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Abstract. The ever growing pervasiveness of software systems in mod-
ern days technology results in an increasing need of software/program
correctness proofs. The latter, allow developers to spot software failures
before production, hence preventing potentially catastrophic repercus-
sions on our society, as in the case of safety-critical infrastructures.
Unfortunately, correctness proofs may fail (even when software is ac-
tually correct) due to program analysis imprecision: program analysis
sacrifices precision in order to gain decidability. In standard abstract
interpretation-based static analyses, such imprecision is “measured” in
terms of completeness of the chosen observation (i.e., of the chosen ab-
stract domain) w.r.t. the programming language semantics. In this set-
ting, fixed the language language, it is crucial to have decidable tech-
niques to determine whether the chosen abstraction is sufficiently precise
to analyze the program under consideration.
In this paper, we characterize abstract domain precision from a novel
point of view, providing a formal framework for characterizing and (stati-
cally) verifying abstract domain precision, that can be adopted also in the
case of “weakened”, i.e., Galois Connection-less, static analysis frame-
works. Distinctive examples adopting such frameworks are the Convex
Polyhedra and Automata domains, for which standard approaches to
reason about analysis precision (i.e., completeness) cannot be applied.

Keywords: Abstract interpretation, Abstract Non-Interference, Com-
pleteness, Hyperproperties, (Hyper) Static analysis.

1 Introduction

Software-driven technology is becoming more and more pervasive in our everyday
life. For this reason, software failures deeply impact our society (think of safety-
critical infrastructures, in which software failures may have serious consequences
on public safety). This implies that it is extremely important to be confident in
what programs do. Dijkstra [15] remarked that “the only effective way to raise
the confidence level of a program significantly is to give a convincing proof of its
correctness”. Program analysis is a prominent method supporting programmers
and software engineers in producing reliable software, and abstract interpreta-
tion [10, 11] is a general framework enabling to design correct-by-construction
program analysis tools. An abstract interpreter provides an approximate sound
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semantics of a programming language, by computing programs on an (approx-
imate) abstract domain. In this context, soundness here means that all true
alarms are captured and reported by the analysis. Of course, false alarms may
be reported as well, and their presence is in general due to the need of program
analysis to make decidable the computation of a semantic program property of
interest (e.g., variable overflows, formal specifications verification, etc.). When
false alarms are not generated, we say the analysis is precise, or complete. There
is a wide literature about completeness, that spans from the systematic refine-
ment of abstract domains for achieving completeness [25] to the definition of
weakened forms of completeness (for instance, verifying completeness locally,
on single input properties [5], or by accepting a bounded error in the abstract
computation [6]). However, all these works build up on the archetypal abstract
interpretation framework adopting Galois connections between concrete and ab-
stract semantics [10, 11]. Nevertheless, there are several static analyses developed
in weaker frameworks of abstract interpretation [12], where some hypotheses are
relaxed. This led, for instance, to the development of powerful numerical static
analyzers implementing Convex Polyhedra [13], or abstract domains exploited
in machine learning for neural networks verification [1], such as Zonotope [26].
In these relaxed abstract interpretation frameworks, completeness has not been
formally studied, even if the absence of false alarms remains surely a crucial
point to investigate.

The whole literature concerning abstract domain completeness characteriza-
tion and enforcing, also its weakened forms, is strongly based on the standard,
previous called archetypal, framework of abstract interpretation, that is based on
Galois connections (or, equivalently, on upper closure operators). In particular,
this framework assumes the existence of the best correct approximation (bca for
short) of each concrete element. In the present paper, we reason about complete-
ness in a weakened framework, where the bca existence assumption (and the need
of Galois connections) is relaxed [12]. In this new, more general, framework we
provide a characterization of completeness, together with effective verification
techniques. This allows to characterize and verify completeness even in the case
of Galois connection-less abstract interpretation.

Paper contribution. We first propose a possible formalization for a weakened
abstract interpretation framework (Sect. 3), generalizing the standard one to
abstract domains not modeled by means of Galois connections. Then, we exploit
its strong correlation with Abstract Non-Interference in order to characterize ab-
stract domain completeness. Abstract Non-Interference (ANI for short) has been
introduced in the context of language-based security as a non-interference policy
between observable properties [18, 31], but it is a much more general property
of computations [23]. In literature, it has been observed that ANI (in all its dif-
ferent variants) can be modeled as a completeness problem [21, 20], allowing to
exploit completeness transformers, defined in the standard abstract interpreta-
tion framework, for deeper understanding ANI in the context of language-based
security. However, in [21, 20], the authors consider a security-driven notion of
ANI, let us call it secANI, where data is partitioned into private and public, and
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variations of the private input must not affect a property of the public output.
Then, they prove that any secANI policy π for a program P can be formulated
as a completeness problem for P w.r.t. specific abstractions derived from those
defining π. In this paper, we follow the opposite direction: we prove that any
completeness problem C for a program P can be formulated as an ANI (not just
secANI) property for P , defined in terms of the abstractions considered in C
(Sect. 4). This becomes particularly useful when we move towards the weaker
abstract interpretation framework [12]. Indeed, the completeness results of [25]
are built on top of the standard abstract interpretation framework, based on
Galois connections, while here we relax such assumption, making our contribu-
tion a strict generalization of [25]. Moreover, this relation allows us to adapt the
deductive approach defined for ANI [19, 22] in order to cope with completeness,
providing a logic system for deducing completeness properties (Subsect. 5). Here,
the contribution consists in generalizing the proof system provided in [19, 22] to
deal with generic non-interference properties, not necessarily splitting data in
public and private.

Finally, we provide an effective method to verify completeness, by exploit-
ing a hyper static analysis [29], or hyperanalysis (Sect. 6). The latter, has been
developed to verify hyperproperties and, in particular, to verify ANI (that is an
hyperproperty). In this way, we can prove that the completeness property of the
abstract domains is a hyperproperty of program semantics, and therefore it can
be analyzed and verified (even if in restricted versions) by means of an hyperanal-
ysis. Indeed, [32] provides a general methodology for verifying hyperproperties
by means of Abstract Interpretation. Here, we show how to define an effective
(hyper) static analysis, based on abstract interpretation, making completeness
verification decidable.

2 Background

If S is a set, ℘(S ) denotes the powerset of S . If f : S → T is a function, we often
abuse notation by calling f also its additive lifting f : ℘(S ) → ℘(T ) to sets of
values: f (X ) ,

{
f (x )

∣∣ x ∈ X ⊆ S
}

. If f : S → T and g : T → U , we denote
by g ◦ f (or simply gf ) their composition. If f : S → S , and n ∈ N we define
f n : S → S inductively as: f 0 , idS (the identity on S ); and f n+1 , f ◦ f n .

In ordered structures (e.g., lattices) L we use ≤L to denote its partial order
relation, ∨L to denote its least upper bound (lub), ∧L to denote its greatest lower
bound (glb), >L to denote its top element and ⊥L to denote its bottom element1.
A function f on complete lattices is additive if it preserves arbitrary lubs (co-
additivity is dually defined). The least fixpoint of f : C → C on a poset C ,
when it exists, is denoted lfp f . If f is (Scott)continuous on a complete lattice,
then lfp f =

∨
n∈N f n(⊥).

If S ⊆ P then ↓S , {x ∈ P | ∃y ∈ S . x ≤ y}. We will often denote f ({x})
as f (x ) and ↓{x} as ↓x .

1 We avoid the pedex when the structure is clear form the context or it is not relevant.
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2.1 Abstract Interpretation

Abstract interpretation [10, 11] is a formal framework for approximating pro-
grams semantics, defined in terms of a concrete domain C and an abstract do-
main A of C . Given complete lattices C and A, a pair of functions α : C → A and
γ : A→ C forms a Galois connection (GC for short) if for any x ∈ C and y ∈ A
we have α(x ) ≤A y ⇔ x ≤C γ(y). In this case, α (resp. γ) is the abstraction/left
adjoint (resp. concretization/right adjoint), and it is additive (resp. co-additive).
Co-additive functions f admits left adjoint f − , λx .

∧{
y
∣∣ x ≤ f (y)

}
. An up-

per closure operator (uco for short) ρ : P → P on a poset P is monotone, idem-
potent, and extensive (i.e., ∀x ∈ P . x ≤P ρ(x )). If α◦γ = idA then the GC forms
a Galois insertion (GI for short) and γ ◦α is an uco. Let us denote by Abs(C ) the
class of abstract domains (GI or uco) of C . In particular, we denote it by Aα,γ or
by Aρ depending on what we want to make explicit. The disjunctive completion

of a domain is defined as:
b

(ρ) ,
⊔{η ∈ Abs(C ) | η v ρ ∧ η is additive}. A

closure η is called partitioning [35] if η = P(η), where P(η) ,
b

({[x ]η | x ∈ S}),
with [x ]η , {y | η(x ) = η(y)}, is the most concrete closure inducing the same
partition of η.

Soundness and Completeness. Given an abstract domain Aα,γ ∈ Abs(C ) and
a concrete function f : C → C , an abstract function f A : A → A is a sound
approximation of f when α ◦ f ≤A f A ◦α. The best correct approximation (bca

for short) of f in A is the function f
A

, α◦ f ◦γ. Any possible approximation of
f is less precise or as precise as the bca of f .

The abstract function f A is a complete [11, 25] approximation of f on A if
α ◦ f = f A ◦ α. An abstract domain A is called complete for f if there exists a
complete approximation f A of f . Completeness of f A intuitively means that f A

is the most precise approximation of f . Completeness can be characterized also
in terms of uco. Let Aρ ∈ Abs(C ), then A is a complete abstraction for f if
ρ ◦ f ◦ ρ = ρ ◦ f . This implies that completeness is a property of the abstract
domain, since if there exists a complete approximation of f , then the bca is
itself complete. Abstract domains can be made complete [25]. In a more general
setting, let f : D → C be a function on complete lattices D and C (potentially
different), and Aρ ∈ Abs(C ), Aη ∈ Abs(D) be abstractions, respectively, of
input and output domains. In this case, we say that 〈ρ, η〉 is a pair of complete
abstract domains for f if ρ ◦ f ◦η = ρ ◦ f . A pair of domain transformers can be
associated with such completeness problem. We follow [16, 24] by defining domain
refinement τr and simplification τs as any monotone function τr , τs : Abs(C )→
Abs(C ) such that X ⊆ τr (X ) and τs(X ) ⊆ X , respectively. In [25], a constructive
characterization of the most abstract refinement, called complete shell, and of
the most concrete simplification, called complete core, of any domain, making it
complete, for a given continuous function f , is given as a solution of a simple
domain equation. Consider the following operators on closures:

Rf , λX .M(
⋃

y∈X max(f −1(↓y))) Cf , λX . {y ∈ L | max(f −1(↓y)) ⊆ X }
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where M denotes the Moore closure (i.e., a function that closes all sets by glb)
and max retrieves the maximal elements from a set (for the formal details of these
constructions see [25]). In [25], the authors proved that the only interesting cases,
as far as the refinement and simplification towards completeness are concerned,
are respectively the most concrete β w ρ such that 〈β, η〉 is complete and the
most abstract β v η such that 〈ρ, β〉 is complete. In particular, given Aρ ∈
Abs(C ), the complete shell of Aη ∈ Abs(D) is Rρf (η) , η u Rf (ρ); and, given
η ∈ uco(D), the complete core of ρ ∈ uco(C ) is Cηf (ρ) , ρ t Cf (η). When we
consider f : C → C and the constraint η = ρ, the above construction requires a
fixpoint iteration on abstract domains [25].

2.2 The Reference Language

Following the approach of [5] (see also [37, 34]) we consider the language L of
regular commands2 (RComm in Fig. 1, where ⊕ denotes non-deterministic choice
and ∗ is the Kleene closure), which is general enough to cover deterministic
imperative languages as well as other programming paradigms [5]. The language
is parametric on the syntax of basic transfer functions c ∈ btFun, that can be
instantiated with different kinds of instructions such as, for instance, assignments
and boolean guards.

The concrete semantics. We consider as concrete semantics a standard denota-
tional semantics. We assume that btFun is provided with a semantics function
(| · |) : btFun→ (C → C ) on a complete lattice C such that (|c|) is additive. This
assumption is not restrictive since basic transfer functions are always defined by
additive lifting [5]. The concrete semantics J·K : RComm → (C → C ) of regular
commands is then inductively defined as follows:

JcKc , (|c|)c JC1 ⊕ C2Kc , JC1Kc ∨ JC2Kc

JC∗Kc ,
∨{JCKnc | n ∈ N} JC1; C2Kc , JC2K(JC1Kc)

The semantics of regular commands corresponds to the denotational semantics
defined in [9] starting from the operational semantics for non deterministic choice
and iteration [37].

To complete the language, we consider standard basic transfer functions
used in deterministic while languages: skip instruction, assignments and boolean
guards, as defined in Fig. 1. In L we consider just integers values in Z and integer
variables, where Var is an enumerable set of variable names. Standard impera-
tive language commands can be easily defined by using guarded branching and
loop commands as syntactic sugar [5]:

if b then c1 else c2 fi , (b?; c1)⊕ (¬b?; c2) while b do c ew , (b?; c)∗;¬b?

2 We choose to keep the language as simple as possible, avoiding non necessary lan-
guage features, in order to keep the focus on the analysis from a purely semantic
point of view.
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Exp 3 e ::= a | b
AExp 3 a ::= x | n | a + a | a− a | a ∗ a
BExp 3 b ::= true | false | e = e | e < e | b ∧ b | ¬b
btFun 3 c ::= skip | x := a | b?

RComm 3 C ::= c | C; C | C⊕ C | (C)∗ Var 3 x (variables) Z 3 n (values)

Fig. 1. Syntax of the language L of regular commands.

A program memory m : V → Z is a total function from a finite set of variables
V ⊆ Var to values. Memory update [x 7→ v ] is defined as usual: m[x 7→ v ](x ) , v ,
when x = y ; and m[x 7→ v ](y) = m(y) otherwise. Let us call M , V → Z the set
of program memories, the concrete domain of L semantics is C , ℘(M), denoting
sets of memories on variables in V . The basic transfer function semantics (|c|) :
℘(M)→ ℘(M) is defined, for a set of memories M ⊆ M, as:

(|skip|)M , M (|x := a|)M , {m[x 7→ {|a|}m] | m ∈ M}
(|b?|)M , {m ∈ M | {|b|}m = true}

where {|a|} : M → Z and {|b|} : M → {true, false} are the standard evaluation
semantics for arithmetic and boolean expressions, respectively. For arithmetical
expressions, we abuse notation by denoting with {|a|} also their additive lift to
sets of memories.

3 Weak Abstract Interpretation Framework

In the standard abstract interpretation framework [10, 11], based on Galois con-
nections, even when only the concretization function is given, a monotone ab-
straction function always exists and it can be mathematically derived from the
concretization (this is guaranteed by the properties of a GC). Whenever such
abstraction cannot be defined, as it happens in the case of Convex polyedra [13]
or Automata [3] domains, then it means that the concretization does not yields a
GC, i.e., it is not co-additive. Indeed, the requirement of having a GC between a
concrete domain C and an abstract one A may be in practice too restrictive (e.g.,
when developing a static analyzer). In [12] the authors provide a more general
framework for abstract interpretation, describing necessary and releasable (i.e.,
that can be relaxed) assumptions. In particular, it is strictly required that any
concrete element must have an approximation (to garantee soundness). For in-
stance, this is violated by concretization functions γ mapping the abstract top to
a concrete element strictly smaller than the concrete top, i.e., when γ(>A) <C >C .
In this case, some concrete elements (those greater that γ(>A)) do not have a
sound approximation. Indeed, even if we map all these elements (including >C )
to >A, then soundness would be violated since the approximation of >C would be
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an object with a strictly smaller concretization3. Instead, the existence of the
best approximation for each concrete element is releasable assumption. The best
abstraction does not exist, for instance, when the set of sound approximations
is an infinite strictly descending chain or a set of finite/infinite non-comparable
strictly decreasing chains [12].

In this section, we provide a closure-based characterization of such abstract
domains, by formalizing a weakened abstract interpretation framework where
the abstraction function may be missing and, therefore, where the adoption of
the best abstraction assumption is not viable.

Definition 1 (Weak Adjoint). Let γ : A → C be a monotone and one-to-
one4 function such that γ(>A) = >C , a weak adjoint γ∼ : C → A of γ is any

function in Γ̃ (γ), where:

Γ̃ (γ) , {α̇ : C → A | ∀c ∈ C , a ∈ A. c ≤C γ ◦ α̇(c) ∧ α̇◦γ(a) = a}

The pair (γ, γ∼), with γ∼ weak adjoint of γ, form a weak Galois connection.
Hence, a weak adjoint simply fixes the approximations for the meanings of ab-
stract elements given by γ (unique by the on-to-one property of γ), and allows a
range of possibilities for the other concrete elements, only forcing soundness, as
required in [12]. Hence, Def. 1 gives rise to a family of abstraction functions, each
depending on the strategy adopted to select the elements in {a ∈ A | c ≤C γ(a)}
when it does not exist an abstract element a such that c = γ(a). For instance,
when possible, we could take the minimal elements of such set. Furthermore,
when considering a not co-additive γ, then γ∼ is in general not monotone. How-
ever, when γ is co-additive, taking γ∼(c) = min{a ∈ A | c ≤C γ(a)}, we have
that γ∼ is precisely the left adjoint γ− of γ, since a minimal element always
exists and it is unique (the glb).

Theorem 1. Let γ : A → C be a monotone and one-to-one function such that
γ(>A) = >C , and γ∼ ∈ Γ̃ (γ), then γ∼ ◦γ = id, and ρ , γ ◦γ∼ is idempotent, i.e.,
∀c ∈ C . ρ ◦ ρ(c) = ρ(c), and extensive, i.e., ∀c ∈ C . c ≤C ρ(c).

Proof. For the sake of readability, we denote γ∼ more concisely with α̇, and we
omit the function composition operator.

– α̇γ = id holds by construction.
– γα̇ is idempotent, indeed: γα̇γα̇ = γ(α̇γ)α̇ = γα̇.
– γα̇ is extensive, indeed: if c = γ(a), for some a ∈ A, then γα̇(c) = γ(a) = c,

hence trivially we have c ≤ γα̇(c); otherwise, γα̇(c) ∈ γ({a ′ ∈ A | c ≤C

γ(a ′)}), if {a ′ ∈ A | c ≤C γ(a ′)} 6= ∅, then its γ image is greater than c,
otherwise it is >, again greater than c.

In other words, by losing the abstraction we lose closure monotonicity, while
keeping the other properties. We call such operators weak closures.

3 In GC-based abstract interpretation, this condition is implied by γ being co-additive.
4 The one-to-one hypothesis is not restrictive, being implicit in the GI-based frame-

work. Indeed, γ can always be made one-to-one by collapsing the elements of A with
the same concrete meaning w.r.t. γ.
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ρ1

ρ2

Fig. 2. Different weak closures with the same set of fixpoints.

Definition 2 (Weak closure). Let 〈C ,≤C 〉 be a poset. Then, ρ : C → C is a
weak upper closure operator, or weak closure, if it is idempotent and extensive.

We denote with wAbs(C ) the set of all weak abstract interpretations of C ,
characterized by a weak GC or, equivalently, by a weak closure.

The set wAbs(C ), equipped with the standard point-wise ordering between
functions v, forms a partial order. Note that, differently from upper closure op-
erators, weak closures cannot be uniquely identified by the set of their fixpoints.
Indeed, it is easy to find different weak closures having the same set of fix points,
as depicted in Fig. 2. Here, we have two weak closures ρ1 and ρ2

5 on the poset
〈{0, 1, 2, 3},≤〉, that have the same set of fixpoints {0, 2, 3}, even if ρ2 @ ρ1.

Example 1. Consider the abstract domain Reg [3, 2] of automata/regular lan-
guages on a finite alphabet Σ. It is well known that automata/regular languages
are not closed by infinite intersection, and therefore they do not form an abstract
domain in the standard framework. In particular, if we consider as concrete do-
main the powerset of all strings on the alphabet Σ, i.e., C = ℘(Σ∗), we define
the abstract domain Reg , {L ⊆ Σ∗ | ∃D ∈ DFA. L = L(D)}, where DFA
is the set of deterministic finite state automata, and L(D) is the language of
strings on Σ accepted by D . Also non-deterministic finite state automata NFA
precisely characterize regular languages. The fact that Reg is not closed by
infinite intersection means that it does not exists an abstraction function asso-
ciating with any L ∈ ℘(Σ∗) the least regular language containing L. However,
a monotone and one-to-one concretization function is the identity (any regular
language is a language), hence we can build a weak Galois connection by fixing
the regular overapproximation to associate with any L. In order to be a bit more
precise, we could provide a way to associate a regular language overapproximat-
ing a context-free language. A context-free language L is such that there exists a
pushdown automata P , i.e., P ∈ PDA, such that L = L(P). Then, let γReg , id
on ℘(Σ∗), we define γ∼Reg for each L ∈ ℘(Σ∗) as:

γ∼Reg(L) ,


L if ∃D ∈ DFA. L = L(D)

L(N ) if ∃P ∈ PDA. L = L(P) ∧ N , reg(P)

> otherwise

5 The function ρ2 is also an upper closure operator.
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Without entering in too much details, reg takes the transition relation δP of P
(depending also on the symbol on the top of the stack) and defines the transition
relation δN of a NFA N , ignoring the stack, as:

δN (q , a) , {q ′ | ∃A stack symbol in P . δ(q , a,A) = q ′}

Note that, we do not care about decidability issues concerning the existence of
DFA and/or PDA, since we do not necessarily need a minimality condition,
namely we could map to > regular or CF languages for which we are not able
to provide an automaton.

Completeness (Subsect. 2.1) can be defined in this weakened framework,
simply by considering Aη ∈ wAbs(D) and Aρ ∈ wAbs(C ). In the following, we
will call such extended notion weak completeness. As we will see in the next
sections, some known results holding in the standard abstract interpretation
framework hold also in the weak framework, making them applicable even to
Galois connection-less abstract domains (like Convex Polyhedra and Automata).

4 Characterizing Weak Completeness

In this section, we characterize domain completeness transformers in the pro-
posed weakened framework of abstract interpretation. The existing completeness
transformers [25] are strongly based on the monotonicity assumption, relaxed in
weak abstract interpretation, hence, they cannot be naively generalized. The idea
we propose here consists in exploring the connection between domain complete-
ness and Abstract Non-Interference [18, 23], where similar domain transformers
have been characterized without using monotonicity.

It is worth noting that, this is not the first attempt to explore such kind
of connection. In [20, 21], the authors provide a completeness model for ANI in
the context of language-based security, where input and output values are only
partially observable (i.e., split in public and secret data). In particular, in such
previous works we can observe that:

1. abstractions are modeled in the standard GC-based abstract interpretation
framework (requiring even more restrictive conditions on closures);

2. domain completeness is instantiated (by using specific abstractions, e.g., ab-
stracting secret data to the top) to model ANI in language-based security.

In this paper, we will investigate such connection by taking the opposite
direction, applicable to a wider context: we will provide an ANI model of domain
completeness in the weak framework of abstract interpretation. In particular:

1. abstractions are modeled as weak upper closure operators (Def. 2), making
the results strictly more general;

2. ANI is instantiated to model abstract domain completeness in the (weak)
abstract interpretation framework.
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In this way, we can exploit the ANI domain transformers [18, 23] for making
abstract domains (weak) complete, namely complete also in the weak framework
of abstract interpretation (i.e., when monotonicity constraint on the closures is
relaxed), and to extend the static verification approaches existing for ANI [30,
32, 19] to cope with (weak) completeness.

Abstract Non-Interference. Non-interference has been introduced in [8, 27, 36]
as a confidentiality policy determining whether the variation of sensible input
information has effect on the observable part of the computation. This notion
has been weakened by considering the variation of properties affecting a, poten-
tially, abstract computation of functions [23]. Moreover, also the split of data
in secret/relevant and public/observable can be seen as an abstraction of the
data. Formally, Non-Interference has been generalized and weakened by means
of abstract interpretation, as follows.

Definition 3 (Abstract Non-Interference [23]). Let f : D → C , Aη ∈
Abs(D) and Aρ ∈ Abs(C ). We say that f satisfies Abstract Non-Interference6

w.r.t. 〈η, ρ〉, written [η]f (ρ), if:

∀x1, x2 ∈ D . η(x1) = η(x2) ⇒ ρ◦ f (x1) = ρ◦ f (x2) (1)

We recall that, for ANI we have two domain transformers, parametric on the set
of observable and relevant input and output data, allowing to characterize: the
most concrete harmless (i.e., unable to observe variations) output abstraction
ρ (fixed the other observations) [23]; and the most abstract observable input
property η, called revealed information, (fixed the other observations) [23].

Also Eq. 1 can be defined in the weak abstract interpretation framework,
by considering Aη ∈ wAbs(D) and Aρ ∈ wAbs(C ). In this case we say that f
satisfies weak ANI.

4.1 Completeness is Abstract Non-Interference

We now show how to require completeness of abstract domains w.r.t. a function
means to prove that the function inputs sharing the same property are mapped
into outputs that also share the same property (that is precisely ANI). This
highlights the strong connection between Completeness and ANI, allowing us to
export the domain transformers defined for ANI in the context of static analysis,
and precisely in the weak abstract interpretation framework. In addition, there is
another important side effect. Completeness has been always characterized as a
domain property, even if local completeness [5] showed how much completeness
depends on the way the analyzed program is written. Indeed, rewriting com-
pleteness as ANI, allows us to see completeness as a program hyperproperty [4,
29] instead of as a domain property [11, 25]. The deep gain in this change of

6 Note that what we call here Abstract Non-Interference is a specific version of the
notion in [23], there called narrow.



Precision in (Weak) Abstract Interpretation 11
 

 
 
 
 
 
 

x

f

! !

⊥ ⊥

ρ

η

x

f

! !

⊥ ⊥

ρ

η

Figure 4: Making forward complete

x

f

! !

⊥ ⊥

ρ η

x

f

! !

⊥ ⊥

ρ η

Figure 5: Making backward complete

those elements whose inverse image under f is outside the input abstract domain
ρ. This erases from the output abstraction all those elements that generate a
difference in the abstraction of the concrete and of the abstract computation.

Clearly, when f : C → C and η = ρ, the above construction requires a fix-
point iteration on abstract domains. In particular, R!

f (ρ) = gfp(λX . ρ " R!
f (X ))

and C!
f (ρ) = lfp(λX . ρ # C !

f (X )) are called respectively the absolute $-complete

shell and core of ρ for f . Note that R!
f ∈ lco(uco(C ))2 and C!

f ∈ uco(uco(C ))
(see [20]). It is worth noting that $-complete cores and shells are adjoint abstract
domain transformers, i.e., adjoint functions on the lattice of abstract interpreta-
tions. For any η ∈ uco(C1) and ρ ∈ uco(C2), we have C !

f (η) % ρ ⇔ η % R!
f (ρ),

which by definition, implies that C!,η
f (ρ) % ρ ⇔ η % R!,ρ

f (η).

3 Information flows in language-based security

In this section, we recall some basic notions and notations necessary for under-
standing non-interference in language-based security. In particular, we focus on
the semantic model of non-interference provided by Joshi and Leino [24], which
directly maps to completeness.

2An lco is a lower closure operator which is a monotone, idempotent and reductive function
(∀x . f (x) ≤ x), i.e., the dual of an uco.
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Fig. 3. Completeness is Abstract Non-Interference.

perspective consists in making it possible to provide a framework for verify-
ing completeness on programs by static analysis. Let us start by proving the
connection between completeness and ANI.

Theorem 2. Let f : D → C , Aη ∈ wAbs(D) and Aρ ∈ wAbs(C ). We have
that 〈ρ, η〉 is weak complete w.r.t f iff f satisfies weak ANI w.r.t. 〈η, ρ〉, namely:
ρ ◦ f ◦ η = ρ ◦ f ⇔ [η]f (ρ).

Proof. (⇒) Suppose 〈ρ, η〉 completeness holds, namely ∀x ∈ D . ρ ◦ f ◦ η(x ) =
ρ◦ f (x ). We have to prove that ANI holds, namely ∀x1, x2 ∈ D . η(x1) = η(x2)⇒
ρ◦ f (x1) = ρ◦ f (x2). Suppose η(x1) = η(x2), otherwise the implication vacuously
holds. Then we have ρ ◦ f (x1) = ρ ◦ f ◦ η(x1) = ρ ◦ f ◦ η(x2) = ρ ◦ f (x2). Hence,
ANI [η]f (ρ) holds. (⇐) Suppose ANI holds, namely ∀x1, x2 ∈ D . η(x1) = η(x2)⇒
ρ ◦ f (x1) = ρ ◦ f (x2). We have to prove that 〈ρ, η〉 completeness holds, namely
that ∀x ∈ D . ρ ◦ f ◦ η(x ) = ρ ◦ f (x ). Let assume that η(x ) 6= x , otherwise
completeness trivially holds. Let x1 = η(x ) ∈ D and x2 = x ∈ D . Then we have
η(x1) = η ◦ η(x ) = η ◦ η(x2) = η(x2). Since we suppose that ANI holds, we have
that η(x1) = η(x2) implies ρ ◦ f (x1) = ρ ◦ f (x2). By definition, we have that
x1 = η(x ) and x2 = x , resulting in ρ◦ f ◦η(x ) = ρ◦ f (x ). Since x has been chosen
arbitrarily, we can conclude that 〈ρ, η〉 completeness holds.

It is trivial to observe that, since closures are particular (i.e., monotone) weak-
closures, by Thm. 2, we have that the equivalence between completeness and ANI
holds also in the standard, GC-based, abstract interpretation framework.

Corollary 1. Let f : D → C , Aη ∈ Abs(D) and Aρ ∈ Abs(C ). We have that
〈ρ, η〉 is complete w.r.t f iff f satisfies ANI w.r.t. 〈η, ρ〉.
In other words, completeness requires that all the inputs sharing the same prop-
erty η are led by f to outputs sharing the same property ρ, while ANI checks
the same relation on pairs of computations (as depicted in Fig. 3).

4.2 Making Abstract Domains Weak Complete

Most Concrete Weak Complete Output Observation. Here, we aim at character-
izing the (weak) completeness core [25], by exploiting the new formalization of
(weak) completeness in terms of (weak) Abstract Non-Interference.
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First, let us define the set of all the images by f : D → C resulting from
elements having the same abstraction Aη ∈ wAbs(D), that is, ∀x ∈ D we define

the set κηf (x ) , {f (y) | η(y) = η(x )}.
In particular, this means that if η(x1) = η(x2), then also κηf (x1) = κηf (x2). At

this point, we aim at abstracting in the same way all the concrete elements in
{f (y) | η(y) = η(x )}. Following the construction proposed for ANI [18], let us
define the following predicate determining which concrete elements do not cause
different abstractions for elements in {f (y) | η(y) = η(x )}. Let y ∈ C :

Nintηf (y) ⇔ (∃x ∈ D ∃z ∈ κηf (x ) . (y ≥ z ⇒ y ≥ ∨κηf (x )))

This predicate holds for y if whenever y is above the image (by f ) of an element
x , then it is above the images of all the elements sharing the same η property
with x .

Finally, let us define η∧f , {y ∈ C | Nintηf (y)}, which is the abstract domain
for the output elements of f unable to distinguish the execution of f starting from
inputs with the same property η. It is worth noting that, since we characterize
η∧f by identifying its fix points, we necessarily obtain an uco. In other words,
this simplification provides the most concrete uco satisfying completeness, not
excluding the potential existence of more concrete weak complete weak closures.

Lemma 1. Let f : D → C , Aη ∈ wAbs(D) and Aρ ∈ wAbs(C ), then η∧f is an
upper closure operator of C .

Theorem 3. Let f : D → C and Aη ∈ wAbs(D). η∧f ∈ uco(C ) is the most
concrete (not weak) output observation such that f satisfies ANI w.r.t. 〈η∧f , η〉.

The previous result provides a characterization of the completeness domain core
that is applicable even in the weak abstract interpretation framework. However,
as already observed, the construction will always result in a standard upper
closure operator, which guarantees the uniqueness of the construction but not
necessarily its optimality. Therefore, the development of techniques for construct-
ing optimal solutions in the weak abstract interpretation framework remains an
interesting avenue for further study. As expected, whenever we project the con-
struction in the standard framework, this transformer collapses to the well known
one presented in [25].

Corollary 2. If ρ ∈ Abs(C ) and η ∈ Abs(D), then ρ t η∧f is the most concrete
abstraction more abstract than ρ making f to satisfy ANI w.r.t. 〈ρt η∧f , η〉 and,
hence, it is exactly the completeness core [25] of ρ w.r.t. f .

This corresponds to take only the elements of ρ satisfying the predicate Nintηf .
If we aim at computing the most concrete output observation with a fixed input
observation we have just to compute precisely η∧f .

Example 2. Let us consider a very simple example, the semantics of 0 < x?,
which, for M ∈ ℘(M) is (|0 < x?|)M = M ∩

{
m ∈ M

∣∣m(x ) > 0
}

. Let us consider
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the input observation S̃ign ∈ wAbs(℘(M)) defined on memories as S̃ign(M) ,
λx ∈ Var. S̃ign({m(x ) | m ∈ M})7 and where, abusing notation, we define

S̃ign , λX ∈ ℘(Z).


Z≤0 if X ⊆

{
n ∈ Z

∣∣n ≤ 0
}
, Z≤0

Z≥0 if X ⊆
{
n ∈ Z

∣∣n ≥ 0
}
, Z≥0, X 6= {0}

∅ if X = ∅
Z otherwise

This is a weak closure since, for instance, {0} ⊆ {0, 1} but S̃ign({0}) = Z≤0 6≤S̃ign

S̃ign({0, 1}) = Z≥0.

Now, for each M, and therefore for any S̃ign(M), we have to build κS̃ign

(|0 < x?|)(M),
which is the set of all the elements that should have the same output abstraction.

Since S̃ign has only four fix points, we have only for of such sets:{
(|0 < x?|)M′

∣∣∣ S̃ign(M′) = [x 7→ Z≤0]
}

= ∅ =
{

(|0 < x?|)M′
∣∣∣ S̃ign(M′) = [x 7→ ∅]

}{
(|0 < x?|)M′

∣∣∣ S̃ign(M′) = [x 7→ Z≥0]
}

= Z>0 =
{

(|0 < x?|)M′
∣∣∣ S̃ign(M′) = [x 7→ Z]

}
Hence, S̃ign

∧
(|0 < x?|) = {Z,∅,Z>0} ∪ {X | X ⊆ Z≤0}, meaning that any set of

positive numbers should be abstracted in the same way in output, while we can
observe precisely any set of negative numbers.

Most Abstract Weak Complete Input Perturbation. Now we aim at characterizing
the (weak) completeness shell [25], by exploiting the new formalization of (weak)
completeness in terms of (weak) Abstract Non-Interference. Note that, in this
case we may not have a most abstract complete input perturbation, but a family
of optimal input perturbations.

Hence, we are going to identify the set of elements that should share the same
input property. Let us characterize the sets of elements that an optimal input
perturbation can associate with x ∈ D , depending on f : D → C , Aρ ∈ wAbs(C )
abstraction on C , where max(X ) extracts the maximal elements from X . Let

ρ∨f ∈
{
µ : D → D

∣∣∀x . µ(x ) ∈ max{y ∈ D | ρf (y) = ρf (x )}
}

This function associates with each element the most abstract one (in the
worst case it is the identity on the element) sharing the same output observation
ρ of its image by f .

Lemma 2. Let f : D → C , Aρ ∈ wAbs(C ), then we have Aρ∨f
∈ wAbs(D).

Theorem 4. Let f : D → C and Aρ ∈ wAbs(C ). We have that ρ∨f is maximal,
w.r.t. v, among the input observations such that f satisfies ANI w.r.t. 〈ρ, ρ∨f 〉.
The above result characterizes the completeness domain shell even in the weak
abstract interpretation framework, and unlike the core, the construction of the
shell can result in an optimal solution within the entire weak framework. As
expected, whenever we make the construction in the standard framework, this
transformer collapses to the well known one designed in [25].

7 In the following, λx ∈ Var.X (or [x 7→ X ]) denotes the set {m ∈ M | m(x ) ∈ X }.
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Corollary 3. If Aη ∈ Abs(D) and Aρ ∈ Abs(C ), then η u ρ∨f is the ANI shell
of η w.r.t. f , and therefore it is the completeness shell [25] of η w.r.t. f .

Example 3. Let us consider the simple semantics (|2 ∗ x |)M for all M ∈ ℘(M). Let
Par be the standard parity domain {Z,Zeven,Zodd,∅} returning the parity of sets
of integer numbers, let us define

ParS̃ign , λX ∈ ℘(Z).


ZPar(X)

≤ 0 if X ⊆
{
n ∈ Z

∣∣n ≤ 0
}
,Par(X ) 6= Z

ZPar(X)

≥ 0 if X ⊆
{
n ∈ Z

∣∣n ≥ 0
}
, X 6= {0},Par(X ) 6= Z

Par(X ) otherwise

with fix points denoted {Z,Zeven,Zodd,Zeven
≤ 0,Z

odd
≤ 0,Z

even
≥ 0,Z

odd
≥ 0,∅}, where, for instance,

Zeven
≤ 0 ,

{
n
∣∣n ≤ 0,n even

}
(analogous for the other cases). As S̃ign of the previ-

ous example, also ParS̃ign is a weak closure. In this case, we have to characterize
the sets of maximal elements with the same output abstraction, hence we have

to find out how many of such sets we have w.r.t. ParS̃ign: First of all we observe
that the results may only be of even numbers, hence the only output fix points to
consider are those involving even numbers. In the following, we abuse notation

by using ParS̃ign on integers and on memories

max{M′ | ParS̃ign((|2 ∗ x |)M′) = [x 7→ Zeven
≤ 0]} = [x 7→ Z≤ 0]

max{M′ | ParS̃ign((|2 ∗ x |)M′) = [x 7→ Zeven
≥ 0]} = [x 7→ Z≥ 0]

max{M′ | ParS̃ign((|2 ∗ x |)M′) = [x 7→ Zeven]} = [x 7→ Z]

max{M′ | ParS̃ign((|2 ∗ x |)M′) = [x 7→ ∅]} = [x 7→ ∅]

Hence, ParS̃ign
∨
(|2 ∗ x|) = S̃ign, meaning that any more abstract closure would

abstract in the same way sets with different output observations, violating ANI.

5 A Deductive System for Completeness

The proposed domain transformers are surely important for deeper understand-
ing how completeness can be characterized, but they do not provide effective
methods for retrieving complete abstract domains given a program. In order to
make such task effective, we may derive complete domains inductively on the
language structure, similarly to what has been done for ANI [19, 22]. The idea
is to exploit the given transformers on the language expressions, and then to
propagate abstractions inductively on regular commands structure.

Indeed, we show how the deductive system for ANI [19, 22] can be rewritten
for the language L, in the weak abstract interpretation framework. The inference
rules of the deductive system for completeness are given in Fig. 4, where for the
sake of readability we write [η]C(ρ) instead of [η]JCK(ρ).

The two axioms of rule R0 just assert trivial facts, namely that it always
holds completeness when the input distinguishes everything or when the output
does not distinguish anything. Rule R1 provides the two axioms deriving from
the theorems determining complete shell and core of the abstractions involved
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R0: [η]C(T) [id]C(ρ) R1: [η]e(η∧{|e|}) [ρ∨{|e|}]e(ρ) R2:
η v ρ

[η]skip(ρ)

R3:
[η]a(ρ) η v ρ if Var ) {x}

[η] x := a(ρ)
R4:

[η]b(ρ)

[η] b?(ρ)
R5:

[η]C(ρ) ρ v η

[η]C∗(η)

R6:
[η]C1(ρ) [η1]C2(ρ1) ρ v η1

[η]C1; C2(ρ1)
R7:

[η1]C1(ρ1) [η2]C2(ρ2)

[η1 u η2]C1 ⊕ C2(ρ1 t ρ2)

R8:
[η1]C(ρ1) η v η1 ρ1 v ρ

[η]C(ρ)
R9:

∀i ∈ I . [ηi ]C(ρ) ηi partitioning

[
⊔

i∈I ηi ]C(ρ)

R10:
∀i ∈ I . [η]C(ρi)

[η]C(
⊔

i∈I ρi)
R11:

∀i ∈ I . [η]C(ρi)

[η]C(
d

i∈I ρi)

Fig. 4. Deriving complete abstractions for the language L of regular commands.

(Subsect. 4.2), w.r.t. the semantics of the expression. As far as skip is concerned
R2, then still we need the input abstraction η to be more concrete than the
output one. R3, when dealing with more than one variable, has to ensure (for
all the unchanged variables) that η implies ρ. R4 is quite immediate. Rule R5
inductively handle iterations. R6 and R7 are as expected. Rule R8 tells us that
we can always concretize the input observation and abstract the output obser-
vation. Finally, the last rules change input and output abstractions exploiting
operations on abstract domains. Note that rule R9 is applicable only if ηi are all
partitioning, namely they necessarily need to be closures, and not just pseudo-
closures. This is not a limit of the deductive systems, since all these rule are
useful for improving the precision of the deduction but are not necessary for its
soundness.

When [η]C(ρ) can be proved in the deductive system in Fig. 4 we write `
[η]C(ρ). The pseudo-closures deduced by the derivation ` are the most abstract
domains for which completeness holds, w.r.t a given program in L.

Theorem 5 (Soundness). Let C ∈ L and Aη,Aρ ∈ wAbs(℘(M)). If ` [η]C(ρ)

then 〈ρ, η〉 is (weak) complete for C.

Example 4. Let C , (0 < x?; x := 2 ∗ x )∗;¬(0 < x )?. In this case the concrete

domain is ℘(M). Let us consider S̃ign defined in Ex. 2 and ParS̃ign in Ex. 3.

In Ex. 2 we proved that [S̃ign]0 < x (S̃ign
∧
(|0 < x?|)). By rule R4 we have that

[S̃ign]0 < x?(S̃ign
∧
(|0 < x?|)) hence, by rule R8, we have [S̃ign]0 < x?(S̃ign), being

S̃ign
∧
(|0 < x?|) v S̃ign.

Moreover, in Ex. 3 we proved that [S̃ign]2∗x (ParS̃ign). Then, by rule R3, having
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C only one variable, we have that [S̃ign]x := 2 ∗ x (ParS̃ign). Hence, we can apply

R6 obtaining [S̃ign]0 < x?; x := 2 ∗ x (ParS̃ign), and then, being ParS̃ign v S̃ign,
by R5, we derive [S̃ign](0 < x?; x := 2 ∗ x )∗(S̃ign).
Finally, we can prove that [S̃ign]¬(0 < x )(ParS̃ign) with a reasoning similar to
0 < x . Hence, we can apply again R4 to derive [S̃ign]¬(0 < x )?(ParS̃ign) and R6
to obtain [S̃ign](0 < x?; x := 2 ∗ x )∗;¬(0 < x )?(ParS̃ign).

6 Statically Verifying (Weak) Completeness

Program verification aims at checking weather a program complies with a specifi-
cation, i.e. a formal description of what programs are allowed and are not allowed
to do. Recently, hyperproperties [7] have been introduced in order to formalize
those specifications that cannot be checked observing single program executions.
The behavior (semantics) S[C] of a program C is usually modeled as a set of de-
notations (e.g., execution traces), one for every possible input. In this setting,
properties are sets of execution denotations and hyperproperties are collections
of sets of executions. This tantamount to say that a program C satisfies a prop-
erty P iff S[C] ⊆ P, while it satisfies a hyperproperty HP iff {S[C]} ⊆ HP. It turns
out that a lot of interesting specifications, like (Abstract) Non-Interference, are
hyperproperties [4, 29] and, hence, they require specific verification mechanisms
that go beyond the classic one adopted for program properties. An interesting
side effect of our work goes towards the direction advocated in [14] exploring the
idea of analyzing static analyses. Indeed, by proving that abstract domain com-
pleteness is a program hyperproperty we show how a property of the abstract
domain (used for analyzing a program), can be seen as a hyperproperty of the
program to analyze, and, hence, that can be statically verified on the program.

In this section, we firstly investigate the correlation between completeness
and hyperproperties. In particular, we will shows that abstract domain com-
pleteness w.r.t. a program can be restated as a hyperproperty verification prob-
lem for such program. Then, by exploiting previous results on hyperproperties
verification, we will show how completeness can be statically verified.

6.1 Hypercompleteness: Completeness as a Hyperproperty

Hyperproperties allow to specify complex program specifications (e.g., in the
context of concurrent systems or security [7]) and, of course, they are crucial
in making precise practical verification mechanisms. But, we believe that hy-
perproperties play also a more fundamental role in program analysis. Indeed,
thanks to the equivalence between completeness and ANI (a hyperproperty), in
this section we can prove that checking completeness of an analysis w.r.t. a pro-
gram boils down to check a hyperproperty of that program. Of course such result
is just a first step in the field of analyzing program analyses: whether this corre-
lation is limited to completeness or can be generalized to any analysis property
deserves further investigation.
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A Program Semantics Suited for Hyperproperty Verification. As outlined in [4,
30], in order to verify hyperproperties, it is necessary to lift the concrete seman-
tics to sets of sets, namely we need a hypersemantics. In [30], the authors show
how to define a correct hypersemantics, starting from the concrete language se-
mantics. Correct here means that the hypersemantics contains the concrete one.
For instance, in the case of L, a hypersemantics8 JCKH : ℘(℘(M)) → ℘(℘(M)) of
the program C is correct when JCKM ∈ JCKH{M}, for any {M} ⊆ ℘(M). With
an over-approximation of a (correct) hypersemantics we can soundly verify hy-
perproperties. The over-approximation is given by an abstract hypersemantics,
computing on a suitable abstract (hyper)domain.

We can define the hypersemantics of programs in L (denoted by the subscript
H) following the construction presented in [30, 32]. The (hyper) transfer function
for basic commands in btFun is (| · |)H : btFun → (℘(℘(M)) → ℘(℘(M))), where
℘(℘(M)) is a complete lattice by definition and (|c|)H is the additive lift to sets
of the concrete semantics JcK : ℘(M) → ℘(M) of the language. In particular, for
any set of sets of memories M ⊆ ℘(M) we define:

(|skip|)HM , M (|x := a|)HM , {Jx := aKM | M ∈M}
(|b?|)HM , {(|b|)M | M ∈M}

The hypersemantics J·KH : RComm → (℘(℘(M)) → ℘(℘(M))) of regular com-
mands is inductively defined as follows, for any set of sets of memories M ⊆ ℘(M):

JcKHM , (|c|)HM JC1 ⊕ C2KHM , {JC1KM ∪ JC2KM | M ∈M}
JC∗KHM ,

{⋃
n∈N{JCK

nM}
∣∣ M ∈M

}
JC1; C2KHM , JC2KH(JC1KHM)

Note that, JCKH is not exactly the lift to sets of JCK, but it is a correct approxi-
mation [30, 32], namely {JCKM} ⊆ JCKH{M} for any set of memories M ⊆ M.

Verifying Completeness by Using Program Hypersemantics. Now that we have
defined the hypersemantics, we will show how it can be used to verify complete-
ness. To do so, we exploit the equivalence between completeness and ANI and
the fact that the latter is a hyperproperty.

The definition of ANI presented in Sect. 4 is given in terms of a generic
function f . Hence, ANI for programs in L is defined as follows, where we basically
instantiate Def. 3 with f being the concrete semantics JCK : ℘(M) → ℘(M) of a
program C ∈ L. Let η, ρ ∈ wAbs(℘(M)), we say that the program C in L satisfies
(weak) ANI w.r.t. 〈η, ρ〉, written [η]C(ρ), when:

∀M1,M2 ∈ ℘(M) . η(M1) = η(M2) ⇒ ρ(JCKM1) = ρ(JCKM2)

Now consider the set Mη
2 , {{M1,M2} | η(M1) = η(M2)}, consisting in the

set of memories pairs indistinguishable by the input observation η, and the set
Mρ

2 , {{M1,M2} | ρ(M1) = ρ(M2)}, consisting in the set of memories pairs

8 Note that, an hypersemantics can be given in an abstract way on ℘(C ), in the same
way we defined the concrete semantics on C in Section 2.
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indistinguishable by the output observation ρ. We can use the hypersemantics
J·KH of L to perform ANI verification:

JCKHM
η
2 ⊆Mρ

2 ⇒ [η]C(ρ) (2)

Indeed, Eq. 2 says that the program C executed from η-equivalent set of memo-
ries yields always ρ-equivalent set of memories, that is exactly the definition of
ANI w.r.t. 〈η, ρ〉. Note that, this works since ANI is 2-bounded, hence pairs of
executions are sufficient for verification [30, 32]. This, in turn, results into a ver-
ification method also for completeness of JCK w.r.t. 〈η, ρ〉, due to its equivalence
with ANI.

Theorem 6. The abstract interpretation 〈ρ, η〉 is (weak) complete for C if:

JCKHM
η
2 ⊆Mρ

2

Proof. The proof is straightforward. Indeed, JCKHM
η
2 ⊆ Mρ

2 implies C satisfies
ANI w.r.t. 〈η, ρ〉 (by Eq. 2) and, by Thm. 2, we have C is complete for 〈ρ, η〉.

Note that this is a simple implication since JCKH is a sound approximation of
JCK, but it is not the precise additive lift to sets of the concrete semantics [30].
Furthermore, the theorem is given in terms of pseudo-closures, hence we can
trivially extend the result to upper closure operators and completeness, in the
standard GC-based abstract interpretation framework.

Example 5. Consider the usual non-relational abstraction for memories, approx-
imating a set of memories M ∈ ℘(M) = ℘(V → Z) by means of a non-relational
memory mnr ∈ V → ℘(Z) and a value abstraction I ∈ wAbs(℘(Z)) approximat-
ing set of integers to intervals. Consider the program C , x := |x |; ((x > 0)?; x :=
x − 2)∗ where |e| is the absolute value operator applied to e that we suppose to
add to L. Then C is not complete for the intervals domain I. Intuitively, the ap-
proximation of the concrete semantics on input {−1, 1} would yield the interval
{−1}, while the (bca) abstract interpretation on the same input would yield the
interval {−1, 0}. In this setting, MI2 contains all pairs of non-relational memories
{mnr

1 ,mnr
2 } such that I(mnr

1 (x )) = I(mnr
2 (x )) (for instance mnr

1 (x ) = {−1, 0, 1}
and mnr

2 (x ) = {−1, 1}, that are both approximated in the interval {−1, 0, 1}).
If we execute the hypersemantics on MI2 we will obtain, among others, the set
{mnr ′

1 ,mnr ′

2 } such that mnr ′

1 (x ) = {−1} and mnr ′

2 (x ) = {−1, 0}. But for such non-
relational memories we have that I(mnr ′

1 (x )) = {−1} 6= {−1, 0} = I(mnr ′

2 (x )).
This means that JCKHMI2 6⊆MI2 , thus violating ANI and, in turn, proving that
C is not complete for the interval abstraction.

6.2 Static Analysis for Completeness

As happens for the concrete semantics, also the hypersemantics is in general not
computable. To effectively perform a static analysis we indeed need approxima-
tion: we need to abstract the computation of the concrete hypersemantics.
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The abstract hypersemantics is a correct (and usually computable) approxi-
mation of the concrete hypersemantics. In particular, the abstract hyperseman-
tics of programs in L is a function J·KA

H : RComm→ (A→ A) on a hyper abstract
domain Aα,γ ∈ wAbs(℘(℘(M))), defined inductively on the structure of regular
commands as (here t is the join of A):

JcKA

Ha , (α◦ JcK◦γ)a JC1 ⊕ C2K
A

Ha , JC1K
A

Ha t JC2K
A

Ha

JC∗KA

Ha ,
⊔{

(JCKA

H)na
∣∣ n ∈ N

}
JC1; C2K

A

Ha , JC2K
A

H(JC1K
A

Ha)

Note that, even if using the bca for the semantics of basic transfer functions
in btFun is quite standard in abstract interpretation [5], effectively computable
abstract hypersemantics (i.e. static analyses) may resort to an approximation of
the bca.

The Abstract Interpretation for Completeness. To verify ANI and, hence, com-
pleteness we can instantiate the hyperlevel constants domain of [30] on ℘(M).
Note that, nothing changes in the definition of the hyperdomain when we con-
sider a weak closure ρ ∈ wAbs(℘(M)), instead of an upper closure operator. In
particular, following the construction of [30], we have that ρ• = ℘(Atom(ρ)) ∪
{ρ}, where Atom(ρ) denotes the sets of atoms of the fixpoints of ρ, namely the
elements of ρ just above the bottom. Applying the lifting transformer of [30] we
obtain L(ρ) , λM . {ρ(M) | M ∈M}, for any set of sets of memories M ⊆ ℘(M).
Composing the two, we obtain α• , λM . ρ•(L(ρ)(M)), that forms, together
with its left adjoint γ• = α−• , the Galois connection [30]:

〈℘(℘(M)),⊆〉 −−−→←−−−
α•

γ• 〈ρ•,⊆〉

By using such abstraction, we have that α•(M
ρ
2) = Atom(ρ), since the set

contains only fix points of ρ, which can be seen as constants w.r.t. ρ. Hence, we
can approximate the verification of ANI by using an abstract interpretation of
the hypersemantics in the hyperdomain ρ•.

Lemma 3. Let JCKρ
•

H be the abstract interpretation of C in ρ• and consider the

case where ρ v η. Then, we have that JCKρ
•

H (α•(M
η
2)) ⊆ Atom(ρ) ⇒ [η]C(ρ).

Proof. Since JCKρ
•

H is, by design, a correct approximation of JCKH, we have that

JCKHM
η
2 ⊆ JCKρ

•

H (α•(M
η
2)). Then, if JCKρ

•

H (α•(M
η
2)) ⊆ Atom(ρ) we obtain that

JCKHM
η
2 ⊆ Atom(ρ). This implies that for each pair of (output) memory sets

{M1,M2} ∈ JCKHM
η
2 , namely sets of memories resulting from the computation of

C on η-equivalent (input) memory sets, we have that ρ•({M1,M2}) = {M1,M2},
since {M1,M2} ∈ Atom(ρ). But this implies ρ(M1) = ρ(M2), that is the require-
ment stated by Abstract Non-Interference.

Note that the requirement of having ρ v η is not too restrictive. Indeed, in
static analysis an effectively implementable analyzer is a fixpoint computation
that necessarily apply the same abstraction in input and output. Hence, only
if we consider η more abstract than ρ we obtain a meaningful analysis. Again,
Lem. 3 results into a static analysis method also for completeness, due to its
equivalence with ANI.
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Theorem 7. Let JCKρ
•

H be the abstract interpretation of C in ρ• and ρ v η. Then,

〈ρ, η〉 is (weak) complete for C if JCKρ
•

H (α•(M
η
2)) ⊆ Atom(ρ).

Proof. The proof is straightforward. Indeed, JCKρ
•

H (α•(M
η
2)) ⊆ Atom(ρ) implies

that C satisfies ANI w.r.t. 〈η, ρ〉 (by Lem. 3) and, therefore, by Thm. 2 we have
that C is complete for 〈ρ, η〉.

Note that, the inclusion in Lem. 3 and, hence, in Thm. 7 is decidable when
we bound the height of ρ•, as explained in [33].

7 Conclusions

Abstract domain completeness is a central issue in the theory of abstract inter-
pretation, that has important practical implications (e.g., precision of abstract
interpretation-based static analyses). In this paper, we investigated the connec-
tion between domain completeness and Abstract Non-Interference, tackling com-
pleteness from a different perspective. This allowed us to adapt the verification
mechanisms developed for ANI in order to verify completeness, and to char-
acterize new completeness domain transformers. All such completeness-related
machinery has been developed in a weakened closure-based abstract interpre-
tation framework, where we consider abstract domains that do not provide a
best correct abstraction (i.e., that do not yield a Galois connection), such as the
Convex Polyhedra and the Automata domains.

Such weak abstract interpretation framework has been already introduced
in [12], but no formalization was provided in terms of closure-like functions. In-
deed, having a general setting for comparing abstractions independently of their
representation is quite useful to reason about domains properties, like complete-
ness. In the standard abstract interpretation framework this role is played by
upper closure operators but, to the best of our knowledge, there is not an anal-
ogous notion for Galois connection-less abstract interpretations. Hence, in the
present paper, we introduced weak-closures, namely upper closure operators re-
laxing monotonicity, in order to precisely fill this gap.

A preliminary study on the link between ANI and completeness has been
already provided in [20, 21], where ANI has been restated as a completeness
problem for specific upper closure operators, in the context of language-based
security. In the present paper, we followed the opposite direction, by restating
completeness as an ANI problem, in the more general setting of weak-closures
and not restricted to the specific context of language-based security. As a result,
we proved an equivalence between completeness and ANI, that holds for abstract
domains defined in terms of weak-closures (and, as a trivial consequence, for
domains defined on upper closure operators).

As a consequence of the proved equivalence between domain completeness
and ANI, in the present paper we highlighted how known domain transformers
developed for ANI can be extended to cope with completeness. In particular, we
provided transformers making weak-closures complete for a given function and
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we generalized the deductive system of [19, 22], in order to effectively compute
the most concrete (weak-)closures that are complete for a given program. Finally,
we exploited the static verification mechanisms, based on hypersemantics [30],
developed for Non-Interference [32] in order to effectively verify ANI and, in
turn, completeness (which is, indeed, a hyperproperty of program semantics).

It should be clear that, this paper can be considered only a first step in the
direction of abstract interpretation-based static verification of completeness [14],
since the connection we considered here is between ANI and the completeness
of the best correct approximation (bca) of the semantics. This means that we
can only imply completeness for an abstract semantics less precise than the bca.
It will indeed deserve further investigation to design static analysis techniques,
based on hyper analysis, verifying completeness directly on sound approxima-
tions of the bca. It will also worth extending the results to the verification of
weaker forms of completeness (e.g., local [5] or partial [6] completeness).

Moreover, the design of static analysis techniques for ANI may become useful
also in other fields of application. For instance, robustness for neural networks
consists in checking whether by performing a perturbation of the input we can
observe a variation in the network output classification, where the network can
be abstractly interpreted [17]. In this context the idea of statically verifying ANI
could be adapted to verify robustness w.r.t. an input perturbation. Clearly, this
field of application needs and deserves further work.

A Selected Proofs

Proof (Proof of Lemma 1). We prove that the set η∧f is a Moore family, namely
that is closed under greatest lower bound. Let us consider Y ⊆ η∧f and suppose

∃x ∈ D . z ∈ κηf (x ) and such that
∧

Y ≥ z , then ∀y ∈ Y we have Y ≥ ∧Y ≥ z .

But, by definition of Y , this means that ∀y ∈ Y we have y ≥ ∨κηf , hence by

definition of glb we have
∧

Y ≥ ∨κηf , meaning that
∧

Y ∈ η∧f .

Suppose now that ∀x ∈ D .∀z ∈ κηf (x ) we have
∧

Y 6≥ z , hence the implication

defining Nintηf is trivially true and again
∧

Y ∈ η∧f .

Proof (Proof of Theorem 3). First of all we have to show that:

∀x1, x2 ∈ D . η(x1) = η(x2) ⇒ η∧f ◦ f (x1) = η∧f ◦ f (x2)

By construction, η∧f ◦ f (x1) =
∧{y | y ≥ f (x1) ∧ Nintηf (y)} and η∧f ◦ f (x2) =∧{y | y ≥ f (x2) ∧ Nintηf (y)}. By Lemma 1, we know that also the glb of Nintηf

elements satisfies Nintηf , namely is in the set. Let us prove that if y is such

that Nintηf (y) then it is greater than any image of f . Suppose y ∈ {y | y ≥
f (x1) ∧ Nintηf (y)}, then y ≥ f (x1), but f (x1) ∈ κηf (x2) = {f (y) | η(y) = η(x2)}
by hypothesis, but then by Nintηf hypothesis, y ≥ ∨κηf (x2) ≥ f (x2). Namely

y ∈ {y | y ≥ f (x2) ∧ Nintηf (y)}. Since we do not have hypotheses on x1 and x2,
this proves that the two sets are the same, and therefore η∧f ◦ f (x1) = η∧f ◦ f (x2).
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We now have to prove that it is the most concrete. This come trivially by con-
struction, since η∧f takes all the elements y such that Nintηf (y), any more con-

crete domain ρ′ must contain w such that ¬Nintηf (w). But this means that

∃x ∈ D ∃z ∈ κηf (x ) such that w ≥ z = f (y) (for some y ∈ D) but w 6≥ ∨κηf (x ),

meaning that there must exists z ′ ∈ κηf (x ) such that w 6≥ z ′ = f (y ′) (for
some y ′ ∈ D). Hence we have η(y) = η(y ′) and ρ′ ◦ f (y) = z ≤ w while
ρ′ ◦ f (y ′) = z ′ 6≤ w meaning that ρ′ ◦ f (y) 6= ρ′ ◦ f (y ′).

Proof (Proof of Lemma 2). Extensivity holds trivially by definition. Let us prove
idempotence. Suppose ρ∨f (x ) = y ∈ max{y ∈ D | ρ ◦ f (y) = ρ ◦ f (x )}. Let us
compute ρ∨f (y) = w ∈ max{w ∈ D | ρ ◦ f (w) = ρ ◦ f (y)}. But the we trivially
have that ρ ◦ f (x ) = ρ ◦ f (y) = ρ ◦ f (w), hence w ≤ y being y maximal, and
y ≤ w by extensivity of ρ∨f , hence ρ∨f (x ) = y = w = ρ∨f (y) = ρ∨f ◦ ρ∨f (x ).

Proof (Proof of Theorem 4). We have to prove that:

∀x1, x2. ρ∨f (x1) = ρ∨f (x2) ⇒ ρ◦ f (x1) = ρ◦ f (x2)

Suppose that ρ∨f (x1) = ρ∨f (x2). Then, ρ∨f (x1) = y1 ∈ max{y ∈ D | ρ ◦ f (y) =
ρ ◦ f (x1)} and ρ∨f (x2) = y2 ∈ max{y ∈ D | ρ ◦ f (y) = ρ ◦ f (x2)}, with y1 = y2,
hence ρ ◦ f (x1) = ρ ◦ f (y1) and ρ ◦ f (y2) = ρ ◦ f (x2).
We have now to prove that it is maximal w.r.t. the relative precision order,
namely any more abstract abstraction does not satisfy the ANI property. Sup-
pose there exists η′ ∈ wAbs(D) more abstract than ρ∨f , then it means that there

exists x ∈ D such that y , ρ∨f (x ) � η′(x ), namely η′(x )  y ∈ max{z ∈
D | ρ ◦ f (z ) = ρ ◦ f (x )}. Hence η′ ◦ η′(x ) = η′(x ), by idempotence, but
ρ ◦ f (η′(x )) 6= ρ ◦ f (x ) being y maximal.

Proof (Proof of Theorem 5). Exploiting the correspondence between complete-
ness and Abstract Non-Interference (Theorem 2), we just have to prove that ANI
holds. Indeed, we have to prove that if ` [η]C(ρ) then [η]C(ρ) holds. Let us prove
that all rules in Fig. 4 are sound, namely that the deduced abstraction ensure
ANI for P.
Rule R0: ∀x1, x2, independently from the input observation η, we trivially have
TJCK(x1) = TJCK(x2). On the other hand, id(x1) = id(x2) means that x1 = x2,
and therefore trivially, for any ρ, ρJCK(x1) = ρJCK(x2).
Rule R1: We consider here expressions as base case of the induction. By Corol-
lary 2 we have that η∧{|e|} is such that ∀x1, x2. η(x1) = η(x2) ⇒ η∧{|e|}{|e|}(x1) =

η∧{|e|}{|e|}(x2). Analogous for the other rule by Corollary 3. Note that, in order to
be precise we should have to write other two axioms for b; but they are almost
the same by considering {|b|} when computing, respectively, the input and the
output observations.
Rule R2: In this case we can observe that, [η]skip(ρ) holds iff ∀x1, x2 we have
that η(x1) = η(x2) implies ρJskipK(x1) = ρ(x1) = ρ(x2) = ρJskipK(x2), and this
trivially holds if η v ρ.
Rule R3: In this case we need the precondition [η]e(ρ), which means that the
expression semantics does not change the property, i.e., η(x1) = η(x2) ⇒
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ρ({|e|}(x1)) = ρ({|e|}(x2)). Hence, the assignment is complete if the expres-
sion is complete, but if there is more than one variable we need η v ρ for
guaranteeing the implication (the assignment behaves like skip; on the other
potential program viariables). Indeed, Jx := eK(x1) = x1[x 7→ {|e|}(x1)] and
Jx := eK(x2) = x2[x 7→ {|e|}(x2)], provides results with the same ρ property since
all the variables y 6= x , due to the hypotheses η(x1) = η(x2) and η v ρ, have
values sharing the same ρ property, while for x returns the evaluations of the ex-
pression on the two different input memories. These evaluations share precisely
the same ρ property by the rule precondition.
Rule R4: It is trivial since the semantics of the basic transfer function b? is
precisely the semantics of the boolean expression b.
Rule R5: In this case, the proof is obtained by using rule R2, R6 and R8.
Indeed, when we do not execute C (n = 0) we need in output to observe η (R2).
When we execute C one or more times, by induction on n ≥ 1, by hypotheses
and by R6, we prove ANI with ρ in output, and therefore by R8 we prove ANI
observing η t ρ = η.
Rule R6: If ∀x1, x2.η(x1) = η(x2) ⇒ ρJC1K(x1) = ρJC1K(x2) and ∀y1, y2.η1(y1) =
η1(y2) ⇒ ρ1JC2K(y1) = ρ1JC2K(y2), then we have that ∀x1, x2. η(x1) = η(x2) ⇒
ρ1JC2K(JC1K(x1)) = ρ1JC2K(JC1K(x2)). At this point, since ρJC1K(x1) = ρJC1K(x2)
implies η1JC1K(x1) = η1JC1K(x2), then we have the thesis.
Rule R7: If ∀x1, x2 we have η1(x1) = η1(x2) ⇒ ρ1JC1K(x1) = ρ1JC1K(x2) and
∀y1, y2 we have η2(y1) = η2(y2) ⇒ ρ2JC2K(y1) = ρ2JC2K(y2), then ∀x1, x2 we
have that . (η1 u η2)(x1) = (η1 u η2)(x2) implies both the equalities η1(x1) =
η1(x2) and η2(x1) = η2(x2), hence we have both ρ1JC1K(x1) = ρ1JC1K(x2) and
ρ2JC2K(x1) = ρ2JC2K(x2). This implies that, being JC1 ⊕ C2K = JC1K ∪ JC2K, (ρ1 t
ρ2)JC1 ⊕ C2K(x1) = (ρ1 t ρ2)JC1 ⊕ C2K(x2).
Rule R8: Trivial. Indeed, η implies η1 and ρ1 implies ρ.
Rule R9: By definition of t of partitioning closures [28], we have that η1 t
η2(x1) = η1 t η2(x2) implies that either η1(x1) = η1(x2) or η2(x1) = η2(x2). then
by hypothesis, in both cases we have that ρJCK(x1) = ρJCK(x2), namely we have
the thesis. We can trivially extend the proof to any set I .
Rule R10: Trivial by rule R7.
Rule R11: By definition of u we have that uiρiJCK(x1) =

∧
i ρiJCK(x1). By hy-

pothesis if η(x) = η(x2) then for each i ∈ I we have ρiJCK(x1) = ρiJCK(x2), but
then

∧
i ρiJCK(x1) =

∧
i ρiJCK(x2) = uiρiJCK(x2), namely we have the thesis.
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