
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2010; 00:1–31
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Automated Black-Box Testing of
Nominal and Error Scenarios in RESTful APIs

Davide Corradini1, Amedeo Zampieri1, Michele Pasqua1,
Emanuele Viglianisi2, Michael Dallago3, Mariano Ceccato1

1University of Verona. Verona, Italy
2Fondazione Bruno Kessler. Trento, Italy

3University of Trento. Trento, Italy

SUMMARY

RESTful APIs (or REST APIs for short) represent a mainstream approach to design and develop Web APIs
using the REpresentational State Transfer architectural style. Black-box testing, which assumes only the
access to the system under test with a specific interface, is the only viable option when white-box testing is
impracticable. This is the case for REST APIs: their source code is usually not (or just partially) available; or
a white-box analysis across many dynamically allocated distributed components (typical of a micro-services
architecture) is computationally challenging.
This paper presents RESTTESTGEN, a novel black-box approach to automatically generate test cases for
REST APIs, based on their interface definition (an OpenAPI specification). Input values and requests
are generated for each operation of the API under test with the twofold objective of testing nominal
execution scenarios and error scenarios. Two distinct oracles are deployed to detect when test cases reveal
implementation defects. While this approach is mainly targeting the research community, it is also of interest
to developers because, as a black-box approach, it is universally applicable across different programming
languages, or in the case external (compiled only) libraries are used in a REST API.
The validation of our approach has been performed on more than one hundred of real-world REST APIs,
highlighting the effectiveness of the approach in revealing actual faults in already deployed services.
Copyright © 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Black-box testing, REST APIs, Automatic test case generation, Oracle.

1. INTRODUCTION

REST APIs are the de-facto standard to implement and grant remote access to Web APIs. They are
so largely accepted and adopted that the Berlin Group Initiative1 elaborated a standard based on
REST APIs for unifying the European Banking APIs. This initiative was meant to address the PSD2
European Union directive2, that requested banks to open their customer data to authorized third-
party service providers. Moreover, reference implementations of PSD2 compliant banking APIs are
mostly available in the form of REST APIs3.

REST APIs are often components of micro-services architectures [35], according to which each
component should be small and assigned just one (or very few) responsibilities, resulting in a high

1https://www.berlin-group.org/
2https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366 en
3https://www.openbankproject.com/

Copyright © 2010 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 D. CORRADINI ET AL.

number of simple components. Distinct components are usually deployed in different containers that
can be dynamically allocated and deallocated, possibly across different hosts (for load balancing).

Such a dynamic usage of REST APIs, that spread across many independent containers, poses
peculiar challenges to automated analysis and testing with white-box approaches. A black-box
approach, instead, gives up on the possibility to exploit program information available in the source
code. In fact, it only relies on a well-defined interface to access the REST API and does not need to
cope with the very complex internal details of how components are deployed and run.

Moreover, the implementation of REST APIs might include commercial third-party libraries or
frameworks, that come in the form of compiled code. When source code is not (or only partially)
available, a black-box perspective in automated testing of REST APIs is a natural option.

In this paper we present RESTTESTGEN, a novel approach to automatically generate test cases for
REST APIs. This approach relies on the definition of the interface to interact with a REST API (an
OpenAPI specification), including the list of operations available and the format of the input/output
data of their requests and responses. We propose the Operation Dependency Graph (ODG) as a way
to explicitly model data dependencies among operations that can be inferred from the REST API
interface. This graph is updated during the test cases generation to dynamically decide when a new
operation is ready to be tested, i.e., when the values of all its required input parameters could be
guessed.

The dynamic testing order based on the ODG is just an approximation of the (unknown)
optimal testing order. In fact, the list of the data dependencies that can be inferred from the
OpenAPI specification might be incomplete . With access to source code and documentation, a more
comprehensive list of dependencies could have been filled. For instance, precise data dependencies
between input and output parameters of API operations could be inferred by analyzing what
parameters access the same table and column in the database. The ODG is not meant to fully replace
source code access, but it provides an approximation of it. The limitation of this approximation can
still be acceptable by developers, when it is paired with the invaluable benefit of a fully automated
testing approach that can be applied to any programming language, even when using third parties
closed source components.

RESTTESTGEN aims at testing REST APIs according to two perspectives. Nominal execution
scenarios, meant to test the system using input data as documented in the interface; and error
execution scenarios, which exploit input data violating the interface to expose implementation
defects and unhandled exceptional flows.

An extensive empirical validation has been conducted, involving 116 real-world REST APIs for
which only black-box access is available. RESTTESTGEN was able to test these case studies to a
large extent, revealing a considerable number of implementation defects.

This work builds on top of a companion conference paper [44]. The novel contribution consists
of the following parts.

• A major extension of RESTTESTGEN, that now offers novel features to test complex APIs,
such as the support for authentication (presented in Section 5.2) and a better management of
the testing time budget (introduced in Section 5.1 and in Listing 2), that allows a more flexible
empirical investigation.

• The empirical assessment has been extended by including novel case studies, including
also some from mainstream vendors that require authentication and enforce access control
(experiment presented in Section 7.3).

• Presentation of a few actual defects that RESTTESTGEN could detect in the considered case
studies, showing practically how real-world industrial REST APIs might fail. Based on these
defects, a list of considerations are formulated about our approach and about automated testing
of REST APIs (Section 8.1).

• Assessment of the contribution of the ODG to test case generation, by comparing test cases
generated by RESTTESTGEN when the order of the operations to test is based on the ODG
with test cases generated with a random operation ordering. (Section 7.4)

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 3

The rest of the paper is organized as follows. Section 2 covers the background on REST APIs.
Section 3 proposes an overview of the RESTTESTGEN modules, that are presented in detail in
the subsequent sections. Section 4 defines the Operation Dependency Graph, while Section 5 and
Section 6 describe, respectively, the Nominal Tester and the Error Tester modules. In Section 7,
the empirical assessment of RESTTESTGEN is presented. Finally, after discussing related work in
Section 9, Section 10 closes the paper.

2. BACKGROUND

2.1. REST APIs

A RESTful API (or REST API for short) is an API that respects the REST (REpresentational State
Transfer) architectural style [13]. Nowadays, most of the APIs use a RESTful architecture over the
HTTP protocol to manage resources, allowing clients to access and manipulate them using a set of
stateless operations.

REST APIs provide a uniform interface to create, read, update and delete (CRUD) a resource. A
resource is generally identified by an HTTP URI, and CRUD operations are usually mapped to the
HTTP methods POST, GET, PUT and DELETE to the resource URI.

For example, consider a REST API managing a collection of pets. A possible HTTP URI pointing
to the resource could be /pets. In this case, the HTTP operation GET /pets is used to retrieve
the list of the pets and POST /pets could be used to add a new pet to the collection.

The resource URI and the HTTP methods may accept input parameters to specify additional
information for executing the API operations, such as the identifier of the object to retrieve (e.g.,
/pets/{petId}) or a structured object to be added to the collection using the POST method.

2.2. OpenAPI and Swagger

OpenAPI4 defines a standard to document REST APIs. According to OpenAPI, an API service is
described using a structured file (either YAML or JSON) that specifies how to reach the API using
a URI, what authentication schema is used and the details of all the operations available in the
API: the input parameters (and their schema) to be used in requests and the schemas of responses.
Previous versions of this specification (older than version 3.0.0) were called Swagger. In this paper
we will use the term OpenAPI specification to mean both the old and the new format of an API
specification, since older versions are still used, and anyway there is no major difference.

Listing 1 contains an example of an OpenAPI specification for PetStore, an API for managing Pet
resources within a store. After an initial header that specifies versions and licenses, the field servers
contains the base URL of the API (http://petstore.swagger.io/v1 in the example).

The array paths contains the list of URL paths available in the API. In our example, there are two
paths, i.e. /pets and /pets/{petId}.

Each path supports one or more HTTP method operations. Combination of path and method are
usually specified by an OperationID. The method GET in /pets (getPets) is used to retrieve the list
of all the pets. The method GET of the path /pets/{petId} refers to the operation getPetById,
meant to retrieve the Pet object that matches a specific petId. Path parameters are specified directly
in the path URL enclosed by curly braces, such as the petId input parameter in our example.

Modifiers can be used to attach constraints to data fields. For instance, the modifier required
specifies that a parameter is mandatory, and it can not be omitted. Moreover, each request input and
output is associated with a schema that specifies its type and, optionally, a set of constraints on its
value (e.g., a min or max value for numeric parameters). Types can be atomic (e.g., integers and
strings) or structured (i.e., compound objects). For instance, the parameter petId (line 41) is of type
string (line 46), while the response is expected to be in JSON (line 51) according to the schema Pet,
which is composed of the fields id, name and tag, as specified at lines 69-75.

4https://www.openapis.org/

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 D. CORRADINI ET AL.

1 openapi: "3.0.0"

2 info:

3 version: 1.0.0

4 title: Swagger Petstore

5 license:

6 name: MIT

7 servers:

8 - url: http:// petstore.swagger.io/v1

9 paths:

10 /pets:

11 get:

12 summary: List all pets

13 operationId: getPets

14 tags:

15 - pets

16 responses:

17 ’200’:

18 description: PetIds

19 content:

20 application/json:

21 schema:

22 type: array

23 items:

24 type: object

25 properties:

26 petId:

27 type: integer

28 default:

29 description: unexpected error

30 content:

31 application/json:

32 schema:

33 $ref: "#/ components/schemas/Error"

34 /pets/{petId}:

35 get:

36 summary: Info for a specific pet

37 operationId: getPetById

38 tags:

39 - pets

40 parameters:

41 - name: petId

42 in: path

43 required: true

44 description: The id of the pet to retrieve

45 schema:

46 type: string

47 responses:

48 ’200’:

49 description: Expected response to a valid request

50 content:

51 application/json:

52 schema:

53 $ref: "#/ components/schemas/Pet"

54 default:

55 description: unexpected error

56 content:

57 application/json:

58 schema:

59 $ref: "#/ components/schemas/Error"

60 # ...

61 components:

62 schemas:

63 Pet:

64 type: object

65 required:

66 - id

67 - name

68 properties:

69 id:

70 type: integer

71 format: int64

72 name:

73 type: string

74 tag:

75 type: string

Listing 1. OpenAPI specification example

The OpenAPI specification not only describes the response format in the nominal case (i.e.,
response code 200, line 17), but also the response format of the API when an error occurs (line
33).

3. APPROACH OVERVIEW

RESTTESTGEN is a black-box tool, intended to automatically generate test cases for REST APIs.
As a black-box approach, RESTTESTGEN does not assume access to the source code nor to the
compiled binary code of the REST API under test. It only assumes to have input/output access
to the API via the HTTP protocol. The OpenAPI specification of the REST API should be also
available, to know which operations can be called and their input/output data format to send well-
formed HTTP requests.

A black-box approach is the only option when the source code is not available, or only partially
available, e.g., when third-party components or commercial libraries are integrated, whose source
code is not available. Additionally, a black-box approach is a valuable option when testing APIs
with an architecture that is very complex for a white-box approach, e.g., because consisting of many
(micro-)services, possibly developed with different languages and technologies. In fact, a black-box
approach is independent from the programming language used to implement the API to test.

RESTTESTGEN includes different modules, as shown in Figure 1. The tool takes as input the
OpenAPI specification of the service under test to have information on the available REST API
endpoints, the available operations and the input/output data formats.

The first module analyzes the specification and computes the Operation Dependency Graph, a
graph that models the data dependencies among the operations available in the service. This graph
is meant to help RESTTESTGEN in sorting the operations to test, whose order will depend on their
data dependencies. In particular, the operations whose output is needed as input to other operations
are tested first. Then, RESTTESTGEN can use the data produced by these operations to feed the
subsequent operations with meaningful inputs.

The next module, namely the Nominal Tester, reads the Operation Dependency Graph and the
OpenAPI specification to automatically create test cases for the REST API. We called the test cases

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 5

OpenAPI
Specification

Operation
Dependency Graph

Generator

1

Nominal Tester

2

Error Test Cases

Error Tester

3

Input

ODG

Nominal Test Cases

Figure 1. Automated test case generation: structure overview

generated by this module nominal test cases since they are created according to the specification,
trying as much as possible to follow the specified data constraints.

Nominal tests represent the input for the subsequent module, the Error Tester. This last module
applies a catalog of mutation operators to the nominal tests with the aim of violating data constraints
from the OpenAPI specification, verifying how the REST API handles malformed inputs. For this
reason, the tests generated by this module are called error test cases.

4. OPERATION DEPENDENCY GRAPH

This section describes the Operation Dependency Graph and how to build it, starting from the
information present in the OpenAPI specification.

4.1. Graph Construction

The Operation Dependency Graph, or ODG for short, is a directed graph G = (N,V). Nodes N are
the operations in the REST API. The graph has an edge v ∈ V , with v = n2 → n1, when there exists
a data dependency between nodes n2 and n1. We define a data dependency between two nodes n2
and n1 when there exists a common field in the output (response) of n1 and in the input (request)
of n2. The intuitive meaning of this dependency is that n1 should be tested before n2 because the
output of n1 could be used to guess valid input values to test n2.

We define two fields as common when:

• They are of atomic type (i.e., string or numeric), and they have the same name;

• They are of non-atomic type (i.e., structured), and they are associated to the same schema.

Edges are labeled with the name of common field(s) between the source and target nodes.
As an example, consider a segment of the specification in Listing 1 reporting two operations:

operation getPets lists all the petId identifiers of all the pets available in the shop; operation
getPetById returns all data related to a particular object of type Pet, whose schema is defined in
lines 63-75 in Listing 1.

These two operations have a data dependency on the common field petId. The field is present
in the output of getPets (lines 26 in Listing 1) and in the input of getPetById (lines 41 to 46 in
Listing 1). Thus, the corresponding ODG shown in Figure 2 has two nodes, one for each of these
two operations, and an edge labeled petId from getPetById to getPets.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 D. CORRADINI ET AL.

The intuitive meaning of this graph is that to test the operation getPetById we require a valid petId
value, that would be difficult to guess with a black-box testing framework. So, the operation getPets
should be tested earlier in order to fetch a valid value for petId.

The Operation Dependency Graph can grow quadratically with the number of nodes, because, in
the worst case, each pair of nodes is connected by a data dependency. In a complex REST API, with
many dependent operations, the ODG will represent a valuable support to sort the operations to test
and to plan for the acquisition of the needed data to be used during testing.

In the following, we will present our approach using the dependencies in the ODG to decide in
which order to test the operations in a REST API.

4.2. Dependency Inference

The example in Listing 1 represents the ideal case of a correctly defined OpenAPI specification.
However, there are no constraints forcing developers to use the same syntactic name for fields with
a (semantic) dependency. For instance, the field petId to be used in getPetById, could be simply
called id and a developer would still understand what data to use for that field.

Alternatively, field names could contain typos (petId could become pettID or pedID), or characters
in the wrong case (petID or petid). Thus, a perfect match among field names might fail. For this
reason, the matching algorithm adopts a relaxed approach that tolerates few typing mistakes.

In particular, the following strategies are used to match field names.

Case insensitivity The comparison of field names is case insensitive to work around developer
mistakes in using a consistent casing across operations.

ID completion When a field is just named id we add a prefix to its name. In the case of a field
belonging to a structured object, the prefix is the name of the object. For instance, the field id
of the object pet is renamed petId. In the case of a field that is not part of a structured object, it
is prefixed with the name of the operation in which it is involved, after removing get/set verbs
from the operation name. For instance, the operation getPet becomes Pet after removing the
verb “get”, and it is used to change the field id into petId.

Stemming Instead of requiring two field names to be exactly the same, we tolerate some difference.
We apply the Porter Stemming algorithm [45] to each parameter name to compare their stem
instead of their exact names. For instance, two parameters named pet and pets are converted
to the same normalized term pet and considered as the same parameter.

5. TESTING OF NOMINAL CASES

The aim of the Nominal Tester module is to automatically generate test cases meant to run nominal
interactions as they are documented in the OpenAPI specification. To achieve this objective, three
issues need to be addressed. In particular, (i) choosing the order in which operations should be
tested, (ii) generating input values, and (iii) deciding if the test scenario exposed a fault.

5.1. Operation Testing Order

To elaborate the testing order among operations we resort to two distinct dependencies: the CRUD
semantics and the data dependencies from the ODG (see Section 4).

getPetById getPetspetId

Figure 2. Sample of Operation Dependency Graph

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 7

1 while (length(graph.vertexes) > 0) {
2 # get graph leaves
3 to_test = graph.leaves
4
5 # random vertex if there is no leaf (only cycles)
6 if length(to_test == 0):
7 to_test = [random(graph.vertexes)]
8
9 # sort leaves according to CRUD

10 to_test_sorted = sort_for_crud(to_test)
11
12 # test each leaf
13 for (operation: to_test_sorted) {
14 is_tested = run_test_on(operation, operation_budget)
15
16 # remove successfully tested leaves
17 if is_tested:
18 graph.remove(successful)
19 }
20
21 # budget expired check
22 if global_budget_exceeded():
23 break
24 }

Listing 2. Pseudo-code for ordering the operations to test.

CRUD semantics. To successfully test an operation, a particular resource might be required to
be in a certain state. Considering the CRUD semantics, a successful DELETE operation requires
that the target resource is available, so the resource should be first added using a POST operation. A
similar argument holds for PUT/PATCH operations: updates should be performed only on existing
resources. Conversely, a POST operation that creates a resource requires the resource not to exist
yet. The dependencies related to the CRUD semantics are modeled based on the following priorities.

1. HEAD operations are the first in the priority list, because they are often used to check the
validity of an API operation and to retrieve the header of a resource.

2. POST operations are commonly used to add a new resource; they have a high priority since
other operations may reference these operations and their parameter values.

3. GET operations retrieve information of an existing resource. Retrieved information can be
used as input values for other operations.

4. PUT/PATCH operations are used to modify an existing resource with new parameter values.

5. DELETE operations have the lowest priority because they remove existing resources that can
not be referenced anymore by other operations.

Zhang et al. [47] also proposed a testing approach based on the CRUD semantics using templates
of pairs of related operations (e.g., POST+DELETE and POST+PUT), and this showed a positive
impact on the test coverage. Instead of using templates of operation pairs, we enforced an order to
prioritize the operations to test.

ODG data dependencies. Data dependencies among operations are read from the ODG and used
to sort the operations to test. The goal is to maximize the chances of reusing data already collected
from previously tested operations to test new operations.

The pseudo-code in Listing 2 shows the algorithm that we use to combine CRUD dependencies
and ODG data dependencies, to choose operations testing order.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 D. CORRADINI ET AL.

The algorithm starts testing the graph leaves, extracted with the query at line 3. Leaves are those
operations with no outgoing edges, i.e., operations with no dependencies. No dependency means
either no input fields (e.g., getPets in Listing 1) or input fields found in the output of no operations.

In case there are no leaves, then every graph node has at least one outgoing edge (i.e., the graph
is cyclic). Indeed, in this case, there is at least a cycle in the graph involving a subset of the graph
nodes. Cycles should be broken to start testing. In this case, at line 7, we randomly pick a node to
start testing, i.e., we open the cycle at a random position.

If we only consider data dependencies, all these leaf nodes would have equivalent precedence
(with respect to our selection algorithm, based on the ODG), because they have no outgoing edges
in the ODG. However, their order might still be optimized according to their CRUD semantics. Thus,
at line 10, leaf nodes are then sorted according to their CRUD dependencies, if any, to increase the
likelihood of testing an operation in the correct context (e.g., deleting or changing a resource after
it has been created).

Then, at line 14, the algorithm attempts to test each leaf operation, in the sorted order.
Each operation is fuzzed, with different heuristics, to generate its input values (input generation
heuristics are described in more detail in Section 5.2). Multiple input generation attempts may be
needed to guess valid input values. The task of fuzzing an operation is associated with a budget
(operation budget) that determines when to halt the process, and then move to the next operation
to fuzz. This budget can be specified as maximum number of attempts to test an operation, or as
maximum amount of time to spend testing it. The value of operation budget is a global constant
set during the initialization of the tool. Our oracles (see Section 5.3) are used to decide when a test
can be considered successful.

We keep track of successfully tested operations (by means of the local variable is tested). We
consider an operation to have been successfully tested when we observe a testing scenario with a
2XX response status code, that stands for a correct execution. Such an execution, in fact, might have
provided useful output data to be used as input when testing next operations. In case an operation is
successfully tested, it is removed from the graph (at line 18). In this way, we remove from the graph
those dependencies that are now satisfied, and now operations that only depended on the just tested
operation will become leaf nodes in the updated graph. They will be tested in the next iterations of
the algorithm.

The main loop (line 1) completes when the graph remains with no nodes, namely when all the
operations have been tested (testing complete), or when the global testing budget expires (line 22).
Again, the testing budget can be set as maximum number of attempts or as maximum amount of
elapsed time.

It is important to note that the operations order cannot be completely precomputed off-line, it is
continuously updated at testing-time. In fact, we can mark a node as tested, and remove it from the
graph, only after we could test it, and this is known only at testing time.

5.2. Input Value Generation

In order to test an operation, we need to guess appropriate input values. Input values are generated
for each request using a probabilistic algorithm. With high probability (e.g., 80%) the algorithm
applies a strategy based on the response dictionary, because reusing observed data is very likely to
be effective in testing new operations. In the remaining cases (e.g., with 20% probability or when
the former strategy fails), a new parameter value is generated starting from its schema.

Response dictionary. This heuristic is meant to reuse the knowledge of already tested operations
to test new operations. Suppose, for instance, that we need to test the operation getPetsById in the
PetStore API. Our approach would need to have prior knowledge of valid pet ids.

For this reason, inspired by Ed-douibi et al. [12], we use the concept of Response Dictionary. The
Response Dictionary is a map between field names and their observed values. For each operation
that is successfully tested, the values of all the output fields that can be found in the response content
are saved in the Response Dictionary, so that the values can be reused later when an input field with
the same name is needed.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 9

One of our extensions with respect the approach by Ed-douibi et al. is represented by the matching
algorithm that we use to look up into the Response Dictionary. While Ed-douibi et al. require an
exact match between the name of the input value and the key in the dictionary, we tolerate some
differences. In fact, our matching algorithm takes as input the field name for which a value is needed,
and returns the key with the closest name among the keys in the dictionary. A non-perfect match is
needed because of naming inconsistencies among input/output fields, due to implicit assumptions
of developers, or because of typing errors (as discussed in Section 4.2).

The name matching algorithm implements the following look-up strategy:

1. look for a key with an exact match with the field name;

2. look for a key with an exact match with the concatenation of object name and field name (e.g.,
petId matches pet+id);

3. look for a key with edit distance less than a given threshold thr to the field name;

4. look for a key with edit distance less than a given threshold thr to the concatenation of object
name and field name (e.g., petsId matches pet+id);

5. look for a key that is a substring of the field name to find.

In the low probability case and when the look-up strategy fails, the schema-based field generation
is applied.

Schema-based field generation. A new parameter value is generated respecting the parameter
schema type and its constraints, defined in the OpenAPI specification.

Default and example values. The OpenAPI grammar supports an option to specify default values
for input parameters and examples of values to be used. In case these values are specified, they can
be used to test an operation.

Enum. When the type is enum, a value is randomly picked with uniform probability among the
closed set of available values.

Random input generation. A random value that matches the type of the input field (e.g., a random
integer/decimal number or a random string) is generated. In particular, in half of the cases, we
generate zero (on numeric input) or empty string (on string input). In the other half, a numeric
value is randomly picked (with uniform probability) from the allowed range. A random string
is generated by concatenating random alphanumeric characters respecting the parameter schema
constraints minLength and maxLength.

Authentication. Some APIs can be used with no authentication, while others require clients to
certify their identity before allowing access. Hereinafter, we refer to the former as free access APIs
and to the latter as access controlled APIs. In order to deal with access controlled APIs, we have
equipped RESTTESTGEN with the capability to attach authentication tokens to the requests sent to
the services under test.

Services that expose a web interface often support password-based authentication. However, APIs
usually adopt authentication based on a token (commonly called API-key). An authentication token
could be obtained using identity providers via OAuth (e.g., login with Facebook or with Google
accounts). Alternatively, static tokens are used (at least in some of the 29 APIs in our experimental
validation). Obtaining an authentication token involves some manual effort, because a distinct
account requires to be created for each REST API. This operation often consists in applying for
the account that a moderator has to approve, especially for free-of-charge accounts. When an access
token is available, it should be saved in the configuration file of RESTTESTGEN, so that it can be
used when testing the corresponding API.

The authentication token is included in HTTP requests, either as a query parameter (in
the form GET /myEndpoint?tokenParamName=xxxxxx), or as header parameter (e.g.,
Authorization: Bearer xxxxxx).

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 D. CORRADINI ET AL.

Considering that authentication depends on the REST API under test, the configuration file of
RESTTESTGEN allows to specify both the token value and the protocol to send it (header or query).

When generating test cases, if authentication is required and properly configured, RESTTESTGEN
will not fuzz the authentication input field; the token value from the configuration file will be used
instead. This feature allows RESTTESTGEN to test both free access and access controlled APIs.

5.3. Oracles

Our approach includes two oracles to assess if the automated test case generation is successful,
based on the status code and on the match with the declared schema.

Status Code Oracle. The status code is a three digit integer value in the HTTP response, meant
to describe the outcome of a request. A status code of the form 2XX stands for a correct execution,
for instance 200 means OK, while 201 means that a resource has been successfully created.

A status code 4XX stands for an error that was correctly handled, e.g., 400 stands for Bad Request
and 404 stands for Not Found. Conversely, a status code 5XX means that the server encountered an
error that was not handled correctly, e.g., 500 means server crash.

We use the response status code as an oracle to assess if a test case was successfully executed, as
described in the following.

2XX Status Code When obtaining a status code 2XX in a response, we assume that our approach
correctly guessed the input values to test an operation according to a nominal scenario. We
conclude that this operation was successfully tested, so we mark this operation as tested and
we can use the data in the response to populate the Response Dictionary.

4XX Status Code This status code means that the testing was not successful. It could be due to
two distinct reasons: either incorrect input values have been rejected by the server, or input
values were correct and they exposed an implementation defect. However, from a black-box
viewpoint, we can not tell which of the two cases applies. Conservatively, we assume that the
correct input values have not been guessed. Thus, we discard this scenario and we continue
the test case generation.

5XX Status Code This status code means an internal server error occurred, e.g., status code
500 means that a server crash was not handled gracefully. A 5XX status code is probably due
to a programming defect that should be fixed. So, this is an interesting scenario to document
with a test case.

Our approach emits JUnit test cases for those interactions that cause status codes 2XX and 5XX,
to let a developer quickly replicate these scenarios.

Response Validation Oracle. The OpenAPI specification documents the operation responses
and their schema, i.e., the intended status code and the fields in the responses, as in lines 47 to 59
of the example in Listing 1. Consistency between actual responses and their schema is important
for remote programs that connect to a REST API. In fact, remote connection might fail in parsing
inconsistent or malformed responses, and cause service discontinuity. Our second oracle reveals a
mismatch between the intended response syntax (documented in the specification) and the actual
response (observed at execution time), by using a schema validation library, namely swagger-
schema-validator5, on each response (either successful responses and error responses). In case of
mismatch, a JUnit test case is emitted to document the defect.

For instance, consider a nominal execution of the operation getPetById. The operation response
must contain an object of type Pet, as shown in the response example in Listing 3. This Pet object
matches the Pet schema specified at lines 63 to 75 in Listing 1, i.e., the three properties id, name
and tag are present and have correct types.

5https://github.com/bjansen/swagger-schema-validator

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 11

1 {
2 "id": 1,
3 "name": "doggy",
4 "tag": "dog"
5 }

Listing 3: Example of getPets response compliant with the schema.

Listing 4 shows, instead, a case where the response content does not match the schema. Indeed,
the object Pet in this example misses the parameter name. This particular execution output is
classified as an implementation error by the oracle.

1 {
2 "id": 1
3 "tag": "dog"
4 }

Listing 4: Example of getPets response NOT compliant with the schema.

Limits of the Proposed Oracles. OpenAPI specifications do not come with a description of
services business logic, so our oracles cannot detect faults related to deviations from the intended
behavior of the APIs, that cannot be described in the specification. Additionally, our oracles cannot
detect faults when the response status code is inconsistent with the internal execution, e.g., our
oracles cannot realize the presence of a defect when an API hides an internal crash by returning
a 200 status code. Furthermore, we are not considering, at the moment, faults related to security
vulnerabilities, like SQL-injections or access control issues. We plan to extend RESTTESTGEN with
oracles taking into account security-related aspects as a future work.

6. TESTING OF ERROR CASES

The objective of the Error Tester module is to test exceptional scenarios for the REST API, to assess
if the REST API handles wrong requests in the appropriate way, i.e., they are discarded and errors
are handled gracefully. To this aim, this module starts from nominal executions and mutates them
to generate malformed and inconsistent executions. In case a mutated request is not discarded or if
it causes a fatal error, a defect is detected.

6.1. Mutation Operators

Nominal test cases are changed according to a catalog of mutation operators. Currently the
subsequent mutation operators are available.

Missing required In the OpenAPI grammar, input parameters support the modifier required,
which means that a field is mandatory. A request that misses a required field should be
discarded by the REST API. This mutation consists in altering a request by removing a
required input field.

Wrong input type Input parameters are strongly typed. This mutation alters an existing test case
by changing the value of an input parameter such that its type becomes incorrect. In case
the declared type is string, the new value is a random number (integer or float). In case the
declared type is numeric, the new value is a random string. In case of type enum, a random
value is picked outside the set of values in the enumeration.

Constraint violation The OpenAPI grammar also allow to specify additional constraints for
strings (e.g., minLength and maxLength) and for numeric values (e.g., min and max values).
This mutation operator changes the value in a request such that it violates such constraints.
For instance, a string is trimmed or extended with a random suffix, or a numeric value is
decreased/increased by a random delta until it violates the intended bounds.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 D. CORRADINI ET AL.

A nominal test is mutated many times, by applying each mutation operator once per each input
field in the request. Mutated requests are then sent to the REST API and the response is analyzed
by the oracles.

6.2. Oracles

Similarly to the Nominal Tester, also the Error Tester is supported by two oracles.

Status Code Oracle. The status code in the response is inspected to classify whether this test
case reveals a programming defect.

2XX Status Code This status code stands for a correct execution. This means that incorrect
inputs, that should have been rejected, are instead processed as valid. This scenario exposes
a mismatch between the features declared in the OpenAPI specification and those actually
implemented.

4XX Status Code This status code, instead, means that wrong inputs have been correctly detected
and the request caused a graceful error. This is the expected execution on malformed requests.

5XX Status Code An internal server error is exposed thanks to malformed input data. This is
clearly a defect.

A JUnit test case is emitted for those error scenarios that cause status codes 2XX and 5XX.

Response Validation Oracle. Similarly to the Nominal Tester, also the Error Tester includes an
oracle that checks if the response is valid with respect to the format defined in the specification.

7. EXPERIMENTAL VALIDATION

In this section, we provide an experimental validation of RESTTESTGEN, with respect to its
effectiveness in revealing programming defects in real-world REST APIs. We also conducted an
empirical evaluation on the contribution of the ODG in effectively generating test cases. The
complete package to replicate our experiment is available online6 .

7.1. Research Questions

To define our empirical investigation, we formulated the following research questions.

• RQN: Is the Nominal Tester module effective in generating test cases?

• RQE: Is the Error Tester module effective in generating test cases?

• RQO: Is the Operation Dependency Graph relevant for generating test cases?

The first research question RQN is intended to investigate if the Nominal Tester module is
capable of testing the nominal scenarios of REST APIs, as they are documented in the OpenAPI
specification.

The second research question RQE instead focuses on the Error Tester module, and it is meant
to investigate if it is able to expose failures of the APIs in handling incorrect inputs, resulting from
mutations of nominal test cases.

Finally, with the third research question RQO we aim to asses how much the new proposed
operation testing order based on the Operation Dependency Graph is contributing to the testing
capability of RESTTESTGEN.

6The replication package will be published on paper acceptance.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 13

Experiments. The experimental validation has been conducted with two distinct sets of case
studies. The first set of case studies (already presented in the companion paper [44] and listed
in Table X) includes a remarkable number of REST APIs (87), whose access is quite simple,
because it does not require authentication, i.e., they are free access APIs. This first validation has
served as initial benchmark for our experimental framework and for RESTTESTGEN, to assess its
effectiveness on real-world services, but with limited complexity. More sensitive operations, such
as changing or deleting resources, usually require a user to be authenticated.

Based on the experience collected on this first experiment, we identified some changes to
improve the experimental settings and those features that were urgently needed to extend our tool
implementation. In order to test more realistic and challenging REST APIs, that expose a more
complete set of features (e.g., deleting resources), we needed to extended our implementation
and include features typically required by actual industry-class services. Therefore, we improved
RESTTESTGEN by adding support for authentication. Additionally, the improved version of the
tool offers also a more flexible management of test case generation budget based on time, for a
more accurate experimentation.

The second set of case studies includes private and access controlled APIs. They are authenticated
and closed-access services for a total of 29 novel services. They include industry-class and complex
REST APIs like Google Drive, Google Calendar, YouTube and Spotify.

Unfortunately, we could not run the latest improved version of RESTTESTGEN on the first data
set, because some of these APIs are now discontinued or no longer accessible. Thus, we will
present the validation on the two data sets in separate sections, and discuss the results aggregately
in Section 8.

Finally, we have conducted a third experimentation to asses the impact of the ODG on the
testing capability of RESTTESTGEN. To this aim, we have chosen services with increasing levels
of complexity. They are: (i) small services with no dependencies; (ii) small services with some
dependencies; (iii) medium services with few dependencies; and (iv) a big service with lots of
dependencies.

7.2. Experiment on Free Access APIs

Case Studies. We applied RESTTESTGEN to an extensive group of REST APIs, taken from
the website APIs.guru7 on June 18th, 2019. For each REST API, this website also provides the
corresponding OpenAPI specification. However, we had to apply some sanity checks and filtering,
to select case studies that are appropriate for assessing fully automated test case generation.

First of all, we probed the REST APIs to filter out those that were not responding, which were
probably discontinued or just temporarily down. Then, we also excluded all those that declared
to require authentication, because still not supported by RESTTESTGEN when this first data set
was considered. Eventually, we manually sent some probe requests to the remaining services to
dynamically verify them, before finalizing the case studies of our experiment. We had to further
exclude some REST APIs because, despite their specification did not mention authentication, their
actual implementation did require it.

After filtering, the final case studies used in our empirical evaluation consists of 87 REST APIs,
for a total of 2,612 operations, which means 30 operations per REST API on average.

Experimental Procedure. Based on the research questions formulated above, we defined these
settings of our experiment. RESTTESTGEN is run on all the OpenAPI specification files for the 87
case studies. For each specification, the ODG is computed and then the Nominal Tester module is
run. In this first experiment, the operation budget is the total amount of attempts nfuzz to fuzz an
operation (see Section 5.1), which is set to 5. The edit distance threshold thr used in the Response
Dictionary (see Section 5.2) is set to 1. The Nominal Tester was assigned a global testing budget
of 30 minutes per case study. In the result section, we will see that this time budget will prove to

7https://apis.guru/browse-apis/

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 D. CORRADINI ET AL.

Table I. Free access APIs: case studies tested by the
Nominal Tester.

Total APIs 87

APIs with status code 2XX 62
APIs with status code 5XX 20

APIs with validation error 66

Table II. Free access APIs: operations tested by
the Nominal Tester.

Total operations 2,612
Tested operations 2,560

Operations with status code 2XX 625
Operations with status code 5XX 151

Operations with validation errors 1,733

be appropriate, in fact our algorithm completes in less than 10 minutes in the majority of the case
studies. During this time budget, the maximum number of sent requests has been 13,944, with a
mean of 162 requests per case study. However, the amount of time taken to test a service is strongly
dependent on how long the tested service takes to respond.

The nominal test cases that obtained a response status code 2XX were then mutated by the Error
Tester module, to automatically generate error test cases. This second module was also assigned a
maximum time budget of 30 minutes per case study.

RQN (Nominal Tester). The results of the Nominal Tester module on the free access APIs are
shown in Table I. As we can see, all the 87 case studies (first line) have been subject to automated
test case generation and for 62 of them (second line) at least one test for a nominal execution
scenario (status code 2XX) could be automatically generated. For 20 case studies, the test cases
automatically generated by RESTTESTGEN exposed errors that were not properly handled by the
REST API (status code 5XX). On 66 case studies, invalid response messages were observed; they
are responses inconsistent with their schema defined in the OpenAPI specification.

Table II shows a more detailed perspective, focusing on case studies operations. Among the total
2,612 operations, for 2,560 of them test cases could be generated by RESTTESTGEN. The untested
operations are due to some failure of the tool, such as unsupported input parameter generation (e.g.,
files to be uploaded).

In particular, automatically generated test cases found a nominal execution for 625 of them (status
code 2XX) and an ungraceful error for 151 (status code 5XX).

For 435 test cases the status code was 4XX, but they are not shown in the table, because they were
hard to classify with a black-box access. In fact, they might be graceful errors due to programming
defects, or just rejected requests due to failures of RESTTESTGEN in generating appropriate inputs.

Test cases with validation errors are still a majority: in 1,733 tests the response did not match the
declared schema. Considering these results, we can formulate the following answer to RQN:

The Nominal Tester module of RESTTESTGEN is effective in automatically generating black-
box test cases, because it was able to test 2,560 operations out of 2,612 on free access REST
APIs. These tests exposed 151 faults in the form of not correctly handled internal errors and
1,733 inconsistent response messages.

RQE (Error Tester). Subsequently, the 625 nominal test cases with a status code 2XX have been
subject to mutation by the Error Tester module, and executed on the free access APIs. The results
of this second module are shown in Table III. For each mutation operator (first column) the table
reports in the second column how many mutants (i.e., mutated test cases) could be generated.

The number of mutants is dependent by the mutation operator adopted, because different
mutations impose different applicability preconditions. For instance, Missing required mutation
needs an input field with the required modifier. In case this modifier in not present, the mutation
does not apply. The largest amount of mutants (i.e., 707 tests) could be generated by Wrong input
type, because it is the mutation with the simpler preconditions, i.e., a field of type string, numeric
or enum. Then, Missing required mutation generated 459 mutants and, while Constraint violation
mutation generated only 119 mutants, because only few case studies specify value constraints in
their specification. In total, 1,285 mutants have been generated.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 15

Table III. Free access APIs: test cases automatically generated by the Error Tester.

Mutation operator Mutants Status code 2XX Status code 5XX

Missing required 459 283 7
Wrong input type 707 511 16
Constraint violation 119 68 11

Total 1,285 864 23

These mutated test cases are then executed on the case studies and the response status codes are
evaluated to assert the presence of programming defects. Table III reports how many mutants are
still processed as valid input with status code 2XX (third column) and how many of them exposed
an unhandled error with status code 5XX (fourth column). The majority of defects (864 cases) have
been recorded for status code 2XX; they are wrong data that are still handled as correct. Only 23
cases exposed server errors with status codes 5XX. It should be noted, that these 23 cases of status
code 5XX are different and additional with respect to the 151 5XX cases observed in the previous
testing phase. In fact, the test cases generated by the Nominal Tester and by the Error Tester are not
overlapping, i.e., the former module relies on inputs whose type and value match the specification,
while the latter module relies on inputs that violate the specification.

Given these data, we can answer to RQE as follows:

The Error Tester module of RESTTESTGEN is effective in automatically generating black-box
error test cases on free access APIs, because they revealed 864 cases where wrong data are
accepted as valid, and 23 cases with unhandled errors.

7.3. Experiment on Access Controlled APIs

The experiment on free access APIs gave us a clear idea of the capabilities of RESTTESTGEN, and
it offered the opportunity to revise the experimental settings, in order to further improve the tool. In
particular, industrial-ready APIs can often be accessed only with authorized credentials, especially
when irreversible operations can be performed on persistent data (e.g., data change or deletion).
Thus, a second experiment has been conducted, involving a novel set of case studies.

Case Studies. While case studies of the first experiment were limited to non-authenticated and
public REST APIs, now also private and authenticated services are taken into account.

For the second set of cases studies, we relied on API directories to identify publicly hosted
services, not only limited to APIs.guru as in the first experiment, but including also those listed in
RapidAPI8 and ProgrammableWeb9. Additionally, we searched for REST APIs published as open
source projects on GitHub10.

The criteria applied to select publicly hosted case studies are similar to those already used to select
free access APIs, i.e., they should be responsive and coming with their OpenAPI interface definition.
However, based on our experience with free access APIs, we also enforced new constraints for case
studies. When selecting access controlled APIs, we discarded those APIs with a quota that was
too restrictive. For example, an API with a 100 requests per day limit, or even 1000 per month,
would be impractical to test with a fuzzing-based approach. Furthermore, in contrast to the previous
experimental setting, now services that require authentication are welcome. According to the revised
selection criteria, we could experiment with actual well-known and largely adopted services (e.g.,
provided by Google and Spotify). The exhaustive list of case studies is reported in the Appendix.

Publicly hosted access controlled APIs selected in this way consists of 20 REST APIs (listed in
Table XI), for a total of 198 endpoints and 285 operations.

8https://rapidapi.com/
9https://www.programmableweb.com/category/all/apis
10https://github.com/

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 D. CORRADINI ET AL.

Table IV. Access controlled APIs: case studies
tested by the Nominal Tester.

Total APIs 29

APIs with status code 2XX 27
APIs with status code 5XX 8

APIs with validation error 22

Table V. Access controlled APIs: operations
tested by the Nominal Tester.

Total operations 388
Tested operations 388.0

Operations with status code 2XX 165.9
Operations with status code 5XX 13.8

Operations with validation errors 308.9

To overcome the problem represented by the quota limitation in publicly hosted APIs, we also
searched for open source implementation of REST APIs among the projects shared in GitHub. In
fact, running an API locally on our machine would allow to overcome any quota limitation problem.
Additionally, testing a local non-production installation would turn testing less problematic. In fact,
automated testing could reveal and exploit implementation defects and damage production APIs.
With local services, we not only mitigate the risk of testing side effects, but we also have the
possibility to restore the original database in case of destructive events, or inspect the API source
code for a better comprehension of a candidate defect.

We used the search strings “REST”, “RESTful API”, “OpenAPI” and “Swagger” to search for
case studies on GitHub. We only filtered out those projects that did not provide the OpenAPI
specification (neither as part of source code, nor through libraries such as swagger-ui, allowing
to query the specification from the running service). Then, we removed projects with compilation
and runtime errors.

In GitHub, we found 9 REST APIs satisfying these criteria, for a total of 49 endpoints and 103
operations (listed in Table XII). These projects have been organized in separated Docker containers
to isolate them and to have an effective way of restoring a common starting point after each test
iteration.

All in all, considering publicly exposed APIs and open source APIs projects from GitHub, the
access controlled APIs count 29 REST APIs in total, with 247 endpoints and 388 operations.

Experimental Procedure. Based on the experience gained with free access APIs, we adopted a
refined experimental setting for the new set of case studies. First, instead of setting an operation
budget based on the number of attempts, we opted for a time budget. In fact, we realized that it
would be much more natural for a test engineer to specify the resources to spend in testing as an
objective time duration, rather than a cryptic parameter that is internal to the tool.

Specifically, we let the Nominal Tester run for tfuzz = 5 seconds for each operation documented
in the specification of the REST API under test. Setting the operation budget to tfuzz instead of
nfuzz comes with an additional major advantage: a more appropriate global testing budget. In fact,
the time allocated to test case generation depends on the number of operations described in the
specification. Larger services will be granted more testing time rather than smaller services.

Another major difference in the experimental procedure consists in replicating the test generation
process multiple times. In fact, both the Nominal Tester and the Error Tester rely on non-
deterministic algorithms, e.g., for the generation of input values. To contain side effects due to
non-determinism, the testing process is repeated 10 times for each case study, and the average
values are reported when aggregating the results.

RQN (Nominal Tester). The results of the experiment on access controlled APIs with the Nominal
Tester are shown in Table IV. The Nominal Tester could test at least one successful nominal
execution scenario (2XX status code) in 27 of the new 29 case studies. RESTTESTGEN was capable
to expose errors (5XX status code) that were not properly handled by 8 of the tested case studies.
In 22 case studies we observed invalid response messages, whose schema does not match the one
described in the OpenAPI specification.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 17

Table VI. Access controlled APIs: test cases automatically generated by the Error Tester.

Mutation operator Mutants Status code 2XX Status code 5XX

Missing required 95.5 10.2 3.0
Wrong input type 428.6 33.6 3.7
Constraint violation 84.1 1.9 0.0

Total 608.2 45.7 6.7

Table V shows the results from the perspective of the operations. RESTTESTGEN could test all the
388 operations described in the specifications of the case studies. For 166 operations, the generated
test cases obtained at least one success status code (2XX); for 14 operations, instead, test cases
exposed an ungraceful error (5XX status code). The status code 4XX was obtained in 301 operations
(not shown in the table because hard to classify).

Operations with validation errors are once again the majority: in 309 operations, responses
schema did not match the one declared in the specification.

Considering these results, we can formulate the following answer to RQN:

The Nominal Tester module of RESTTESTGEN is effective in automatically generating black-
box test cases, because it was able to test all the 388 operations described in the specification
of 29 access controlled REST APIs. These tests exposed 14 faults in the form of not correctly
handled internal errors and 309 inconsistent response messages.

RQE (Error Tester). Operations that responded to nominal test cases with at least one status code
2XX have been subject to mutation by the Error Tester, and executed on the access controlled APIs.
Received status codes are evaluated by our oracle to assess the behavior of the REST API in presence
of malformed inputs. Table VI shows the results of this experiment.

The Error Tester module generated a total of 608 mutants: 96 missing required, 429 wrong input
type and 84 constraint violation mutants. The target APIs responded 46 times with 2XX status codes,
meaning that the mutated input was interpreted as valid. For other 7 test cases we obtained the 5XX
status code, meaning that the malformed input caused an error in the server elaborating the request.

Given these data, we can answer to RQE as follows:

The Error Tester module of RESTTESTGEN is effective in automatically generating black-box
error test cases on access controlled REST APIs, because they revealed 46 cases where wrong
data are accepted as valid, and 7 cases with unhandled errors.

7.4. Experiment on the Contribution of the ODG

To determine the actual contribution of the Operation Dependency Graph in automatically
generating test cases, we conducted a third experiment with the aim of comparing the capability
of RESTTESTGEN when adopting different operation ordering approaches. In particular, we
considered two variants of RESTTESTGEN: (i) with the smart and dynamic order based on the
ODG; and (ii) with a random order of the operations to test. By comparing the test cases emitted
by the two variants, we will be able to quantify the contribution of the ODG to the performance of
RESTTESTGEN with respect to a baseline random approach.

Case Studies. To perform a fair comparison between the two different operation ordering
approaches, we must provide identical working conditions to each variant of the tool. In practice,
we must provide to RESTTESTGEN, for each case study, the same OpenAPI specification and the
same initial state for the REST APIs under test. Moreover, the REST APIs under test should not be
accessed by external users, to avoid potential interference with the experiment.

To satisfy these requirements, we selected case studies whose state could be directly controlled
and restored before each test iteration. They are four open source REST APIs we downloaded from

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 D. CORRADINI ET AL.

Table VII. Characteristics of the case studies used in the experiment on the ODG contribution.

Case study name Operations Dependencies

CS-GoogleDrive 46 5855
CS-RealWorld 19 6
CS-CRUD 4 0
CS-OrderAPI 3 0
CS-Users 5 23

GitHub (taken from the access controlled REST APIs dataset of Section 7.3) and ran locally, and the
Google Drive REST API (as provided by Google). Restoring a common initial state for the locally
installed APIs is trivial: we just need to reset the whole service and its database. Concerning Google
Drive, which is running outside our controlled environment, the solution was to use a private folder
that is accessible only by us. This folder will be initialized with the same resources (uploaded files,
folders, shared documents, etc.) before each test iteration.

Instead of experimenting with all the open source locally installed REST APIs used in the
previous experiment, in this comparison experiment we reduced the number of these APIs to better
fit the experiment intention. In fact, we noticed that some REST APIs were of limited interest for
the comparison, because their ODG had very few edges due to incomplete or inconsistent OpenAPI
specifications. We prefer to perform this experiment with case studies with increasing number of
dependencies, and understand how this would affect the behavior of the ODG.

In Table VII are reported the characteristics of the selected case studies. They are representative of
four kinds of REST APIs: CS-CRUD and CS-OrderAPI are small REST APIs (4 and 3 operations)
with no dependencies; CS-Users is a small REST API (5 operations) with some dependencies
(23 edges in the ODG); CS-RealWorld is a medium-sized REST API (19 operations) with a few
dependencies (6 edges in the graph); and CS-GoogleDrive is a big REST API (46 operations) with
many dependencies (the ODG has almost 6000 edges).

Experimental Procedure. The goal of the experiment is to compare the baseline random ordering
strategy against the smart and dynamic order provided by the ODG, to understand what is the actual
role of the ODG. First, we run RESTTESTGEN on each case study with the ODG strategy and with
the parameter tfuzz = 5. Then, we repeated the test case generation sessions adopting the random
ordering strategy, with the same global time budget.

The experiment has been repeated 10 times to control fluctuations in results due to the non-
deterministic components of RESTTESTGEN.

RQO (Operation Dependency Graph). The results collected after running the two variants of
RESTTESTGEN allow a direct comparison of their performance. We applied the Wilcoxon test to
check whether the differences between two variants of RESTTESTGEN are statistically significant.
We assume statistical significance when the statistical test returns a p-value < 0.05. To quantify
the magnitude of differences among the two strategies, we used the Cliff’s δ effect size [19]. The
effect size was computed in R using the effsize package [42]. For independent samples, Cliff’s δ
provides an indication of the extent to which two data sets overlap. Cliff’s δ ranges in the real interval
[−1, 1]: it is equal to 1 when all values of one group are higher than the values of the other group
and −1 when none of them is higher. Two overlapping distributions would have a Cliff’s δ equal
to 0. The effect size is considered small for 0.148 ≤ δ < 0.330, medium for 0.330 ≤ δ < 0.474, and
large for δ ≤ 0.474. [11].

Results are reported in Table VIII and Figure 3 for the Nominal Tester module, and in Table IX
and in Figure 4 for the Error Tester module. The two tables consist, in turn, of several sub-tables,
each one focusing on a distinct metric. Different case studies are reported in different rows. For each
case study the tables report: (i) the mean value of the ODG-based approach for the particular metric;
(ii) the mean value of the random (Rand) approach for the particular metric; (iii) the p-value of the

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 19

Table VIII. Wilcoxon Test for the Nominal Tester module.

Operations with status code 2XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 10.4 7.6 0.001 0.91 (L)
CS-RealWorld 6.0 9.5 < 0.001 -0.90 (L)

CS-CRUD 2.0 2.0 - -
CS-OrderAPI 0.3 0.5 0.398 -

CS-Users 4.8 3.5 0.003 0.69 (L)

Operations with status code 5XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.9 0.9 1.000 -
CS-RealWorld 1.3 1.0 0.273 -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 0.1 0.8 0.003 -0.70 (L)

Operations with status code 4XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 44.7 44.5 0.278 -
CS-RealWorld 11.0 10.2 0.229 -

CS-CRUD 3.0 3.0 - -
CS-OrderAPI 3.0 3.0 - -

CS-Users 0.3 2.2 0.001 -0.85 (L)

Operations with validation errors
ODG Rand p-value δ eff. size

CS-GoogleDrive 44.9 45.0 0.368 -
CS-RealWorld 17.0 17.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 3.0 3.0 - -

CS-Users 0.3 2.3 0.001 -0.85 (L)

● ●

●

●

●

●●

●●

●●

●●

●

●

Operations with status
code 5XX

Operations with status
code 4XX

Operation with status
code 2XX

Operations with
validation errors

C
S

-G
o
o
g
le

D
rive

C
S

-R
e
a
lW

o
rld

C
S

-C
R

U
D

C
S

-O
rd

e
rA

P
I

C
S

-U
se

rs

ODG Rand

0

10

20

30

40

0

5

10

15

0

1

2

3

0

1

2

3

0

1

2

3

4

5

ODG RandODG Rand ODG Rand

Figure 3. Boxplots for the Nominal Tester comparison between ODG and random (Rand) approaches.

Wilcoxon test (significant cases are highlighted in boldface, i.e., when p-value < 0.05); and, (iv) the
δ effect size, reported only for statistically significant cases. In some cases, the p-value could not
be computed, so it has been omitted. We also report the δ eff. size interpretation: S for small, M for
medium, and L for large. For instance, in the first table concerning the metric Operations with status
code 2XX we see, in the first row, that (on average) 10.4 operations of CS-GoogleDrive could be

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 D. CORRADINI ET AL.

Table IX. Wilcoxon Test for the Error Tester module.

Missing required - Status code 2XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 0.0 0.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 0.0 0.0 - -

Missing required - Status code 5XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 0.0 0.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 1.9 1.3 0.009 0.60 (L)

Wrong input type - Status code 2XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 1.9 1.9 0.900 -

CS-CRUD 0.2 0.4 0.366 -
CS-OrderAPI 0.0 0.0 - -

CS-Users 0.0 0.0 - -

Wrong input type - Status code 5XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 0.0 0.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 1.9 1.3 0.009 0.60 (L)

Constraint violation - Status code 2XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 0.0 0.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 0.0 0.0 - -

Constraint violation - Status code 5XX
ODG Rand p-value δ eff. size

CS-GoogleDrive 0.0 0.0 - -
CS-RealWorld 0.0 0.0 - -

CS-CRUD 0.0 0.0 - -
CS-OrderAPI 0.0 0.0 - -

CS-Users 0.0 0.0 - -

tested with the ODG-based strategy and 7.6 operations with the random strategy. We see that this
difference is statistically significant, because the p-value is 0.001, and the effect size is large (0.91).

The two figures, instead, show the boxplots for the same metrics, and allow us to visually compare
the results of the two variants of RESTTESTGEN. In each boxplot, the ODG-based strategy is shown
on the left-hand side in orange, while the random strategy is on the right-hand side in green. Boxplots
are organized in rows and columns: rows for case studies, and columns for metrics. For instance,
the first boxplot of Figure 3 shows the distribution of Operations with status code 2XX in CS-
GoogleDrive. In this graph we can notice that the ODG-based strategy can test a larger number of
operations than the random strategy.

Looking at the results of the Nominal Tester module, we observe that the contribution of the
ODG is negligible when the corresponding graph encodes no dependency (CS-CRUD and CS-
OrderAPI). In fact, in absence of data dependencies, the ODG-based strategy only relies on the
CRUD semantics to decide the testing order. Conversely, when many dependencies are available in
the graph (CS-Users and CS-GoogleDrive), the contribution of the ODG over the random approach
is more remarked. For instance, in CS-GoogleDrive we observe that, according to the Wilcoxon
Test, the number of operations successfully tested with the ODG with 2XX status code is statistically
significantly larger than random (p-value < 0.05), with a large effect size (δ = 0.91).

In the case study CS-Users, along with an increase in the number of successfully tested operations
(similarly to CS-GoogleDrive), we also observe a statistically significant decrease in the number of
operations that obtained a 4XX status code, meaning that the ODG helped the Nominal Tester in
avoiding client-side failures.

In CS-Users, we also observe a significant decrease in the number of tests that caused an internal
server error (status code 5XX). This might be due to the order provided by the ODG, which allowed
the Nominal Tester to retrieve, store and reuse (though the response dictionary) mostly valid input
values and, thus, emit successful nominal test cases. Conversely, when the random ordering is used,
the dictionary might not contain the needed values which can only be guessed randomly, with a
higher chance of input values that are incorrect according to the REST API business logic, that
might have caused server crashes.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 21

●

●●

●

Constraint
violation -

Status
code 2XX

Constraint
violation -

Status
code 5XX

Missing
required -

Status
code 2XX

Missing
required -

Status
code 5xx

Wrong
input type -

Status
code 2XX

Wrong
input type -

Status
code 5XX

C
S

-G
o
o
g
le

D
rive

C
S

-R
e
a

lW
o
rld

C
S

-C
R

U
D

C
S

-O
rd

e
rA

P
I

C
S

-U
se

rs

ODG Rand

0

0

2

4

6

0.00

0.25

0.50

0.75

1.00

0

0.0

0.5

1.0

1.5

2.0

ODG RandODG Rand ODG Rand ODG Rand ODG Rand

Figure 4. Boxplots for the Error Tester comparison between ODG and random (Rand) approaches.

Finally, we observe that the number of operations with validation errors is higher for the random
approach. This is caused by validation errors occurring in all the 4XX responses, which contain the
log of a server-side exception, instead of an empty body as described in the OpenAPI specification.
Thus, for this particular case study, the number of operations with validation errors is correlated to
the number of operations that obtained a 4XX status code.

We can observe that in the case study CS-RealWorld, the ODG-based approach could test less
operations with status code 2XX than the random approach. Since RESTTESTGEN could only
extract six dependencies from the OpenAPI specification of CS-RealWorld, most of the nodes in the
graph are not connected to each other. Consequently, rather than by the actual data dependencies,
the operation testing order is deterministically decided by the CRUD semantics. When the right
dependencies can not be inferred, a randomized ordering is on average preferable.

Let’s consider now the results of the Error Tester module in Figure 4 and Table IX. Here
the strategy based on the ODG seems to overcome the random strategy. Let’s recall there is a
strong link between Nominal Tester and the Error Tester modules. In fact, the error test cases
are created by directly mutating those test cases that are successfully elaborated by the Nominal
Tester module. The number of error test cases is therefore directly proportional to the number
of successful nominal test cases. In Figure 4 we see that in the case study CS-Users, the variant
of RESTTESTGEN adopting the ODG-based ordering strategy could detect more 5XX server-side
errors than the random strategy. This improvement descends from the larger number of successfully
tested operations by the Nominal Tester in the same case study. Statistically significant difference
can not be reached in other case studies, probably because their code is of higher quality, so it is
harder to expose server crashes by either strategy.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 D. CORRADINI ET AL.

Considering these results, we can formulate the following answer to RQO:

The Operation Dependency Graph conveys a remarkable contribution to the generation of
black-box test cases, in particular for those REST APIs with many dependencies among
operations. In fact, the Nominal Tester using the ordering strategy based on the ODG could
test a larger number of operations that returned a successful status code (2XX) and a lower
number of operations that returned a client-side error status code (4XX) than the random
ordering strategy. Also the Error Tester could reveal a larger number of errors when using the
ODG-based ordering strategy. These trends have a large effects size. Instead, the contribution
of the ODG-based strategy is negligible or even detrimental when no data dependencies are
available in the graph.

7.5. Threats to Validity

There is a number of limitations that could potentially threat the validity of our empirical results.

Black-box access. With the aim of considering realistic case studies, we meant to involve real
and existing REST APIs, hosted by their respective owners. As such, only for a fraction of the
case studies (i.e., the open source projects from GitHub) we could inspect the case study source
code. For the majority of the case studies we could not inspect source code to manually validate
the results of automated testing, with respect to the correct classification reported by our oracles.
Moreover, we could not measure the code coverage achieved by automatically generated tests.
However, for the second oracle, the classification was quite objective, because it revealed a defect
whenever the response was inconsistent with the documented schema.

Oracle based on status code. Using the status code to assess the result of automated testing
might represent a threat. In fact, while the classification of tests with correct executions (status code
2XX) and with unhandled errors (status code 5XX) is more objective, the classification of tests with
handled errors (status code 4XX) is more dubious. In fact, handled errors might occur either because
of defects in the REST API implementation, or because of limitations of our tool that caused wrong
input values to be used in test cases. Since we could not accurately classify executions with 4XX
status code, we conservatively assumed them to be due to failures of RESTTESTGEN.

Most of the defects detected by the Error Tester are incorrect data accepted as valid (status code
2XX). This result highlights a potential limitation of the Status Code Oracle used in the Nominal
Tester. This oracle might have incorrectly classified a test case run as a pass just because of its
status code 2XX, that was also observed in case of invalid input values.

Missing authentication. To increase the number of REST APIs in our experiment, we decided
to minimize the manual effort required to prepare each case study. Since account creation would
have required a substantial effort and, sometimes, interaction with the REST API owner, e.g., to
motivate why API access is required, we tested some case studies that did not require account
creation. This might represent a threat to the validity of our results, because sensitive operations
might be forbidden to anonymous users (e.g., delete a resource) and the experiment might be
limited to less crucial operations that, thus, are considered of lower importance by a case study
owner. Nonetheless, the second set of case studies includes access controlled APIs that do require
authentication to be tested, thus mitigating this threat.

Nondeterminism. Our algorithm contains non-deterministic components (e.g., in the fuzzer
of input parameters). For the second set of case studies, we adopted a more accurate experimental
setting and we included multiple executions to control and measure non-determinism. However, a
more extensive and complete experimentation is required, with more case studies, to corroborate
our findings.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 23

8. DISCUSSION ON THE VALIDATION RESULTS

In this section, we discuss the experimental results obtained during the validation of
RESTTESTGEN, distilling some general considerations about the tool and highlighting the
weaknesses we have found in the tested REST APIs. Furthermore, we detail some particular faults
detected in largely adopted APIs (e.g., YouTube and Google Drive).

8.1. Examples of Revealed Faults.

We present now some actual faults detected by RESTTESTGEN while conducting our empirical
validation. All the discovered faults, including the ones not presented in this section, have been
reported the respective owners11.

Internal server error. RESTTESTGEN was able to automatically generate test cases that caused
5XX status codes in several APIs, including YouTube and Google Drive. The operations in the API
of YouTube related to live chats allow to specify which particular chat to operate, with the input
parameter liveChatId. When this parameter contains a value that is not a valid chat ID, we
would expect to receive a response with a 404 status code. Instead, when using invalid IDs, our test
cases obtained a 500 Internal Error. This is, probably, caused by a missing validation of the chat ID.
So, the server code throws an exception when using an incorrect value of chat ID. Listing 5 shows
an example of the JSON body for an HTTP response from YouTube with a 500 status code.

1 {
2 "error":
3 {
4 "code": 500,
5 "message": "Internal error encountered.",
6 "errors":
7 [{
8 "domain": "youtube.api.v3.LiveChatModeratorListResponse.Error",
9 "reason": "LIVE_CHAT_NOT_FOUND"

10 }],
11 "status": "INTERNAL"
12 }
13 }

Listing 5: The body of the YouTube live chat 500 response.

A similar fault can be observed in the Google Drive API, in the operation supposed to
retrieve the list of revisions for a file. The revisions list can be obtained issuing the request GET
/files/{fileId}/revisions, where the path parameter fileId should be replaced by the ID
of the interesting file. When testing this endpoint, RESTTESTGEN could obtain responses with 500
status code, which suggests that some error occurred at server side. However, the body of such
HTTP repose, shown in Listing 6, contains no useful information to guess the exact origin of this
error, because no explanatory message can help debugging.

We hypothesize that the cause of the failure might be either an invalid fileId or the random
values assigned to some parameters. Although the provided fileId was observed in the previous
requests, it might be invalid in the system because of deletions or not yet allocated files. The
Google Drive API, in fact, exposes an endpoint that generates brand new fileIds to be attached
in future file creation requests and RESTTESTGEN might have used one of those. Moreover, some
other parameters of the request, such as quotaUser and pageToken, could also be invalid in the
system (although correctly generated by the Nominal Tester according to the OpenAPI specification)
because guessing appropriate values from scratch is very unlikely.

11We are still waiting for official acknowledgment, but we are confident that we can reference defect’ acknowledgments
on the final version of this paper.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 D. CORRADINI ET AL.

1 {
2 "error":
3 {
4 "code": 500,
5 "message": null
6 }
7 }

Listing 6: The body of the 500 response of the Google Drive list file revisions operation.

Another 500 internal error could be revealed by the Error Tester module of RESTTESTGEN in the
Deutsche Bahn (DB) Fahrplan API. DB is a German railway company, the second-largest transport
company in the world12. The Timetable API (called “Fahrplan” in the API) exposes an endpoint
of the form GET /location/{name}. According to its OpenAPI specification, the name path
parameter accepts a string value corresponding to the name of the location for which to query the
timetables. In one of the malformed requests sent by the Error Tester module, this string field is
replaced with an integer value, as shown below.

GET /fahrplan-plus/v1/location/-66

This makes the server respond with the 500 status code, suggesting some error in the server-side
logic has occurred. The body of the response is the following.

{ "error": { "code": 500, "message": "Internal Server Error" } }

After a deeper investigation of the reports of RESTTESTGEN relative to this operation, including
the results of nominal test cases, we noticed that the operation tries to answer with a list of the
locations whose name better matches the input string. Probably, the server-side search algorithm
raises an exception when integers are provided as input.

Inconsistent Response Content Type. The Response Validation Oracle integrated in
RESTTESTGEN is meant to check that responses are consistent with the schema defined in the
OpenAPI specification. Content Type is among the fields in the schema, and it is meant to specify
how to parse data in the response. Typically, the content type is application/json, which means that
the data in the response are formatted in JSON and they should be parsed using a JSON grammar,
but many more formats are supported (e.g., XML). In the YouTube API, according to its schema,
the operation GET /membershipsLevels should respond with data in JSON format. However,
one of the test cases generated by RESTTESTGEN obtained a 200 status code, and the response
contained JavaScript code instead of the expected JSON data, as shown in Listing 7. Probably, such
response was triggered by the two parameters alt=json and callback=bSrnJNf, asking
for a response in JSON format, inside a callback function named bSrnJNf. This defect may cause
failures (e.g., crashes) on those clients that connect to this service, when they try to parse this
JavaScript response with a JSON grammar.

Access Control. Authentication tokens can have different scopes depending on which resources
they can access (to be decided when generating a token). Indeed, different tokens can be requested
for the same user to access different resources. An API should enforce correct access control and
allow access only to those resources that are authorized by a token.

The response shown in Listing 7 highlights also another defect than inconsistent response content
type. Despite we used a valid authentication token to access the YouTube API, this operation would
require a peculiar authorization scope (prior approval from YouTube) that was not actually granted
to the token that we were using. In fact, other testing scenarios for this operation correctly obtained
responses with 403 status code, i.e., Unauthorized. The case shown in Listing 7, instead, obtained

12https://en.wikipedia.org/wiki/Deutsche Bahn

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 25

a 200 HTTP status code, which is incorrect because the request should have been unauthorized. A
403 code is only mentioned in the response body that is inconsistent with the observed status code.
Our speculation is that the two defects are related, and the incorrect response type causes also an
incorrect response status code.

1 // API callback
2 bSrnJNf(
3 {
4 "error":
5 {
6 "code": 403,
7 "message": "Request had insufficient authentication scopes.",
8 "status": "PERMISSION_DENIED"
9 }

10 }
11);

Listing 7: The body of the 200 response from YouTube containing JavaScript.

Inconsistent Resource Creation. A last defect was exposed by RESTTESTGEN, even if not
captured by its oracles, but manually noticed while inspecting API responses obtained while
generating test cases. The YouTube video upload operation POST /youtube/v3/videos is
supposed to have a media video as resource in the body of the request. However, file attachment is
not supported by the Nominal Tester that, in fact, could never successfully complete video uploads,
and always obtained a 400 status code.

Nevertheless, after the experiment with RESTTESTGEN was concluded, the YouTube Studio
Content page shows a long list (hundreds) of uploaded videos, while we expected an empty list
because, according to their status code, no upload was successful. Our conjecture of a faulty
behavior is corroborated by the evidence that for each video there is no thumbnail, the title is
“unknown” and the status is set as “Processing will begin shortly”. The same list is still visible
many days after the testing session was completed.

8.2. General Considerations

Based on the experimental results, we could formulate these subjective considerations.

Urgent need for automated testing support. When assessing RESTTESTGEN, we discovered
faults and defects that affected even services published by reputable software companies (e.g.,
Google), that are supposed to invest and spend substantial effort in software quality enforcement.
This highlights how hard it is to avoid mistakes in the implementation of REST APIs, even when
effort is spent on quality control. Probably, this is due to the peculiar nature of this kind of software,
that is more abstract and intangible than more traditional software artifacts (e.g., smartphone apps
or web applications), or just because mature automated testing support is available for traditional
software but not for APIs, for instance to automatically generate test cases to help and reveal faults.

There is an urgent need for automated approaches and tool support to help developers in
validating the implementation of REST APIs, to identify defects in the exposed behavior and to
check that the actual service is consistent with the published interface. Deviations from the declared
interface might, in fact, cause problems to the client software that relies on defective services, e.g.,
because of failure in parsing malformed responses.

Robustness on malformed input. In some cases, REST APIs try to be robust and accept even
malformed input data coming with service requests. For instance, a permissive service might accept
an alphanumeric value when a numeric value was expected, simply dropping alphabetic characters
and then converting the string to a number. Alternatively, a service might accept a numeric value
out of the allowed range, by truncating a too large value to the upper limit of the range. While
this strategy might be considered a robust service implementation, it clearly deviates from the
documented (OpenAPI) interface and it might permit incorrect clients to proliferate. Instead,

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 D. CORRADINI ET AL.

enforcing the correctness of input data, e.g., by throwing an error on malformed requests, would
make defective clients fail immediately. Consequently, developers would be forced to revise and fix
their defective clients.

Empty result instead of error. Query-oriented APIs often adopt a specific strategy for hiding
problems related to input data in service requests. When an input field is malformed, e.g., out of
the documented domain, instead of responding with an error code, the service simply discards
the flawed field and replaces it with an empty string or with a null value. For instance, a music
streaming API that receives the request for a malformed playlist-id might respond with an empty
list of songs, rather than with an error message about the wrong request. For the service consumer
software, a clear and informative error message would be preferable than a silent error. In fact,
while both a silent and an evident error deliver no service to the end-user, at least the evident error
is informative of the problem cause and might be helpful towards its solution (e.g., for filling a
costumer support claim).

Security requirements. Considering the two oracles currently available in RESTTESTGEN, most
of the faults revealed in the experimental investigation are related to unexpected status codes or to
malformed responses. However, some scenarios highlighted the need to search for APIs defects
also according to a security viewpoint. In fact, we noticed a potential defect related to access
control policies, where an API seems to accept requests that missed the required permissions.
We might have just scratched the surface of a much larger problem, that shall require further
investigation. Security related requirements might deserve appropriate and customized approaches
to be thoroughly tested, that go beyond a general purpose testing tool. It is part of our research
agenda to investigate novel oracles and testing scenario generation approaches able to reveal security
defects and vulnerabilities in REST APIs.

9. RELATED WORK

The specificity of REST APIs attracted the attention of the testing community only recently. From
the industry side, we can find some commercial test authoring tools [7,14,21,33,36,38], which help
developers to manually write tests that can be then automatically run by the tool. These approaches
have a different goal from RESTTESTGEN, whose aim is to test REST APIs without manual efforts.

From a pure research standpoint, novel approaches to the (semi-)automatic tests generation
for REST APIs have been proposed, that can be divided in black-box approaches and white-box
approaches. A white-box perspective in automated testing relies on the availability of APIs source
code to perform static analysis, or to instrument it to collect execution traces and metric values. A
black-box approach, instead, does not require any source code, which is often the case when using
closed source components and libraries. However, a black-box access to the REST API lacks much
information potentially useful for the automatic test case generation.

Fuzzers [1, 15, 16, 40, 41] are black-box testing tools that generate new tests starting from
previously recorded API traffic: they fuzz and replay new traffic in order to find bugs. Some of
these also exploit the OpenAPI specification of the service under test [15, 16, 40]. Godefroid et
al. [17] propose a methodology to fuzz body payloads intelligently using JSON body schemas
(i.e., those defined in the OpenAPI specification) and advanced fuzzing rules, in order to extend
fuzzing engines used in testing tools like RESTler [4]. This applies also to RESTTESTGEN, since
it leverages a fuzzer in order to generate input values for API requests. In our approach, the fuzzer
implements two strategies: response dictionary and random values. Extending the fuzzing engine
with the methodology proposed by Godefroid et al. [17] will, in principle, increase the test coverage
for our tool.

The most related work is, probably, by Ed-douibi et al. [12]. They propose a model-based
approach for black-box automatic test case generation of REST APIs. A model is extracted from
the OpenAPI specification of a REST API, to generate both nominal test cases (with input values
that match the model) and faulty test cases (with input values that violate the model). However,

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 27

they do not explicitly model the dependencies among operations, while we define the Operation
Dependency Graph to this aim. Moreover, we dynamically update this graph to decide the most
appropriate operation for the next test. Additionally, we integrate the response dictionary in a series
of heuristics to automate input data generation.

Another limitation of their approach is that it only applies on read-only operations, called safe
operations by the authors, because they meant to avoid operations with side effects on the API state.
Conversely, our approach explicitly models side effects of operations (i.e., the CRUD semantics, see
Section 5.1) and exploits them to decide the order in which to test operations.

Similarly to our approach, also Atlidakis at al. [4] model the dependencies among the operations
in a REST API to elaborate an appropriate ordering. However, while they use dependencies to pre-
compute the order to test operations (e.g., using Breadth-first search or random walk), we propose
to compute the next operations to test dynamically, based on the outcome of the operations that
could be tested so far. Martin-Lopez et al. [30] present a domain-specific language (IDL) for the
specification of dependencies among input parameters in web services. Then, they translate an
IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of
IDL specifications using standard CSP-based reasoning operations. Unfortunately, the design of
the (IDL) specification requires a manual intervention, so it is not suitable for the integration with
fully-automatic testing tools like our RESTTESTGEN.

Another similar approach is the work of Karlsson et al. [23], in which the authors propose a black-
box tool (QuickREST) aiming at automatically exploring the behavior of a REST API. Alongside
the exploration, their tool is able to test services for a wide scope of properties, not only faults
detection. Indeed, their approach is property-based, and relies on the OpenAPI specification of the
service under test. They use the status code as oracle, with a further check validating that payloads
received actually conform to what is described the OpenAPI specification. This is basically what
we do in RESTTESTGEN with the two oracles of the Nominal Tester module presented in Section
5. QuickREST also generates random parameter values and sequences of operations that leverages
previously returned results to perform stateful operations, but they do not exploit dependencies
among operations, as we do in RESTTESTGEN. Furthermore, their test inputs generation, even if
guided by the specification, is completely random. In RESTTESTGEN, we also exploit a response
dictionary strategy, in order to generate more accurate input values.

Segura et al. [37] propose a complete different black-box approach, where the oracle is based on
metamorphic relations among requests and responses. For instance, they send two queries to the
same REST API, where the second query has stricter conditions than the first one (e.g., by adding
an additional constraint). The result of the second query should be a proper subset of entries in the
result of the first query. When the result is not a sub-set, the oracle reveals a defect. However, this
approach only works for search-oriented APIs. Moreover, this technique is only partially automatic,
because the user is supposed to manually identify the metamorphic relation to exploit and what
input parameters to test.

In addition to pure functional testing approaches, works in the field of security testing are starting
to rise [5, 25, 26, 28], in order to find potential security vulnerabilities in REST APIs. In particular,
Mai et al. [28] use metamorphic relations to address the oracle problem: 22 system-agnostic
metamorphic relations are defined in order to automate security testing in Web systems. Atlidakis et
al. [5] introduce four security rules that capture desirable properties of REST APIs. They also show
how a REST API fuzzer can be extended with active property checkers that automatically test and
detect violations of these rules. Luo et al. [25, 26] focus on access control. In their first work [25],
their aim is to simplify the privilege partitioning problem into a classification problem of RESTful
functions. They propose a REST API classification approach (RestSep) based on genetic algorithms.
In their second work [26], they propose a policy language (RestPL) to express authorization policies
for REST APIs. A RestPL policy can be automatically generated from an actual request, which helps
mitigating users intervention. Security is surely an import aspect that testing tools should address. At
the moment, RESTTESTGEN does not provide specific mechanisms to enforce security properties;
we plan to extend the testing capabilities of our tool towards the security direction as a future work.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 D. CORRADINI ET AL.

In the companion paper [44], we presented an earlier version of our approach to automatically test
REST APIs with a black-box approach (e.g., authentication was not supported). In the present paper,
we extend the previous tool implementation, we refine the experimental settings and we extend the
empirical validation by including access controlled APIs.

White-box approaches are complementary to ours, because they assume to have access to the
source code of the API to test. Arcuri [2] propose a fully automated white-box testing approach,
to generate test cases with evolutionary algorithms. Similarly to ours, Arcuri’s approach requires
the API specification (i.e., the OpenAPI specification). Differently than us, his approach also
requires access to the Java bytecode of the REST API to test. In fact, the objective is to achieve
high code coverage. This approach has been implemented and available as a tool prototype called
EvoMaster. In another work, Arcuri et al. [3] extend EvoMaster introducing a series of novel
testability transformations aimed at providing guidance in the context of commonly used API calls.

Many approaches have been proposed so far to test Web-services, based on their WSLD
specification [6, 22, 24, 27, 29, 32, 39, 43, 46]. An extensive survey of techniques for automated
testing of Web-services has been conducted and reported by Bozkurt et al. [8] and by Canfora
et al. [9, 10]. Despite similar objectives, Web-services and REST APIs are conceived on top of
different interaction models. Web-services are mostly based on SOAP [20], a message oriented
model (mainly meant to overcome limitations of previous solutions, such as CORBA, Java/RMI,
DCOM), while REST APIs rely on the concept of web resources accessible through stateless
operations [13].

For these reasons, white-box approaches and testing tools for Web-services are not directly
comparable with our RESTTESTGEN.

Regarding test coverage, Martin-Lopez et al. [31] propose ten coverage criteria to assess the
adequacy of REST APIs testing approaches in this context, to automatically measure and compare
their effectiveness. They then arrange these criteria into eight test coverage levels (TCLs) of
increasing strength. This enables the automated assessment and comparison of testing techniques
according to the overall coverage and TCL achieved by their generated test suites. In the present
work, we do not measure the coverage of our testing approach, we just assess the effectiveness of
RESTTESTGEN on the empirical results given by the validation (Section 7). We plan to adopt the
metrics introduced by Martin-Lopez et al. [31] as a future extension.

Finally, regression testing has been applied also in the context of REST APIs, mostly in
commercial tools [33, 36, 38]. However, these tools do not generate tests automatically and they
do not perform differential testing. Godefroid et al. [18], instead, use differential testing applied to
REST APIs in order to compare various client-service configurations. Regression testing is, at the
moment, out of scope of our tool RESTTESTGEN.

10. CONCLUSION

In this paper we present RESTTESTGEN, a novel black-box approach for the automatic generation
of REST APIs test cases. To model data dependencies among the operations in a REST API we
exploit the Operation Dependency Graph (ODG). This allows our approach to dynamically decide
in which order to test operations, such that the input data required to test an operation are available
from the output data of those already tested.

The tool is composed by two distinct testing modules: the Nominal Tester, that automatically
generates test cases related to nominal execution scenarios; and the Error Tester, that automatically
generates test cases related to error management scenarios. Both modules rely on two oracles to
assess if the test case generation is successful, one based on the obtained status code and the other
based on the match with response schema declared in the specification (OpenAPI).

We validated our tool on more than one hundred of real-world REST APIs, supporting
authentication. The empirical assessment showed that the proposed approach is effective in testing
real-world services, and in detecting a considerable amount of implementation defects. Indeed,
during the validation we were able to spot some remarkable bugs in services deployed by important
software companies, such as Google.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 29

We empirically evaluated the contribution of the ODG, which significantly improves the
capabilities of RESTTESTGEN in testing REST APIs, especially those having a large number of
data dependencies among operations.

As future work, we plan to extend the testing capability of RESTTESTGEN to try and assess the
presence of security defects in the implementation of REST APIs, such as the API vulnerabilities
pointed out by the OWASP Foundation [34]. This would require to attempt black-box proof-of-
concept attacks and to define brand new oracles, capable to detecting successful attacks.

ACKNOWLEDGEMENT

This paper has been partially supported by project MIUR 2018-2022 “Dipartimenti di Eccellenza”.

REFERENCES

1. API Fuzzer. API Fuzzer. https://github.com/KissPeter/APIFuzzer.
2. A. Arcuri. RESTful API automated test case generation with Evomaster. ACM Transactions on Software

Engineering and Methodology (TOSEM), 28(1):3, 2019.
3. A. Arcuri and J. P. Galeotti. Testability transformations for existing APIs. In 13th IEEE International Conference

on Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020, pages 153–163.
IEEE, 2020.

4. V. Atlidakis, P. Godefroid, and M. Polishchuk. RESTler: Stateful REST API fuzzing. In Proceedings of the 41st
International Conference on Software Engineering, ICSE ’19, pages 748–758, Piscataway, NJ, USA, 2019. IEEE
Press.

5. V. Atlidakis, P. Godefroid, and M. Polishchuk. Checking security properties of cloud service REST APIs. In
13th IEEE International Conference on Software Testing, Validation and Verification, ICST 2020, Porto, Portugal,
October 24-28, 2020, pages 387–397. IEEE, 2020.

6. X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based automatic test case generation for web services testing. In
IEEE International Workshop on Service-Oriented System Engineering (SOSE ’05), pages 207–212. IEEE, 2005.

7. Borvid. HttpMaster. http://www.httpmaster.net.
8. M. Bozkurt, M. Harman, and Y. Hassoun. Testing web services: A survey. Technical report, Department of

Computer Science, King’s College London, Tech. Rep. TR-10-01, 2011.
9. G. Canfora and M. Di Penta. Testing services and service-centric systems: Challenges and opportunities. IT

Professional, 8(2):10–17, 2006.
10. G. Canfora and M. Di Penta. Service-oriented architectures testing: A survey. In Software Engineering, pages

78–105. Springer, 2007.
11. J. Cohen. Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Earlbaum Associates,

Hillsdale, NJ, 1988.
12. H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot. Automatic generation of test cases for REST APIs: A specification-

based approach. In 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC),
pages 181–190. IEEE, 2018.

13. R. T. Fielding. Architectural styles and the design of network-based software architectures, volume 7. University
of California, Irvine Doctoral dissertation, 2000.

14. A. Fortress. API Fortress. http://apifortress.com.
15. Fuzz-Lightyear. Fuzz-Lightyear. https://github.com/Yelp/fuzz-lightyear.
16. Fuzzy-Swagger. Fuzzy-Swagger. https://github.com/namuan/fuzzy-swagger.
17. P. Godefroid, B. Huang, and M. Polishchuk. Intelligent REST API data fuzzing. In P. Devanbu, M. B. Cohen,

and T. Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages 725–
736. ACM, 2020.

18. P. Godefroid, D. Lehmann, and M. Polishchuk. Differential regression testing for REST APIs. In S. Khurshid
and C. S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, USA, July 18-22, 2020, pages 312–323. ACM, 2020.

19. R. J. Grissom and J. J. Kim. Effect sizes for research: A broad practical approach. Lawrence Earlbaum Associates,
2nd edition edition, 2005.

20. M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, and M. Gudgin. SOAP version 1.2 part 1: Messaging
framework. W3C REC REC-soap12-part1-20030624, June, pages 240–8491, 2003.

21. J. Haleby. REST Assured. http://rest-assured.io/.
22. S. Hanna and M. Munro. Fault-based web services testing. In Fifth International Conference on Information

Technology: New Generations (itng 2008), pages 471–476. IEEE, 2008.
23. S. Karlsson, A. Čaušević, and D. Sundmark. QuickREST: Property-based test generation of OpenAPI-described

RESTful APIs. In 2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST), pages 131–141, 2020.

24. Y. Li, Z.-a. Sun, and J.-Y. Fang. Generating an automated test suite by variable strength combinatorial testing for
web services. Journal of computing and information technology, 24(3):271–282, 2016.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 D. CORRADINI ET AL.

25. Y. Luo, T. Puyang, X. Sun, Q. Shen, Y. Yang, A. Ruan, and Z. Wu. RestSep: Towards a test-oriented privilege
partitioning approach for RESTful APIs. In I. Altintas and S. Chen, editors, 2017 IEEE International Conference
on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017, pages 548–555. IEEE, 2017.

26. Y. Luo, H. Zhou, Q. Shen, A. Ruan, and Z. Wu. RestPL: Towards a request-oriented policy language for arbitrary
RESTful APIs. In S. Reiff-Marganiec, editor, IEEE International Conference on Web Services, ICWS 2016, San
Francisco, CA, USA, June 27 - July 2, 2016, pages 666–671. IEEE Computer Society, 2016.

27. C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai. WSDL-based automated test data generation for web service. In 2008
International Conference on Computer Science and Software Engineering, volume 2, pages 731–737. IEEE, 2008.

28. P. X. Mai, F. Pastore, A. Goknil, and L. Briand. Metamorphic security testing for web systems. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST), pages 186–197, 2020.

29. E. Martin, S. Basu, and T. Xie. Automated robustness testing of web services. In Proceedings of the 4th
International Workshop on SOA And Web Services Best Practices (SOAWS 2006), 2006.

30. A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes. Specification and automated analysis of inter-
parameter dependencies in web APIs. IEEE Transactions on Services Computing, pages 1–1, 2021.

31. A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. Test coverage criteria for restful web apis. In Proceedings of
the 10th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation,
A-TEST 2019, pages 15–21, New York, NY, USA, 2019. Association for Computing Machinery.

32. J. Offutt and W. Xu. Generating test cases for web services using data perturbation. ACM SIGSOFT Software
Engineering Notes, 29(5):1–10, 2004.

33. Optimizory Technologies Pvt. Ltd. vREST. https://vrest.io/.
34. OWASP. API Security Top 10 2019. https://owasp.org/www-project-api-security/.
35. C. Pahl and P. Jamshidi. Microservices: A systematic mapping study. In Proceedings of the 6th International

Conference on Cloud Computing and Services Science (CLOSER 2016), pages 137–146, 2016.
36. Postman, Inc. Postman. https://www.getpostman.com/.
37. S. Segura, J. Parejo, J. Troya, and A. Ruiz-Cortés. Metamorphic testing of RESTful web APIs. IEEE Transactions

on Software Engineering, 44(11):1083–1099, 2018.
38. SmartBear Software. SoapUI. https://www.soapui.org/.
39. H. M. Sneed and S. Huang. WSDLTest - A tool for testing web services. In 2006 Eighth IEEE International

Symposium on Web Site Evolution (WSE ’06), pages 14–21. IEEE, 2006.
40. Swagger-Fuzzer. Swagger-Fuzzer. https://github.com/Lothiraldan/swagger-fuzzer.
41. TnT-Fuzzer. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer.
42. M. Torchiano. effsize: Efficient Effect Size Computation, 2015. R package version 0.5.5.
43. W.-T. Tsai, R. Paul, W. Song, and Z. Cao. Coyote: An XML-based framework for web services testing. In 7th IEEE

International Symposium on High Assurance Systems Engineering, 2002. Proceedings., pages 173–174. IEEE,
2002.

44. E. Viglianisi, M. Dallago, and M. Ceccato. RESTTESTGEN: Automated black-box testing of RESTful APIs. In
2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), pages 142–152,
2020.

45. P. Willett. The porter stemming algorithm: then and now. Program, 40(3):219–223, 2006.
46. W. Xu, J. Offutt, and J. Luo. Testing web services by XML perturbation. In 16th IEEE International Symposium

on Software Reliability Engineering (ISSRE ’05), pages 10–pp. IEEE, 2005.
47. M. Zhang, B. Marculescu, and A. Arcuri. Resource-based test case generation for RESTful web services. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, pages 1426–1434, New York,
NY, USA, 2019. ACM.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

AUTOMATED BLACK-BOX TESTING OF NOMINAL AND ERROR SCENARIOS IN RESTFUL APIS 31

APPENDIX

This appendix reports all the case studies used in the experimental validation of RESTTESTGEN.

Table X. List of the 87 free access APIs tested during the first experiment.

API name API URL

Afterbanks https://www.afterbanks.com/
APIs.guru https://api.apis.guru/v2/
Auckland Museum http://api.aucklandmuseum.com
CognitiveServicesManagementClient https://management.azure.com
Power BI Embedded Management Client https://management.azure.com
Radio & Music Services https://rms.api.bbc.co.uk/
BC Laws http://www.bclaws.ca/civix
Beanstream Payments https://www.beanstream.com/api/v1
Bhagavad Gita http://bhagavadgita.io
BikeWise API v2 https://bikewise.org/api
Cnab Online https://cnab-online.herokuapp.com/v1
College Football Data https://api.collegefootballdata.com/
EU BON UTIS http://cybertaxonomy.eu/eu-bon/utis/1.0
Open Skills http://api.dataatwork.org/v1
DatumBox http://api.datumbox.com/
Fahrplan-Free https://api.deutschebahn.com/freeplan/v1
dweet.io https://dweet.io/
U.S. EPA ECHO https://ofmpub.epa.gov/echo
Europeana http://www.europeana.eu/api
ExaVault https://api.exavault.com/
Flickr API Schema https://api.flickr.com/services
FraudLabs Pro Fraud Detection https://api.fraudlabspro.com
FraudLabs Pro SMS Verification https://api.fraudlabspro.com
bng2latlong https://api.getthedata.com
Android Device Provisioning Partner https://androiddeviceprovisioning.googleapis.com/
Hangouts Chat https://chat.googleapis.com/
SheetLabs vs https://sheetlabs.com/IND/vs
SlideRoom API V2 https://api.slideroom.com
SpectroCoin Merchant https://spectrocoin.com/api/merchant/1
City of Surrey Open511 http://data.surrey.ca/open511
City of Surrey Traffic Loop Count API. http://gis.surrey.ca:8080/fmedatastreaming/TrafficLoopCount
Swagger Generator https://generator.swagger.io/api
Available API endpoints https://www.versioneye.com/api/v2
VocaDB https://vocadb.net
CitySDK Linked Data http://api.citysdk.waag.org/
Inventory https://developer.walmart.com/inventoryProxy/inventory-api-doc-app/rest
Item https://developer.walmart.com/proxy/item-api-doc-app/rest
Orders https://developer.walmart.com/orderProxy/order-api-doc-app/rest
Price https://developer.walmart.com/priceProxy/price-api-doc-app/rest
WeGA https://weber-gesamtausgabe.de/api/v1
XKCD http://xkcd.com/
Mobility https://developer.o2.cz/mobility/sandbox/api
Socio-demo https://developer.o2.cz/sociodemo/sandbox/api
ODWeather http://api.oceandrivers.com/
OpenALPR Cloud https://api.openalpr.com/v2
Swagger2OpenAPI Converter https://openapi-converter.herokuapp.com/api/v1
Open Targets Platform http://api.opentargets.io/v3
OSF APIv2 Documentation https://api.test.osf.io/v2
PI Web API 2017 Swagger Spec https://devdata.osisoft.com/piwebapi
PayRun.IO https://api.test.payrun.io/
Postmark https://api.postmarkapp.com/
posty API http://posty-api.herokuapp.com/
Refuge Restrooms https://www.refugerestrooms.org/api
Reloadly Topup https://topups.reloadly.com/
RiteKit https://api.ritekit.com/
KeyServ Solutions https://keyserv.solutions
LanguageTool https://languagetool.org/api/v2
Magento Enterprise http://t213.vg/rest/default
MailboxValidator Free Email Checker https://api.mailboxvalidator.com/
MailboxValidator Disposable Email Checker https://virtserver.swaggerhub.com/mailboxvalidator/MailboxValidator-Disposable-Email-Checker/1.0.0
MailboxValidator Email Validation https://api.mailboxvalidator.com
Mandrill https://mandrillapp.com/api/1.0/
Miataru http://service.miataru.com/v1
TrainingApi https://southcentralus.api.cognitive.microsoft.com/customvision/v1.2/Training
Image Moderation https://moderatecontent.com/api
Moon by Ai Weiwei & Olafur Eliasson http://moonmoonmoonmoon.com/
Native Ads Publisher https://api.nativeads.com
Advicent.FactFinderService https://demo.uat.naviplancentral.com/factfinder
Neblio REST API Suite https://ntp1node.nebl.io/
Safe Browsing https://safebrowsing.googleapis.com/
Jumpseller API https://api.jumpseller.com/v1
NSIDC Web Service Documentation Index http://nsidc.org/api/dataset/2
SheetLabs rv https://sheetlabs.com/IND/rv
BC Geographical Names Web Service - https://apps.gov.bc.ca/pub/bcgnws
BC Gov News API Service 1.0 https://news.api.gov.bc.ca/
DriveBC’s Open511 http://api.open511.gov.bc.ca/
Greenwire Public https://greenwire.greenpeace.org/api/public
Discovery Market Research https://discovery.gsa.gov/
HackathonWatch http://www.hackathonwatch.com/api/
Handwrytten https://api.handwrytten.com/v1
Healthcare https://www.healthcare.gov/
HHS Media Services https://api.digitalmedia.hhs.gov/api/v2
shinobiapi https://api.hillbillysoftware.com
Icons 8 https://api.icons8.com/
Infermedica https://api.infermedica.com/v2
IP2Location IP Geolocation https://api.ip2location.com
IP2Proxy Proxy Detection https://api.ip2proxy.com

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

32 D. CORRADINI ET AL.

Table XI. List of the 20 public access controlled APIs tested during the second experiment.

API name API URL

Airport & City Search https://test.api.amadeus.com/v1
Airport On-Time Performance https://test.api.amadeus.com/v1
FireBrowse Beta API http://firebrowse.org/api/v1
Bandsintown API https://rest.bandsintown.com/
COVID19 Stats http://corona-virus-stats.herokuapp.com/api/v1
Freesound http://www.freesound.org/apiv2
Geneea Natural Language Processing https://api.geneea.com/
Google Calendar API https://www.googleapis.com/calendar/v3
YouTube Data API v3 https://youtube.googleapis.com/
Points of Interest https://test.api.amadeus.com/v1
Stationsdatenbereitstellung https://api.deutschebahn.com/stada/v2
Studio Ghibli API https://ghibliapi.herokuapp.com/
Transport for London: Vehicle https://api.digital.tfl.gov.uk/Vehicle
Transport for London: BikePoint https://api.digital.tfl.gov.uk/BikePoint
Transport for London: Occupancy https://api.digital.tfl.gov.uk/Occupancy
Deutsche Bahn: Fahrplan https://api.deutschebahn.com/fahrplan-plus/v1
Spotify https://api.spotify.com/v1
ExchangeRate-API https://api.exchangerate-api.com/v4
Tours and Activities https://test.api.amadeus.com/v1
Google Drive API https://www.googleapis.com/drive/v3

Table XII. List of the 9 private access controlled APIs tested during the second experiment.

API name API GitHub repository

Widgets Spa Server https://github.com/emrachid/widgets-spa-server
SAFRS https://github.com/thomaxxl/safrs
RealWorld App https://github.com/gothinkster/laravel-realworld-example-app
CRUD-NodeJS-Sequelize-Swagger-MySQL https://github.com/lucianopereira86/CRUD-NodeJS-Sequelize-Swagger-MySQL
OrderAPI https://github.com/jainsiddharth21/OrderAPI
Users: Express + Routing-Controllers + TypeORM https://github.com/mateusconstanzo/express-typeorm-typescript
REST API IN SLIM PHP https://github.com/maurobonfietti/rest-api-slim-php
ToggleAPI https://github.com/pdonatilio/ToggleAPI
spring-boot-docker-rest-api https://github.com/abhishek70/spring-boot-docker-rest-api

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2010)
Prepared using stvrauth.cls DOI: 10.1002/stvr

