σ′1).
The input is wrapped into the AbU rule (StepL) (or, equivalently, into the symmetric rule (StepR)), that
guarantees to perform the discovery of T 1 = task1 . . . taskw = ExtTasks(R1, {P1r0},Σ′1), by applying the
rule (Disc) with T 1 on all nodes j ∈ [2..n]. This potentially initialize the pools of other nodes, namely
for all j ∈ [2..n] we have that Θj = {JactKΣj | ∃l ∈ [1..w] . taskl = ϕ : act ∧ Σj |= ϕ}. Hence we have

S
upd1IT 1

S1, where upd1 = (P1r0, tt) and S1 = R1, ι1〈Σ′1,Θ1〉 ‖ R2, ιk〈Σ2,Θ2〉 ‖ . . . ‖ Rn, id〈Σn,Θn〉.
Now, we can perform another input (Input) on the node 2, setting P2r0 to tt, namely Σ′2 = Σ2[tt/P2r0]
and Θ′2 = Θ2 ∪ DefUpds(R2, {P2r0},Σ′2) ∪ LocalUpds(R2, {P2r0},Σ′2). The input is wrapped into the AbU
rule (StepL) (or, equivalently, into the symmetric rule (StepR)), that guarantees to perform the discovery
of T 2 = task1 . . . taskm = ExtTasks(R2, {P2r0},Σ′2), by applying the rule (Disc) with T 2 on all nodes j ∈
[1..n] \ {2}. This potentially enlarges the pools of other nodes, namely for all j ∈ [1..n] \ {2} we have

that Θ′j = Θj ∪ {JactKΣj | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σj |= ϕ}. Hence we have S1 upd2IT 2

S2,

where upd2 = (P2r0, tt) and S2 = R1, ι1〈Σ′1,Θ′1〉 ‖ R2, ι2〈Σ′2,Θ′2〉 ‖ . . . ‖ Rn, ιn〈Σn,Θ′n〉. We can repeat this

reasoning n−2 times, with n−2 subsequent input steps, obtaining the system Sn such that Sn−1 updnITn

Sn.
Since we are not performing execution steps (Exec), the pools of the nodes can only be enlarged. Hence, it is
easy to note that all requirements of Definition 11 are satisfied, implying that Sn is firing for C. Furthermore,

no attributes of C are modified, so Sn � C. Finally, setting S′ = Sn and
∗

=
upd1IT 1

. . .
updnITn

, we
can conclude that that S

∗
S′, S′ is firing for C and S′ � C.

Theorem 4 (AbC to AbU correctness)

Proof. Suppose that C is composed by n components, i.e., C = Γ1 : P1 ‖ . . . ‖ Γn : Pn. Consider its AbU
translation S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 = Enc(C). By definition, we have that Ri = Enci(Pi),
for i ∈ [1..n]. By Lemma 11, we have that there exists S′′ such that S

∗
S′′, S′′ is firing for C and

S′′ � C. This, in particular, means that each Pi of C is ready to execute. Now, suppose that C
∗
C ′

comprises m semantic steps, namely C
λ1 C1 λ2 . . .

λm C ′, for some component labels λ1, λ2, . . . , λm.
Applying Lemma 10, we have that there exists S1 such that S′′

∗
S1, S1 � C1 and S1 is firing for C1. We

can repeat this reasoning m− 1 times and prove that there exists Sm such that Sm−1 ∗
Sm, Sm � Cm

and Sm is firing for Cm (which coincides with C ′). By composition of all (StepL) (or (StepR)) rules (given
by multiple application of Lemma 10) we can conclude that S′′

∗
S′ such that S′ � C ′, for S′ = Sm.

Appendix A.2. Proofs of Section 6

Proof of Theorem 5. In order to prove the theorem, we need some supporting lemmas and some preliminary
notions. If the ECA dependency graph of S is acyclic then we can define a topological sort of its vertices,

36

D
RA

FT

i.e., a linear ordering of the vertices such that for every arc (x, y) of the graph, x comes before y in the
ordering. Given |V | = n, we denote with v1 . . . vn such topological sort, and with indexOf(x) the index in
the ordering that correspond to the resource x, namely indexOf(x) = i, with i ∈ [1..n], iff vi = x.

When we modify a resource, by means of an (Input) or (Exec) rule, we may trigger some AbU rules of
the system, potentially leading to new updates to add to the pools. The ECA dependency graph provides
an over-approximation of the resources involved in such updates.

Definition 12 (Potential updates). Consider an AbU system with acyclic ECA dependency graph. Let
v1 . . . vn a topological sort of its nodes. The set of potential updates originated by a resource x consists of
all resources that may be updated when x is modified, and it is defined as:

mayBeUpdated(x) ,
⋃

j∈[indexOf(x)+1..n]

{x′ ∈ X | indexOf(x′) = j}

It is easy to note that, mayBeUpdated(x) decreases in the number of elements as indexOf(x) increases.
In particular, x /∈ mayBeUpdated(x) and mayBeUpdated(x) = ∅ when indexOf(x) = n. Similarly, we can
define the updates that are actually originated when some resources are modified at runtime.

Definition 13 (Discovered updates). Given the systems S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 and

S′ = R1, ι1〈Σ′1,Θ′1〉 ‖ . . . ‖ Rn, ιn〈Σ′n,Θ′n〉 such that S
updIT

S′ or S
updBT

S′, we define the discovered
updates discovered(S, upd,S′) as the new updates inserted in the pools, given by the actuation of the update
upd. Formally:

discovered(S, upd,S′) ,
⋃

i∈[1..n]

Θ′i \Θi

Given an update upd = (x1, v1) . . . (xn, vn), we define its resources as Vars(upd) , {x1, . . . , xn}. For a
pool Θ (or a generic set of updates), its resources are defined as Vars(Θ) ,

⋃
upd∈Θ Vars(upd). Similarly,

given an AbU rule rule = evt m act, task we define its resources as Vars(rule) , Vars(act) ∪ Vars(task),
where Vars(act) for an action act, is the set of resources in the left-hand side of the assignments in act and
Vars(task), for a task task = cnd : act, is Vars(act). Given a set of rules X, its resources are defined as
Vars(X) ,

⋃
rule∈X Vars(rule).

Given list of AbU rules R = rule1 . . . rulen and a set of resources X, we define the rules that may modify
the resources in X as: mayModifyRules(R,X) , {rulei | i ∈ [1..n] ∧ Vars(rulei) ∩X 6= ∅}.

Lemma 12. Let S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 be an AbU system with acyclic ECA dependency
graph. Consider a list of AbU rule Ri, with i ∈ [1..n], and a set of resources X, then we have:

Vars(Active(Ri, X)) ⊆
⋃
x∈X

mayBeUpdated(x)

Proof. By definition, Vars(rule) = Out(rule) and rule ∈ Vars(Active(Ri, X)) iff In(rule) ∩ X, for any AbU
rule rule. By definition of the ECA dependency graph, for any rule ∈ Vars(Active(Ri, X)) we have that
for any x ∈ In(rule) there exists y ∈ Out(rule) such that (x, y) is an arc of the ECA dependency graph.
This means that for any y ∈ Vars(Active(Ri, X)) there exists x ∈ X such that (x, y) is an arc of the ECA
dependency graph. Since the graph is acyclic, we have that y follows x in the topological sort of the ECA
dependency graph, hence y ∈ mayBeUpdated(x). This applies for any y ∈ Vars(Active(Ri, X)) and x ∈ X,
hence Vars(Active(Ri, X)) ⊆

⋃
x∈X mayBeUpdated(x).

Lemma 13. Let S be an AbU system with acyclic ECA dependency graph. Let v1 . . . vn be a topological sort
of the vertices of the graph. If S

updIT
S′ or S

updBT
S′ then:

Vars(discovered(S, upd,S′)) ⊆
⋃

x∈Vars(upd)

mayBeUpdated(x)

37

D
RA

FT

Proof. Consider the case S
updBT

S′, the other case is analogous. The only difference is that when the
new pools are computed we do not have to remove upd from the pools, since it already not present. Suppose
S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉, S′ = R1, ι1〈Σ′1,Θ′1〉 ‖ . . . ‖ Rn, ιn〈Σ′n,Θ′n〉, T = task1 . . . taskm and
upd = (x1, v1) . . . (xk, vk). By definition of the AbU semantics, we have that one node node, say Ri, ιi〈Σi,Θi〉
with i ∈ [1..n], performs an (Exec) step while the other nodes Rj , ιj〈Σj ,Θj〉 with j ∈ [1..n] \ {i}, per-
form a discovery step (Disc). By definition of the semantic rule (Exec), we have that Θ′i = Θi \ {upd} ∪
DefUpds(Ri, {x1, . . . , xk},Σi) ∪ LocalUpds(Ri, {x1, . . . , xk},Σi). By definition of the semantic rule (Disc),
for each j ∈ [1..n] \ {i} we have Θ′j = Θj ∪ {JactKΣ | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σ |= ϕ}. Hence,
discovered(S, upd,S′) is the set:

DefUpds(Ri, {x1, . . . , xk},Σi) ∪ LocalUpds(Ri, {x1, . . . , xk},Σi)∪⋃
j∈[1..n]\{i}{JactKΣj | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σj |= ϕ}

Note that,
⋃
h∈[1..m] Vars(taskh) is a subset of Vars(Active(Ri, {x1, . . . , xk})), namely the updates that can

be discovered in the nodes j, with j ∈ [1..n] \ {i} are originated by the active AbU rules of the node
i. Moreover, by definition of Vars, Vars(

⋃
j∈[1..n]\{i}{JactKΣj | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σj |=

ϕ}) ⊆
⋃
h∈[1..m] Vars(taskh). Since {x1, . . . , xk} = Vars(upd), we can apply Lemma 12 and conclude that

Vars(Active(Ri, {x1, . . . , xk})) is contained in
⋃
x∈Vars(upd) mayBeUpdated(x). Hence we have:

Vars(
⋃
j∈[1..n]\{i}{JactKΣj | ∃l ∈ [1..m] . taskl = ϕ : act ∧ Σj |= ϕ}) ⊆

⋃
x∈Vars(upd) mayBeUpdated(x)

Similarly, by definition of DefUpds and LocalUpds, we have that Vars(DefUpds(Ri, {x1, . . . , xk},Σi)) and
Vars(LocalUpds(Ri, {x1, . . . , xk},Σi)) are contained in Vars(Active(Ri, {x1, . . . , xk})), namely the the updates
that can be discovered in the node i are originated by the active AbU rule of the same node i. Hence, by
applying again Lemma 12, we have:

Vars(DefUpds(Ri, {x1, . . . , xk},Σi)) ∪ Vars(LocalUpds(Ri, {x1, . . . , xk},Σi)) ⊆
⋃
x∈Vars(upd) mayBeUpdated(x)

This is sufficient to prove that Vars(discovered(S, upd,S′)) ⊆
⋃
x∈Vars(upd) mayBeUpdated(x).

Theorem 5 (Soundness for stabilization)

Proof. We have to prove that for all input upd, if S
updIT

S′ then S′ is stabilizing. Consider an arbitrary
input upd, we have that S

updIT
S′, for some S′. Since the ECA dependency graph of S is acyclic, we

have that Vars(discovered(S, upd,S′)) ⊆
⋃
x∈Vars(upd) mayBeUpdated(x), by applying Lemma 13. This also

means that Vars(upd) ∩ Vars(discovered(S, upd,S′)) = ∅, namely we cannot discover new updates involving

resources that have been currently modified. Similarly, if S′
upd′IT

S′′, for some S′′, by applying again
Lemma 13, we have that Vars(discovered(S′, upd′,S′′)) ⊆

⋃
x∈Vars(upd′) mayBeUpdated(x) and Vars(upd′) ∩

Vars(discovered(S′, upd′,S′′)) = ∅. Since the resources of a system are finite, at each execution step we remove
an update and, due to Lemma 13, we cannot discover already updated resources (i.e., we cannot add a new
update concerning the resources modified by the removed update). This means that the discovered updates
set will eventually be empty. Since the initial pools of S are empty, we can conclude that eventually all pools
in the system will become empty again, after executing the input upd. In other words, there exists k ∈ N
such that S′

upd0BT 0

S0 upd1BT 1

. . .
updk−1BTk−1

Sk−1 updkBTk

Sk, Vars(discovered(Sk−1, updk,Sk)) =
∅ and Θk

i = ∅, for all i ∈ [1..n], given Sk = R1, ι1〈Σk1 ,Θk
1〉 ‖ . . . ‖ Rn, ιn〈Σkn,Θk

n〉. Hence, S′ is stabilizing.
Since the initial input upd has been chosen arbitrarily, we can conclude that S is wave stabilizing.

Proof of Theorem 6. In order to prove the theorem, we need some supporting lemmas and some preliminary
notions. Given a label α = upd B T , we denote with lastof(x, α) the value of the last assignment to the
resource x in upd. Formally, given upd = (x1, v1) . . . (xk, vk), we have that lastof(x, upd B T) , vi iff xi = x
and for all j > i we have that xj 6= x (the function is undefined when x is not present in upd). Given an

update upd = (x1, v1) . . . (xk, vk), we define as Vars(upd) , {x1, . . . , xn} the set of its resources. Similarly,
we define the set of resources of a label α = upd B T as Vars(α) , Vars(upd).

38

D
RA

FT

Definition 14 (AbU systems diversity). Two AbU systems S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉
and S′ = R1, ι1〈Σ′1,Θ′1〉 ‖ . . . ‖ Rn, ιn〈Σ′n,Θ′n〉 differ in the resource set X ⊆ X, written S 6=X S′, when there
exists i ∈ [1..n] and x ∈ X such that Σi(x) 6= Σ′i(x).

In the sake of simplicity, when X is a singleton {x}, for some resource x, we write 6=x in place of 6={x}.
The following proposition says that if an AbU system S evolves in two systems S1 and S2 that differ

in the value of a resource y, then during the execution of S two updates must be discovered (or they are
already present in the pools of S), that assign y with two different values.

Proposition 14. Let S = R1, ι1〈Σ1,Θ1〉 ‖ . . . ‖ Rn, ιn〈Σn,Θn〉 be an AbU system. Suppose S
α0 Sα0

α1

. . .
αk Sαk and S

β0 Sβ0
β1 . . .

βh Sβh, with k, h ∈ N, such that:

� Sαk = R1, ι1〈Σα1 ,Θα
1 〉 ‖ . . . ‖ Rn, ιn〈Σαn,Θα

n〉

� Sβh = R1, ι1〈Σβ1 ,Θ
β
1 〉 ‖ . . . ‖ Rn, ιn〈Σβn,Θβ

n〉

� Sαh 6=y Sβh, namely there exists i ∈ [1..n] such that Σαi (y) 6= Σβi (y)

Then, there exist k′ ≤ k and h′ ≤ h, such that lastof(y, αk′) = Σαi (y) and lastof(y, αh′) = Σαi (y).

Proof. Straightforward.

Lemma 15. If S
(x,v)IT

S′ and S′
α1 . . .

αl Sl then for all l′ ≤ l there exists a walk wl′ in the labeled
ECA dependency graph of S connecting x with y, given y ∈ Vars(αl′).

Proof. The proof is by induction on l. Suppose l = 1. Since S is stable (i.e., all its pools are empty),
we have that the update in α1 has been discovered during the input step (x, v) I T . Then we have that
there exists an AbU rule rule such that Vars(α1) = Out(rule) and x ∈ In(rule). This means that (x, rule, y),
with y ∈ Out(rule), is an arc of the labeled ECA dependency graph of S. Hence, we have a walk of length
1 connecting x with y, given y ∈ Vars(α1). Suppose now l = k > 1. By inductive hypothesis we have that

S
(x,v)IT

S′, S′
α1 . . .

αk−1
Sk−1 and for all k′′ ≤ k − 1 there exists a walk wk′′ in the labeled ECA

dependency graph of S connecting x with y, given y ∈ Vars(αk′′). Since S is stable (i.e., all its pools are
empty), we have that the update in αk has been discovered during the input step (x, v)IT or during one of
the execution step αk′′ . In the first case, we have a walk of length 1 connecting x with y, given y ∈ Vars(αk),
as it happens in the case l = 1. Otherwise, we can use the inductive hypothesis. So, suppose that the
update in αk has been discovered during one of the execution step αk′′ . This means that there exists an
AbU rule rule such that Vars(αk) = Out(rule) and Vars(αk′′) ∩ In(rule) 6= ∅. This means that (y, rule, y′),
with y ∈ Vars(αk′′) ∩ In(rule) and y′ ∈ Out(rule), is an arc of the labeled ECA dependency graph of S. By
inductive hypothesis, we have that there exists a walk wk′′ connecting x with y, given y ∈ Vars(αk′′). Hence,
wk = wk′′rule is a walk connecting x with y′, given y′ ∈ Vars(αk).

Lemma 16. If S
(x,v)IT

S′ and S′
∗ (x1,v1)...(xn,vn)BT ′

S′′, then for all xi, with i ∈ [1..n], there exists
a walk in the labeled ECA dependency graph of S connecting x with xi. In other words, walks(x, xi) 6= ∅,
for all i ∈ [1..n].

Proof. Applying Lemma 15, we have that there exists a walk in the labeled ECA dependency graph of
S connecting x with y, given y ∈ Vars((x1, v1) . . . (xn, vn) B T ′). Since Vars((x1, v1) . . . (xn, vn) B T ′) =
{x1, . . . , xn}, we have that there exists a walk connecting x with xi for all xi, with i ∈ [1..n]. Hence,
walks(x, xi) 6= ∅, for all i ∈ [1..n].

Theorem 6 (Soundness for confluence)

39

D
RA

FT

Proof. Without loss of generality, suppose that the input sampling family of S consists in singletons only,
namely |F| = |inputS|. In this case we have that at each input step we can modify only one resource. The
case when we can modify more resources simultaneously is analogous, we just have to augment the labeled
ECA dependency graph as explained in Subsection 6.3, and the proof continues as follows.

We have to prove that for all (single) input upd, if S
updIT

S′ then S′ is confluent. Consider an arbitrary

(single) input upd = (x, v), for some resource x and value v, we have that S
(x,v)IT

S′, for some T . Suppose,
by contradiction, that S′ is not confluent. This means that there exist S1, S2 and X ⊆ X such that:

S′
∗

S1 ∧ S′
∗

S2 ∧ ∀S′1,S
′
2 . (S1

∗
S′1 ∧ S2

∗
S′2)⇒ S′1 6=X S′2

Or, equivalently, that there exist S1, S2 and X ⊆ X such that: S′
∗

S1 ∧ S′
∗

S2 implies S1 6=X S2.
Without loss of generality, suppose that X is a singleton, i.e., X = {y}, for some resource y. Since S1 6=y S2,

we can apply Proposition 14. Therefore, there exist k, h ∈ N such that S′
α0 Sα0

α1 . . .
αk Sαk

∗
S1,

S
β0 Sβ0

β1 . . .
βh Sβh

∗
S2 and lastof(y, αk) = v1 6= v2 = lastof(y, αh), for some values v1 and v2.

Since S
(x,v)IT

S′ and S′
∗ αk Sαk , we can apply Lemma 16, concluding that there exists a walk w1

in the labeled ECA dependency graph of S connecting x and y. Analogously, since S
(x,v)IT

S′ and
S′

∗ βh Sβh, we can apply again Lemma 16, concluding that there exists a walk w2 in the labeled ECA
dependency graph of S connecting x and y. The fact that w1 6= w2 follows from the fact that αk and βh
update y with different values (hence are generated by different AbU rule) and from the fact that the AbU
rule generating αk is the last element of w1 and the AbU rule generating βh is the last element of w2. Hence,
we have that |walks(x, y)| > 1. But this cannot happen, by hypothesis.

Therefore, we can conclude that S′ must be confluent. Finally, since the initial input upd has been chosen
arbitrarily, we can conclude that S is wave confluent.

40

D
RA

FT

	Introduction
	Related Work
	The AbU Calculus
	Syntax
	Semantics
	blackOn the Expressiveness of AbU

	AbU in Practice
	Intrusion Detection System
	Swarm of Robots
	blackA Vineyard Irrigation System

	Encoding Attribute-based Communication into AbU
	The AbC Calculus
	Encoding AbC into AbU
	Correctness of the Encoding

	Correctness Requirements for AbU Systems
	Stabilization and Confluence
	Verifying Stabilization
	Verifying Confluence

	blackTowards a Distributed Implementation
	Conclusion
	Proofs
	Proofs of Section 5
	Proofs of Section 6

