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ABSTRACT
In the context of systems security, information flows play a central

role. Unhandled information flows potentially leave the door open

to very dangerous types of attacks, such as code injection or sen-

sitive information leakage. Information flows verification is based

on the definition of Non-Interference [8], which is known to be an

hyperproperty [7], i.e., a property of sets of executions. The sound

verification of hyperproperties is not trivial [3, 16]: It is not easy

to adapt classic verification methods, used for trace properties, in

order to deal with hyperproperties. In the present work, we design

an abstract interpretation-based static analyzer soundly checking

Non-Interference. In particular, we define an hyper abstract do-

main, able to approximate the information flows occurring in the

analyzed programs.
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1 INTRODUCTION
Programs security often relies on how information is propagated

during programs executions. Historically, in the context of con-

fidentiality, access control has been the main means of prevent-

ing information from being disseminated. As the name indicates,

access control verifies the program rights at entry-point. How-

ever, it is inadequate in many situations, in fact the program may
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leak/compromise information after the access check. Instead in-
formation flow control tracks how information propagates through

the program during execution to make sure that it handles the

information safely. A security mechanism, given a program and a

specification stating which flows of information are allowed and

which are not, checks whether the program is secure w.r.t. the given

specification. In general, unhandled information flows potentially

leave the door open to very dangerous types of attacks, such as

code injection or sensitive information leakage.

Information flow control is based on the definition of Non-

Interference [8], where variables are marked as public or private,

and flows from the public ones to the private ones are forbidden.

Indeed, a program is said to be non-interferent if the values of the
public outputs (i.e., at the end of the execution) do not depend on

the values of the private inputs (i.e., at the beginning of the execu-

tion), in other words if whenever we start from states agreeing on

the public inputs, the public observable outputs are the same.

The problem of Non-Interference verification is far from solved.

Indeed, Non-Interference is a hard problem to solve due to two

main reasons: it is undecidable and it is not even a trace property,

in the sense that it cannot be verified on single executions, since it

requires the comparison of multiple computations. In other words

it is an undecidable hyperproperty [7].

Both these problems are tackled by approximation, in particular

by designing trace properties stronger than Non-Interference, but

which can be verified by means of standard techniques, inherited

from classic programs verification for trace properties. Unfortu-

nately, this means that we introduce two degrees of approximation,

one for approximating Non-Interference as a trace property and

one for making it decidable.

Whilst for trace properties standard analysis techniques can be

used with an acceptable degree of approximation, the verification,

and hence the approximation, of hyperproperties is a hard problem

to solve in a sufficiently precise way. Being a hyperproperty means

to be modeled as a set of sets, and the extra level of sets introduces

a lot of technical problems for approximation-based verification

methods. Hence, in order to obtain significant results w.r.t. analysis

precision, we need new verification methods which approximate

sets of sets (instead of just sets) of executions [16].

In [17], the authors propose a general framework for design-

ing abstract interpretations for hyperproperties verification. In the

present work, our aim is to instantiate this framework to the verifica-

tion of Non-Interference, allowing us to design a prototype analyzer

of Non-Interference for a toy programming language. In particular,

we first design the abstract domain denoting the hyperproperty that

has to be satisfied by the semantics of non-interfering programs,

i.e., the values of public variables must be always the same single
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value. Unfortunately, this ideal domain (observing the precise single

public values of all the computations starting from the same public

input) is infinite and does not guarantee decidability of the analysis,

hence we need to introduce further abstractions. Once we fix the

domain of the abstract observable hyperproperty we define the

abstract hypersemantics computing a program’s executions on the

abstract domain, exactly as it happens in classic static analysis, but

with the only difference that we are abstracting a hypersemantics

into a hyperdomain. To the best of our knowledge, this is the first

attempt to provide a sound analyzer of Non-Interference exploiting

the expressiveness of hyperproperties.

Finally, in order to test the feasibility of the proposed approach

we have implemented a prototype (called nonInterfer) of the de-
signed analyzer. This prototype exhibits a good trade-off between

verification speed and precision. It can be tested at the link http:

//bit.do/noninterfer, via a web interface.

2 BACKGROUND
In this section, we set the background concepts needed to intro-

duce our prototype analyzer. First, we define a toy programming

language for which we design the analyzer. Then we make a brief

introduction to hyperproperties and, finally, we have two little para-

graphs, one for abstract interpretation and one for Non-Interference.

2.1 Programs
Programs are written in a simple deterministic imperative language

Imp, whose grammar is the following:

Aexp ∋ aF x | n | a ⊕ a | (a)

Bexp ∋ bF tt | ff | b ∧ b | b ∨ b | ¬b | a Z a | (b)

Imp ∋ PF skip | x B a | P ; P | if b {P} else {P} | while b {P}

with ⊕ ∈ {+,−, ∗} and Z∈ {=,,, <, ≤}

Variables x ∈ Var range over integer values, hence arithmetic ex-

pressions evaluate to values in Z. Boolean expressions evaluate

to boolean values in B ≜ {tt,ff}. The semantics of the language

is given on top of memories, namely maps from variables to val-

ues. Let Mem ≜ Var −→ Z be the set of programs memories. We

define the semantics of a program inductively from its syntax. In

particular, it is built on top of the small-step operational semantics

(SOS) of Imp. This latter models the execution of programs step

by step and it is specified by a set of inference rules modifying

configurations. A configuration ⟨m, P⟩ ∈ Mem× Imp represents the

current memorym in which the program P has to be executed. The

SOS inference rules in Fig. 1 describe how configurations evolve

during time, until a final configuration of the form ⟨m, skip⟩ is
reached (if ever). The SOS rules rely on the semantics for arith-

metic expressions LaM ∈ Mem −→ Z and for boolean expressions

LbM ∈ Mem −→ B. These latter are big-step semantics, since we are

not interested in the intermediate steps of computation for expres-

sions. In Fig. 2 we have the definition of the (big-step) semantics for

expressions. We denote with _k
the application of _ a number

k > 1 of times, hence ⟨m, P⟩ _k ⟨m′, P′⟩ if there exists a sequence
σ of k configurations such that: σ0 = ⟨m,P⟩, σk−1

= ⟨m′,P′⟩ and
∀i ∈ [0,k − 1) . σi _ σi+1. We denote with ⟨m,P⟩ _∗ ⟨m′,P′⟩
the fact that there exists a k > 1 such that ⟨m,P⟩ _k ⟨m′,P′⟩.

A program P, starting in the memory m, terminates, yielding the

memory m′, iff ⟨m,P⟩ _∗ ⟨m′, skip⟩. Conversely, P diverges (on

m) iff it is possible to apply _ to ⟨m,P⟩ infinitely many times.

2.2 Hyperproperties
In the field of information security, verification is the general pro-

cess of checking if a system complies with a specification, i.e., a

formal description of what systems are allowed and/or are not al-

lowed to do. The majority of works about verification deal with

particular specifications, those expressible with the so called trace
properties, often simply called “properties”. They are defined in

terms of single executions and hence cannot express specifications

which need to take into account relations between executions. In

[7], hyperproperties were introduced in order to formalize those

specifications which are not trace properties. When systems are

programs in Imp then program executions can be modeled as traces
of state denotations. Examples of traces could be the set of all pos-

sible sequences of memories generated by the SOS of programs or

the set of reachable memories, etc. The behavior (semantics) SP

of a system (program) P is modeled as a set of traces, one for each

possible input. In this setting, trace properties are sets of traces and

hyperproperties are sets of sets of traces. The satisfiability relation

is the set inclusion for trace property and the set membership for

hyperproperties. Namely, P satisfies the trace property P, written

P |= P, iff SP ⊆ P and it satisfies the hyperproperty Hp, written

P |= Hp, iff SP ∈ Hp. The satisfiability for hyperproperties can

be restated using set inclusion, in fact SP ∈ Hp iff {SP} ⊆ Hp.

The strongest program trace property of P is precisely SP
and its

strongest hyperproperty is {SP} [10, 16]. Strongest here means

that every property[hyperproperty] satisfied by P is implied by (i.e.,

contains) SP
[{SP}]. In order to prove that a program P satisfies

⟨m, P1 ⟩_ ⟨m′, P3 ⟩

⟨m, P1 ; P2 ⟩_ ⟨m′, P3 ; P2 ⟩

−

⟨m, skip ; P⟩_ ⟨m, P⟩

Lb Mm = tt

⟨m, if b {P1 } else {P2 }⟩_ ⟨m, P1 ⟩

Lb Mm = ff

⟨m, if b {P1 } else {P2 }⟩_ ⟨m, P2 ⟩

Lb Mm = tt

⟨m, while b {P}⟩_ ⟨m, P ; while b {P}⟩

Lb Mm = ff

⟨m, while b {P}⟩_ ⟨m, skip⟩

La Mm = n

⟨m, x B a⟩_ ⟨m[x←[ n], skip⟩

Figure 1: Small-step operational semantics of Imp.

Arithmetic expressions: La M ∈ Mem −→ Z

Ln Mm = n Lx Mm = m(x) L (a) Mm = La Mm

La1 ⊕ a2 Mm = La1 Mm ⊕ La2 Mm where ⊕ ∈ {+, −, ∗}

Boolean expressions: Lb M ∈ Mem −→ B

Ltt Mm = tt Lff Mm = ff L (b) Mm = Lb Mm L¬b Mm = ¬Lb Mm

Lb1 ∧ b2 Mm = Lb1 Mm ∧ Lb2 Mm Lb1 ∨ b2 Mm = Lb1 Mm ∨ Lb2 Mm

La1 Z a2 Mm = La1 Mm Z La2 Mm where Z∈ {=, ,, <, ≤}

Figure 2: Big-step semantics for expressions.
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a property[hyperproperty] we use an over-approximation of the

strongest P property[hyperproperty].

Some specifications can be expressed as trace properties, like

Access Control, and others cannot, like Non-Interference. Among all

hyperproperties there are some easier to verify. In [17], the authors

define k-bounded subset-closed hyperproprties: these specifications
can be refuted just exhibiting a counterexample set consisting in at

most k traces. It turns out that several interesting hyperproperties

are k-bounded (like Non-Interference). In Sec. 4 we will see how

we can exploit this fact in order to verify Non-Interference.

2.3 Abstract Interpretation
The (concrete) semantic of a program, namely its behavior, is a

representation of all its possible executions by means of a set of

mathematical objects. This set is, in general, not computable: It is

not possible for a program to represent and to compute all possi-

ble executions of any program starting from all its possible inputs.

Clearly all non trivial properties of the concrete semantics of a

program are undecidable: It is not possible for a program to an-

swer any question about the executions of any program. Abstract

interpretation is born, as a theory for soundly approximating the

semantics of discrete dynamic systems. The approximation consists

in the observation of the semantics at a specified level of abstraction,

focusing only on some important aspects of computations. In this

setting, abstract interpretation allows us to compute an abstract

semantics of the program, depending on the properties of interest.

The approximation is sound by design, in the sense that what holds

in the abstract holds also in the concrete (no false negative).

One of the fundamental aspects of abstract interpretation is

that the majority of the features of the approximation process are

specified only by the (abstract) domain of mathematical objects

chosen for representing the properties of interest. A theory of

domains for abstract interpretation was defined in [9], based on the

notion of Galois insertion. A Galois insertion (C,α ,γ ,A) consists
of two partially ordered sets ⟨C, ≤C ⟩, ⟨A, ≤A⟩ and two monotone

functions α ∈ C −→ A, γ ∈ A −→ C such that for all c in C and a in

A it holds: α(c) ≤A a ⇔ c ≤C γ (a) and α ◦ γ = id (the identity

function λx . x ). C is the concrete domain, A is the abstract domain,

α is the abstraction function and γ is the concretization function.

Sometimes, abstract interpretations are given by means of Galois

connections (instead of Galois insertions), relaxing the constraints

α ◦γ = id. This do not restrict the generality of the framework, since

every connection can be transformed in an insertion, eliminating

the redundant elements in the abstract domain.

Let f ∈ C −→ C be a function on the concrete domain and

f ♮ ∈ A −→ A be a function on the abstract domain. f ♮
is a sound

(or correct) approximation of f if f ◦ γ = γ ◦ f ♮
or, equivalently, if

α ◦ f = f ♮ ◦α [9]. The best correct approximation of f inA, defined

as f bca ≜ α ◦ f ◦ γ , is sound by construction [9]. Hence, in order

to prove that a given abstract function f ♮
is sound, it is sufficient

to prove that it approximates f bca
, i.e., if ∀a ∈ A . f bca(a) ≤A f ♮(a).

2.4 Non-Interference
Computing system security relies on how information is propa-

gated during system execution. Information flow control tracks

how information propagates through the system during execution

to make sure that the system handles the information securely.

In the last forty years, a lot of specifications for information flow

control have been proposed (see [14] for a survey). They differ

on the formal definitions but share the following common infor-

mal understanding of confidentiality: the lack of dependencies on

confidential information. This is precisely the absence of strong

dependency of [8] and it is the base of confidentiality information

flow specifications. The idea of [8] is that there exists an informa-

tion flow from variable x to variable y in a program P whenever

variety in x is conveyed to y by the execution of P. The original
formulation of Non-Interference [8] takes in consideration only

two security levels: private (H), i.e., information that has to be kept

secret, and public (L), i.e., information that could be freely released.

A program is said non-interferent if there are no information flows

from private to public variables, and interferent otherwise.

3 SIMPLIFYING NON-INTERFERENCE
VERIFICATION

In the following, we define Non-Interference for programs in Imp
and we show how to derive a verification mechanism for it. The clas-

sic notion of Non-Interference [8] checks the input/output relation

between executions, so we represent programs computations with

just the initial and the final memories. Furthermore, it is not ter-

mination sensitive, hence we ignore divergent computations. With

these premises, the set of executions denotations isMem ×Mem.

It is well known that information flows are hyperproperties [7],

indeed Non-Interference NI ∈ ℘(℘(Mem ×Mem)) is defined as:

NI ≜

{
X ⊆ Mem ×Mem

���� ∀⟨m1,m′
1
⟩, ⟨m2,m′

2
⟩ ∈ X .

m1 =L m2 ⇒ m′
1
=L m′

2

}
The relation =L says that memories agree on public variables, i.e.,

m =L m′ iff ∀x . Γ(x) = L⇒ m(x) = m′(x). Here Γ ∈ Var −→ {L,H}
is the typing environment, assigning variables to security levels.

Given a program P ∈ Imp, its semantics (i.e., its strongest prop-

erty) on Mem × Mem is
×SP ∈ ℘(MemP × MemP), defined as

×SP ≜ {⟨m,m′⟩ | ⟨m,P⟩ _∗ ⟨m′, skip⟩}. Its hypersemantics (i.e.,

its strongest hyperproperty) is
×HSP ≜ {×SP}. Hence we have that

P |= NI iff ×SP ∈ NI or, equivalently, iff
×HSP ⊆ NI.

Nowwewill see how the verification process for Non-Interference

can be made simpler. Since NI is a 2-bounded subset-closed hyper-

property [17], we have that P |= NI iff
×HSP#2 ≜ {X ⊆ ×SP | |X | =

2} ⊆ NI. We can note that
×HSP#2

can be partitioned in

×HSP#2

, ≜
{
{⟨m1,m′1⟩, ⟨m2,m′2⟩}

�� m1 ,L m2

}
and

×HSP#2

= ≜
{
{⟨m1,m′1⟩, ⟨m2,m′2⟩}

�� m1 =L m2

}
namely,

×HSP#2

, ∪
×HSP#2

= =
×HSP#2

and
×HSP#2

, ∩
×HSP#2

= = ∅. At

this point, as far as NI is concerned, we can observe that
×HSP#2

, ⊆

NI always holds, hence we have the following result.

Proposition 3.1. P |= NI iff ×HSP#2

= ⊆ NI.

Example 3.2. Consider P = x B y ; y B 1, with Γ(x) = L and

Γ(y) = H. Suppose that variables can only take values 0 and 1. In

order to simplify, consider the following encoding of memories:

a ≜ [x 7→0 y 7→0], b ≜ [x 7→0 y 7→1], c ≜ [x 7→1 y 7→0], d ≜ [x 7→
1 y 7→1]. The semantics of P is

×SP = {⟨a, b⟩, ⟨b, d⟩, ⟨c, b⟩, ⟨d, d⟩}.
Then

×HSP#2

= = {{⟨a, b⟩, ⟨b, d⟩}, {⟨c, b⟩, ⟨d, d⟩}} and ×HSP#2

, =

{{⟨a, b⟩, ⟨c, b⟩}, {⟨a, b⟩, ⟨d, d⟩}, {⟨b, d⟩, ⟨c, b⟩}, {⟨b, d⟩, ⟨d, d⟩}}.
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The verification process for Non-Interference can be simplified

even further. Take in consideration the following approximation

αr ∈ ℘(℘(Mem ×Mem)) −→ ℘(℘(Mem) × ℘(Mem)):

αr ≜ λX .
{
⟨{a | ⟨a,b⟩ ∈ X }, {b | ⟨a,b⟩ ∈ X }⟩

�� X ∈ X}
which abstracts the relation between the input and the output mem-

ories of traces (i.e., we only keep the relation between the whole

set of input memories and the whole set of output memories). Then

consider a further approximation αn ∈ ℘(℘(Mem) × ℘(Mem)) −→
℘(℘(Mem)) × ℘(℘(Mem)):

αn ≜ λX . ⟨{A | ⟨A,B⟩ ∈ X }, {B | ⟨A,B⟩ ∈ X }⟩

which abstracts the relation between sets of traces (i.e., we only

keep the relation between the set of all the possible input sets of

memories and the set of all the output sets of memories). Finally,

setting αnr ≜ αn ◦ αr we have that αnr and its left adjoint α−nr
form the Galois connection

1
:

⟨℘(℘(Mem ×Mem)), ⊆⟩ −−−−−→←−−−−−
αnr

α−nr
⟨℘(℘(Mem)) × ℘(℘(Mem)), ⊆⟩

Now we are able to state a simplified form of verification check for

Non-Interference:

P |= NI⇔ αnr (
×HSP#2

= ) ⊆ αnr (NI)

We can note that αnr (
×HSP#2

= ) ⊆ αnr (NI) iff the set αnr (
×HSP#2

= )⊣

contains only sets of memories {m,m′} agreeing on the L variables,
i.e., such that m =L m′. Here, given a pair ⟨x ,y⟩, we denote with

⟨x ,y⟩⊣ ≜ y its projection on the second element (analogously, we

denote with ⟨x ,y⟩⊢ ≜ x its projection on the first element).

Example 3.3. Continuing Ex. 3.2, we have that αnr (
×HSP#2

= ) is

equal to αn ({⟨{a, b}, {b, d}⟩, ⟨{c, d}, {b, d}⟩}), which is the pair

⟨{{a, b}, {c, d}}, {{b, d}}⟩. In this case, program P does not satisfy

Non-Interference since αnr (
×HSP#2

= )⊣ = {{b, d}} and b ,L d.

Basically, we can verify Non-Interference just checking whether

αnr (
×HSP#2

= )⊣ satisfies a hyperproperty on the set of execution

denotations Mem, as state by the following proposition.

Proposition 3.4. P |= NI iff αnr (
×HSP#2

= )⊣ ⊆ equivL, where
equivL ≜

{
X ⊆ Mem

�� ∀m,m′ ∈ X .m =L m′
}
.

This simplifies a lot the verification process for Non-Interference:

We can build a hypersemantics computing on ℘(℘(Mem)) instead
of ℘(℘(Mem ×Mem)).

4 ABSTRACT HYPERSEMANTICS
Classic methods for the verification of trace properties rely on the so

called collecting semantics, namely a representation of a program’s

behaviors starting from every possible input. This semantics essen-

tially computes the strongest program property. With a computable

approximation of this latter the verification process is made feasible.

Unfortunately, for hyperproperties this is not sufficient anymore: a

collecting hypersemantics, computing the strongest program hy-

perproperty, is needed [3, 16]. Then the verification is performed

with an approximation of this latter. In this section we give a col-

lecting hypersemantics and its abstract version for the verification

1
We abuse notation denoting with ⊆ both set-inclusion and its component-wise

extension to pairs, i.e., ⟨X, Y⟩ ⊆ ⟨T, Z⟩ ≜ (X ⊆ T ∧ Y ⊆ X).

of Non-Interference. In particular, we follow the construction intro-

duced in [17] for k-bounded subset-closed hyperproperties (indeed

Non-Interference is 2-bounded). First, we give the definition of

the collecting hypersemantics, computing at the level of sets of

sets. Then we instantiate the hyperlevel constants domain of [17]

to Non-Interference. This latter, in its original formulation, is not

machine-representable [11], namely it has an uncountable set of

elements. Moreover, it contains infinite ascending chains (i.e., it is

not ACC), inducing potential computation divergence. Hence, we

approximate it in order to make its implementation feasible. Finally,

we give the definition of the abstract semantics.

4.1 Collecting Hypersemantics
As we have seen in Sec. 3 (Prop. 3.4), we can verify Non-Interference

in a simpler domain, namely we can collect memories instead of

input/output traces of memories. We move from ℘(Mem ×Mem)
to ℘(Mem), with the abstraction αR ≜ λX . {m′ | ⟨m,m′⟩ ∈ X }
collecting all final memories of input/output traces. Hence, we have

that the strongest trace property of P induced by its semantics

on the domain Mem is
RSP ≜ αR (

×SP) = {m′ | ∃m . ⟨m,P⟩ _∗

⟨m′, skip⟩}. Analogously, the strongest hyperproperty of P onMem
is
RHSP ≜ {αR (

×SP)} = {RSP}.

In order to compute this semantics, we follow the construction

given in [17] (Sect. 3.1). We start with a classic collecting seman-

tics JPK ∈ ℘(Mem) −→ ℘(Mem), defined inductively on programs

statements, computing post-conditions:

JPK∅ ≜ ∅ JP1 ; P2KX ≜ JP2KJP1KX JskipKX ≜ X

Jx B aKX ≜ {m[x←[ LaMm] | m ∈ X }

Jif b {P1} else {P2}KX ≜ JP1KJbKX ∪ JP2KJ¬bKX

Jwhile b {P}KX ≜ J¬bK
(
lfp⊆∅ λT .X ∪ JPKJbKT

)
Here JbK ∈ ℘(Mem) −→ ℘(Mem) is the classic filtering function

which selects the memories making b true, namely JbKX ≜ {m ∈
X | LbMm = tt}. Note that JPK computes exactly the strongest trace

property of P, namely JPKMem = RSP
. Then we have to lift this

semantics on sets of sets, obtaining a collecting hypersemantics

JPKh ∈ ℘(℘(Mem)) −→ ℘(℘(Mem)):

JPKh∅ ≜ ∅ JP1 ; P2KhX ≜ JP2KhJP1KhX JskipKhX ≜ X

Jx B aKhX ≜
{
Jx B aKX

�� X ∈ X}
Jif b {P1} else {P2}KhX ≜

{
JP1KJbKX ∪ JP2KJ¬bKX

�� X ∈ X}
Jwhile b {P}KhX ≜ J¬bKh (lfp⊆∅ F) where

F ≜ λT .X ∪
{
JPKJbKT ∪ J¬bKT

�� T ∈ T }
This latter semantics is very similar to the hypercollecting semantics
of [3], instantiated on sets of sets of memories instead of sets of sets

of input/output traces. Again, JbKh ∈ ℘(℘(Mem)) −→ ℘(℘(Mem)) is
a filtering function, namely JbKhX ≜ {{m ∈ X | LbMm = tt} | X ∈
X} \ {∅}. In this case JPKh is not exactly the strongest hyperprop-

erty of P, but it is a correct approximation, i.e.,
RHSP ⊆ JPKh {Mem}

[17]. Luckily, for subset-closed hyperproperties, as equiv
L
, this is

not a problem because JPKh is complete for such hyperproperties,

namely P |= equivL iff JPKh {Mem} ⊆ equivL [17]. Nevertheless,
we are not interested in the strongest hyperproperty of P, since
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it is not necessary for proving Non-Interference. Instead, due to

Prop. 3.4, it is sufficient to compute αnr (
×HSP#2

= )⊣ and this boils

down to computing JPKh starting fromI2,L ≜ {{m,m′} | m =L m′}.
In fact, it is easy to see that αnr (

×HSP#2

= )⊣ and JPKhI2,L
coincide

with the set:{m′1,m′2} ⊆ Mem

������ ∃m1,m2 .

⟨m1,P⟩ _∗ ⟨m′
1
, skip⟩ ∧

⟨m2,P⟩ _∗ ⟨m′
2
, skip⟩ ∧

m1 =L m2


This observation induces the following proposition.

Proposition 4.1. P |= NI iff JPKhI2,L ⊆ equivL.

4.2 Towards Abstraction
Unfortunately, JPKhI2,L

and equivL are not computable in general,

hence we need approximations. In order to compute a sound approx-

imation of JPKhI2,L
, we rely on abstract interpretation. The first step

is to define the abstract domain used to verify Non-Interference.

4.2.1 The Abstract Domain for Non-Interference. The domain is

an instance of the hyperlevel (abstract) constants of [17], and it

checks whether a set of sets of values contains constant sets. In

the following, all abstraction functions α are additive (i.e., they

preserve the least upper bound of chains), hence their left adjoint

α− always exists
2
. From now on, we will often use the operator

( cond ? doTrue : doFalse ) in order to denote in-line conditional

definitions, namely its semantics is: if the condition cond is true

then substitute the operator with doTrue otherwise substitute it

with doFalse. Mathematically:

( cond ? doTrue : doFalse ) =

{
doTrue if cond is true

doFalse otherwise

Furthermore, we will sometimes use the pointwise extension of

relations and operators. Given a relation ≼ ⊆ Y × Y , an operator

⋎ ∈ Y × Y −→ Y and a set X , the pointwise extension Û≼ ⊆ (X −→
Y )×(X −→ Y ), of≼, is defined as f Û≼ f ′ ≜ (∀x ∈ X . f (x) ≼ f ′(x))
and the pointwise extension Û⋎ ∈ (X −→ Y ) × (X −→ Y ) −→ (X −→ Y ),

of ⋎, is defined as f Û⋎ f ′ ≜ λx ∈ X . f (x)⋎ f ′(x).
The domain is an abstraction of ℘(℘(Z)). In [17], the authors

claim that a hyperdomain, i.e., a domain suitable for the verification

of hyperproperties, can be decomposed in an inner abstraction,

approximating traces, and in an outer abstraction, approximating

properties of traces. Following this idea, we use as inner abstraction

the one for the classic constant propagation domain: it represents

precisely the singletons {n}, for every n ∈ Z, and it abstracts to Z
everything else. Instead, the outer abstraction checks whether the

inner abstraction always returns constant values, not necessarily

the same. For instance, {{1}, {2}} contains only constant sets, in-

stead {{1}, {2, 3}} contains also a not-constant set (in this case the

inner abstraction maps {2, 3} to Z).
We follow [17] defining Chc ≜ ℘({{n} | n ∈ Z}) ∪ {℘(Z)},

αhc ≜ λX . ( X ⊆ {{n} | n ∈ Z} ? X : ℘(Z) ) and γhc ≜ id. Then we

have the Galois insertion:

⟨℘(℘(Z)), ⊆⟩ −−−−−→−→←−−−−−−
αhc

γhc
⟨Chc, ⊆⟩

This domain, as proved in [17], is sufficient for Non-Interference

verification, but, as observed at the beginning of this section, it is

2
This is a sufficient condition in order to form a Galois connection.

not machine-representable. For this reason we need to perform a

further approximation.

The domain Chc has an uncountable set of elements, so we define

a simpler domain, which is machine-representable but still able to

verify Non-Interference. Let
¯Z be a set isomorphic to Z, aiming at

representing sets containing only one singleton, i.e., of the form

{{n}}, which is the information we want to observe precisely, and

let ¯ ∈ Z −→ ¯Z a bijection. Furthermore, we denote by κ the abstract

element representing the set of all singletons. Then we define Ch ≜
{n̄ | n ∈ Z}∪ {⊥,⊤,κ}, with the partial order⊴ ⊆ Ch ×Ch defined

as c1 ⊴ c2 ≜ (c1 = ⊥ ∨ c1 = c2 ∨ (c1 = n̄ ∧ c2 = κ) ∨ c2 = ⊤). Now

consider the abstraction αℏ ∈ Chc −→ C
h
:

αℏ(X) ≜


⊥ if X = ∅
n̄ if X = {{n}}

κ if X ⊆ {{n} | n ∈ Z} ∧ |X| > 1

⊤ otherwise

Its corresponding concretization γℏ ∈ C
h −→ Chc is such that

γℏ(⊥) = ∅, γℏ(n̄) = {{n}}, γℏ(κ) = {{n} | n ∈ Z} and γℏ(⊤) =
℘(Z). Then we have the following Galois insertion:

⟨Chc, ⊆⟩ −−−−−→−→←−−−−−−
αℏ

γℏ
⟨Ch ,⊴⟩

The domain ⟨Ch ,⊴,▽,△,⊥,⊤⟩ is a compete lattice where ▽,△ ∈
Ch × Ch −→ Ch are:

c1 ▽ c2 ≜



⊤ if c1 = ⊤ ∨ c2 = ⊤

⊥ if c1 = ⊥ ∧ c2 = ⊥

n̄ if

(c1 = ⊥ ∧ c2 = n̄) ∨ (c1 = n̄ ∧ c2 = ⊥)

∨ (c1 = n̄ ∧ c2 = n̄)
κ otherwise

c1 △ c2 ≜


⊤ if c1 = ⊤ ∧ c2 = ⊤

⊥ if c1 = ⊥ ∨ c2 = ⊥ ∨ (c1 = n̄ , m̄ = c2)

n̄ if (c1 = n̄ ∧ c2 ∈ {κ, ⊤}) ∨ (c2 = n̄ ∧ c1 ∈ {κ, ⊤})
κ otherwise

By composition, αh ≜ αℏ ◦αhc and γh ≜ γhc ◦γℏ form the insertion:

⟨℘(℘(Z)), ⊆⟩ −−−−→−→←−−−−−−
αh

γh
⟨Ch ,⊴⟩

This domain approximates the set of sets of values a variable may

have. Finally, in order to track information flows we need to work

on memories instead of on values.

Consider a “double” non-relational abstraction for sets of sets of

memories. Let ÛMem ≜ Var −→ ℘(℘(Z)) and αnnr ∈ ℘(℘(Mem)) −→
ÛMem be αnnr (X) ≜ λx . {{m(x) | m ∈ X } | X ∈ X}. We have the

following Galois connection, with γnnr ≜ α−nnr :

⟨℘(℘(Mem)), ⊆⟩ −−−−−−→←−−−−−−
αnnr

γnnr
⟨ ÛMem, Û⊆⟩

Now we can compose point-wise (the machine-representable

version of) the hyperlevel constants abstraction with αnnr , obtain-

ing αm ≜ λX . λx . αh (αnnr (X)(x)). This latter forms, paired with

γm ≜ α−m , the Galois connection:

⟨℘(℘(Mem)), ⊆⟩ −−−−−→←−−−−−αm

γm
⟨Var −→ Ch , Û⊴⟩
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We denote withMem♮
the set Var −→ Ch and we call its elements

m abstract memories. In order to simplify the notation, we let ⊑≜
Û⊴, ⊔ ≜ Û▽, ⊓ ≜ Û△, ⊥♮ ≜ λx .⊥ and ⊤♮ ≜ λx .⊤. We have that

⟨Mem♮ ,⊑,⊔,⊓,⊥♮,⊤♮⟩ is a complete lattice. This latter is indeed

our abstract hyperdomain of computation.

Example 4.2. Let us show in a simple example how this abstrac-

tion works. Continuing Ex. 3.3, we have: I2,L= {{a, b}, {c, d}} and
αm({{a, b}, {c, d}})= [x 7→αh ({{0}, {1}}) y 7→αh ({{0, 1}})] = [x 7→
κ y 7→⊤]. Indeed a, b both provide 0 to x and c, d both provide 1

to x, while a, b provide both 0 and 1 to y and c, d provide both 0

and 1 to y. Similarly, JPKhI2,L = {{b, d}} and αm({{b, d}}) = [x 7→
αh ({{0, 1}}) y 7→αh ({{1}})] = [x 7→⊤ y 7→ 1̄].

It is worth noting that, given X ⊆ equivL, then every set in X

contains L-equivalent memories. This implies αm(X)(x) , ⊤, for
each L variable x. So, theNon-Interference check JPKhI2,L ⊆ equivL

becomes equivalent to checking whether αm(JPKhI2,L)(x) , ⊤, for
each L variable x. Indeed the program of Ex. 4.2 is interferent, since

computing αm(JPKhI2,L) results in L variable x having value ⊤.

Finally, we can show how the abstract domain Mem♮
can be

used for Non-Interference verification, with the following theorem.

Theorem 4.3. Let mNI ∈ Mem♮ be the abstract memory defined
asmNI(x) ≜ (Γ(x) = L?κ :⊤). Then P |= NI iff αm(JPKhI2,L) ⊑ mNI.

Proof. By definition of Galois connection: αm(JPKhI2,L) ⊑ mNI

iff JPKhI2,L ⊆ γm(m
NI). It is clear that γm(m

NI) ⊆ equivL, since
the concretization of mNI

contains L-equivalent memories, by con-

struction. Hence, due to Prop. 4.1, the theorem is proved. □

Hence, in order to verify Non-Interference it is sufficient an

abstract semantics, computing onMem♮
, which approximates JPKh .

Indeed we can prove P |= NI by computing an over-approximation

of JPKhI2,L
in Mem♮

.

4.2.2 The Abstract Semantics for Non-Interference. Finally, we have
to show how to compute a program’s collecting hypersemantics

on the proposed abstract domain. The abstract semantics for pro-

grams relies on the abstract semantics for boolean and arithmetic

expressions, given in Fig. 3,4. The abstract semantics for arithmetic

expressions LaM♮ ∈ Mem♮ −→ Ch evaluates to an abstract value

and it relies on the abstract (mathematical) operations given in

Fig. 3. This semantics is such that abstract assignments are sound

approximations of the concrete ones. We obtain this defining ab-

stract operations ⊕♮
such that they are sound w.r.t. the concrete

ones ⊕, with ⊕ ∈ {+,−, ∗}. This technically means that they satisfy

the following constraint
3
:

{{X ∋ n ⊕m ∈ Y } | X ∈ γh (c1),Y ∈ γh (c2)} ⊆ γh (c1 ⊕
♮ c2)

The constraint basically requires that every possible result obtained

applying the concrete operation is contained in the concretization

of the application of the abstract operator.

The abstract semantics for booleans LbM♮ ∈ Mem♮ −→ Mem♮

is an abstract filtering function. To simplify, we assume that all

negations ¬ have been removed using DeMorgan’s laws and usual

arithmetic laws: ¬(b1∨b2) ≡ (¬b1)∧(¬b2), ¬(a1 < a2) ≡ (a2 ≤ a1),

3
Recall that our abstract semantics is built after the “double” non-relational abstraction

αnnr , hence it abstracts ÛMem = Var −→ ℘(℘(Z)).

Arithmetic expressions: La M♮ ∈ Mem♮ −→ Ch with ⊕ ∈ {+, −, ∗}

Ln M♮m ≜ n̄ Lx M♮m ≜ m(x) L (a) M♮m ≜ La M♮m

La1 ⊕ a2 M♮m ≜ La1 M♮m ⊕♮ La2 M♮m

Abstract operations: ⊕♮ ∈ Ch × Ch −→ Ch

⊕♮ ⊥ n̄ κ ⊤

⊥ ⊥ ⊥ ⊥ ⊥

m̄ ⊥ m ⊕ n κ ⊤

κ ⊥ κ κ ⊤

⊤ ⊥ ⊤ ⊤ ⊤

Figure 3: Abstract semantics for arithmetic expressions.

Boolean expressions: Lb M♮ ∈ Mem♮ −→ Mem♮ Z∈ {=, ,, <, ≤}

Ltt M♮m ≜ m Lff M♮m ≜ ⊥♮ L (b) M♮m ≜ Lb M♮m

Lb1 ∨ b2 M♮m ≜
let n = Lb1 M♮m ⊔ Lb2 M♮m in

λx . (m(x) = ⊤ ∧ x ∈ vars(b1) ∩ vars(b2) ? ⊤ : n(x) )

Lb1 ∧ b2 M♮m ≜ Lb1 M♮m ⊓ Lb2 M♮m

La1 Z a2 M♮m ≜
let ⟨c1, c2 ⟩ = La1 M♮m Z♮ La2 M♮m in⊔
{n ⊑m | La1 M♮n ⊴ c1 } ⊓

⊔
{n ⊑m | La2 M♮n ⊴ c2 }

Abstract comparators Z♮ ∈ Ch × Ch −→ Ch × Ch :

c1 Z
♮ c2 ≜



⟨⊥, ⊥⟩ if c1 = ⊥ or c2 = ⊥

⟨n̄, n̄ ⟩ if c1 = c2 = n̄, Z∈ {=, ≤}
⟨n̄, m̄ ⟩ if c1 = n̄, c2 = m̄, n < m, Z∈ {<, ≤, ,}

⟨n̄, m̄ ⟩ if c1 = n̄, c2 = m̄, n > m, Z∈ {,}

⟨⊤, ⊤⟩ otherwise

Figure 4: Abstract semantics for boolean expressions.

etc. This semantics must be sound w.r.t. the collecting hyperseman-

tics for booleans, namely JbKhγm(m) ⊆ γm(LbM♮). In order to obtain
this, we have defined the abstract comparators Z♮

such that they

are sound w.r.t. the concrete ones Z, with Z∈ {=,,, <, ≤}. This
technically means that they satisfy the following constraint:

let X = {{⟨n ∈ X ,m ∈ Y ⟩ | n Z m} | X ∈ γh (c1),Y ∈ γh (c2)} in

{{n | ⟨n,m⟩ ∈ X } | X ∈ X} ⊆ γh ((c1 Z
♮ c2)⊢)

{{m | ⟨n,m⟩ ∈ X } | X ∈ X} ⊆ γh ((c1 Z
♮ c2)⊣)

The constraint basically requires that every possible pair of values

making true the concrete comparator is contained in the concretiza-

tion of the application of the abstract comparator. In Fig. 4, the term⊔
{n ⊑ m | LaM♮n ⊴ c} can be computed with a backward abstract

semantics for expressions (as we actually do in the implementation)

but we omit here its definition for space reasons. The function

vars(b) returns the set of variables occurring in b.

Example 4.4. Let us see how to compute Lx < 2M♮m where m =

[x 7→ 1̄ y 7→κ]. We have LxM♮m = 1̄, L2M♮m = 2̄ and 1̄ <♮
2̄ = ⟨1̄, 2̄⟩.

Then

⊔
{n ⊑ m | LxM♮n ⊴ 1̄} = [x 7→ 1̄ y 7→ κ] and

⊔
{n ⊑

m | L2M♮n ⊴ 2̄} = [x 7→ 1̄ y 7→κ]. The intersection is, indeed, equal

to m. Suppose now to compute the negation of x < 2, namely we

want to compute L2 ≤ xM♮m. In this case we have 2̄ ≤♮
1̄ = ⟨⊤,⊤⟩

and

⊔
{n ⊑ m | L2M♮n ⊴ ⊤} =

⊔
{n ⊑ m | LxM♮n ⊴ ⊤} = [x 7→

1̄ y 7→κ]. Hence we obtain [x 7→ 1̄ y 7→κ] as result.
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Finally, we need two auxiliary functions vars⊤m(b) and vars:=(P),
returning the set of variables occurring in b having value ⊤ when

evaluated in m and the set of modified variables in P, respectively.
The first is easy to compute: vars⊤m(b) ≜ {x ∈ vars(b) | m(x) = ⊤}
and vars(b) is just a syntactic check. The second involves semantic

information, hence it is not trivial to compute. At the moment, we

adopt a simple syntactic approach for approximating the set of

variables which may be modified during P executions. Indeed, the

function vars:=(P) returns the set of variables occurring in P on

the left-hand side of an assignment, which is easy implementable

as a syntactic check. We plan to enhance our abstract semantics

with a semantic check for modified variables, in order to increase

precision, as a future work.

Now we have all the ingredients needed to define the abstract

collecting hypersemantics JPKh
♮
∈ Mem♮ −→ Mem♮

, which is:

JPKh♮ ⊥♮ ≜ ⊥♮ JP1 ; P2Kh♮ m ≜ JP2Kh♮ JP1Kh♮ m

JskipKh♮ m ≜ m Jx B aKh♮ m ≜ m[x←[ LaM♮m]

Jif b {P1} else {P2}Kh♮ m ≜ w where

let n = JP1Kh♮ LbM♮m ⊔ JP2Kh♮ L¬bM♮m in

w = λx .


n(x) if

x < vars:=(P1) ∪ vars:=(P2) ∨

(n(x) ⊴ κ ∧ n(x) , κ) ∨ vars⊤m(b) = ∅
⊤ otherwise

Jwhile b {P}Kh♮ m ≜ L¬bM♮(lfp⊑⊥♮ λn.m⊔Jif b {P} else {skip}Kh♮ n)

The abstract semantics is quite standard for all statements, except

for conditionals. Wewill explain here only this latter, which exploits

the following idea. For every variable, we make the join between

its value resulting after the execution of the true branch and its

value resulting after the execution of the false branch. This is done

in order to track the forbidden flows (implicit or explicit) generated

inside the two branches. In fact, a L variable has value ⊤ after

the join if in at least one of the branches it has value ⊤ (meaning

that there is a forbidden flow). After this check we need to take

in consideration the implicit flows generated by the conditional

statement itself. Indeed, first we suppose that if there is at least one

variable with value ⊤ before the boolean guard is evaluated, then

all variables modified in the conditional branches have a forbidden

flow (a variable has value ⊤ only if it is a H variable or if it has been

“influence” by a H variable). This is done setting to ⊤ all modified

variables. Note that if, for some reasons, aH variable is not⊤ during

this check, the flow is correctly not set. This procedure is sound

but not so precise. In order to enhance precision, we exploit our

abstract domain. In particular, we do not set to ⊤ the variables

which have the same constant value n̄ in both branches (this is the

condition (n(x) ⊴ κ ∧ n(x) , κ)) because this means that at the

end of the conditional statement the variable has always a constant

value. If there are no ⊤-valued variables into b (this is the condition
vars⊤m(b) = ∅), then no variables are set to ⊤: the resulting flows

are those generated into the two branches of the conditional.

We proved that our abstract semantics is sound w.r.t. the collect-

ing hypersemantics, and that it can be used for Non-Interference

verification. This is stated in the following two theorems.

Theorem 4.5 (Soundness). The abstract collecting hyperseman-
tics is a sound approximation of the collecting hypersemantics:

∀X ∈ ℘(℘(Mem)) . αm(JPKhX) ⊑ JPKh♮ αm(X)

Proof. (Sketch) We just have to prove that the abstract collect-

ing hypersemantics approximates the best correct approximation of

the collecting hypersemantics inMem♮
, namely αmJPKhγm Û⊑ JPKh

♮
.

The proof relies on the soundness of the abstract semantics for

arithmetic and boolean expressions and it is for structural induc-

tion. We omit here the full proof, we just show as example the case

for programs sequences:

αmJP1 ; P2Khγm(m)
= ∥ definition of J·Kh

αmJP2KhJP1Khγm(m)
⊑ ∥ extensivity of γmαm

αmJP2KhγmαmJP1Khγm(m)
⊑ ∥ inductive hypothesis: αmJPi Khγm Û⊑JPi Kh♮ with i ∈{1,2}

JP2Kh♮ JP1Kh♮ (m)
= ∥ definition of J·Kh

♮

JP1 ; P2Kh♮ (m)

□

. With the abstract semantics just introduced we can define an

effective verification method for Non-Interference.

Theorem 4.6 (Non-Interference Verification). We have that
a program satisfies Non-interference P |= NI if JPKh

♮
mNI ⊑ mNI.

Proof. Note that αm(I
2,L) ⊑ mNI

since I2,L
contains only sets of

memories agreeing on L variables. This means that αm(I
2,L)(x) ⊴

κ = mNI(x), for each L variable x. For H variables y, αm(I2,L)(y) ⊴
⊤ = mNI(y) trivially holds. Then the proof is given by the following

implications:

JPKh♮ m
NI ⊑ mNI

⇓ ∥ monotonicity of JPKh
♮
and αm(I2,L)⊑mNI

JPKh♮ αm(I
2,L) ⊑ JPKh♮ m

NI ⊑ mNI

⇓ ∥ soundness of JPKh
♮
(Thm. 4.5)

αm(JPKhI2,L) ⊑ JPKh♮ αm(I
2,L) ⊑ JPKh♮ m

NI ⊑ mNI

⇓ ∥ Thm. 4.3

P |= NI

□

This means that we can check Non-Interference simply by check-

ing that each set of computations, starting from L-equivalent mem-

ories, provides only singletons as results.

5 THE PROTOTYPE ANALYZER
With the only aim of proving the feasibility of the proposed ap-

proach, and in particular of the abstract hypersemantics, we have

written a prototype analyzer in Java SE 10 for Imp programs, which

implements the abstract collecting semantics of Sec. 4. The tool,

2221



Program P1:

a B 0 ;
if (b < x) { b B a ∗ 3 }
else {b B a − ((2 ∗ a) − a)}

Program P2:

a B x ;
if (b < a) { b B 2 }
else {b B 3}

Program P3:

a B x − x

Program P4:

a B 0 ;
while (x < y) {

x B x + 1 ;
while (a < x) {a B a + 2} ;
a B 0

}

Figure 5: Example programs.

called nonInterfer, can be tested on-line, through a web interface,

at the link http://bit.do/noninterfer.

5.1 Validation
Since our analyzer is built for a toy language, there are no bench-

mark test sets. So we have measured speed and precision of the

tool building our own test set. We have written 25 non-interferent

programs and 25 interferent programs, with different levels of com-

plexity. As expected, the prototype does not output false negatives,

i.e., all interferent programs are discovered. For what concerns pre-

cision, the analyzer marks 3 programs as interferent even if they ac-

tually satisfy Non-Interference. In Fig. 5 we have four example pro-

grams, where variables a, b are public and variables x, y are private.

The initial abstract memorymNI
is [a 7→κ b 7→κ x 7→⊤ y 7→⊤]. We

have that JP1Kh♮ m
NI = [a 7→ 0̄ b 7→ 0̄ x 7→⊤ y 7→⊤] ⊑ mNI

, meaning

that the analyzer correctly marks P1 as non-interferent. Analyzing

program P2, the verifier is able to catch an implicit indirect flow, in

fact JP2Kh♮ m
NI = [a 7→⊤ b 7→⊤ x 7→⊤ y 7→⊤] @ mNI

(i.e., P2 is

correctly marked as interferent). Unfortunately, our analyzer sig-

nals a false alarm in program P3, indeed JP3Kh♮ m
NI = [a 7→⊤ b 7→

κ x 7→ ⊤ y 7→ ⊤] @ mNI
, even if the program is non-interferent.

Finally, we have a precise result on the more complex program P4,

indeed JP4Kh♮ m
NI = [a 7→ 0̄ b 7→κ x 7→⊤ y 7→⊤] ⊑ mNI

.

The finite height of the hyper abstract domain Ch guarantees the

termination of the analysis. Furthermore, the structure of the do-

main allows us to compute loops fixpoints quickly, hence there is no

need for a widening operator in order to speed-up the analysis. On

our test set, which comprises quite small hand-made programs, the

analyzer is very fast. The analysis time is around 120 milliseconds

in average, running on a commodity hardware
4
. We also tested the

prototype on bigger programs, generated automatically with the

tool Grammarinator[15]. The analyzer is able to handle programs

with hundreds of lines of code, basically with the same speed time.

As expected, the analyzer shows some slowdowns when programs

use lots of variables. Nevertheless, its running time is lower than

600 milliseconds even on programs with more than 500 variables.

Indeed the analyzer exhibits a good trade-off between verifica-

tion speed and precision (in general). Unfortunately, our analyzer

is not precise in some trivial situations, like in P3, hence in the next

subsection we show how it is possible to get better results.

4
Laptop with Arch Linux 64-bit (kernel 4.17.5-1), Intel Core i7-7700HQ CPU, 8GiB

RAM and SSD storage.

5.2 Improving Precision
The analyzer has a good precision overall but it signals false alarms

in some, sometimes very trivial, cases. We mentioned in the pre-

vious section that our current approach for the approximation of

modified variables is a very simple syntactic check. With a more se-

mantic analysis we can gain precision and do not arise false alarms

for programs like P3 of Fig. 5. Apart from this detail, the sources

of imprecision of our semantics are basically two: the approxi-

mation added making the hyperlevel constants domain machine-

representable and the lack of relational information between vari-

ables. In this section we deal with these two issues.

5.2.1 Tuning the Hyperlevel Constants Domain. The original hy-
perlevel constants domain of [17] contains all the elements of the

powerset of {{n} | n ∈ Z}, meaning that every possible combina-

tion of constant sets is taken into account. This makes the domain

very precise but not machine-representable, as already observed. In

our implementation we have chosen to represent precisely only the

singletons {{n}}, abstracted to n̄, and the set of all singleton sets

{{n} | n ∈ Z}, abstracted to κ. In order to enhance precision we

could extend our domain Ch with pairs of constant sets, namely we

can represent sets of the form {{n}, {m}}, with n,m ∈ Z. But we
can gain more precision taking into account triples, quadruples and

so on. Hence we can infinitely tune the precision of the analyzer.

Clearly the more elements we add to the domain and the more space

is consumed by the analyzer and the more abstract operations are

complex. So, the trade-off between precision and performance of

analysis depends on the analyzer’s context of application.

5.2.2 Add Relational Information. Our analysis is not-relational,
meaning that we do not explicitly track relations between different

variables. We can increase the precision pairing Mem♮
with a re-

lational abstraction of ℘(℘(Mem)). For instance we can define an

abstract domain tracking equalities between variables. This latter,

combined with a numerical domain such as the one for intervals

will improve the precision w.r.t. implicit flows.

b B 1 ;
if (b = x) {

a B 3 ;
while (a! = 1) {

a B a − 1 ;
b B a

}
} else {a B 1}

[a 7→L b 7→L x 7→H]

Take, as example, the program here

on the left. Our analyzer signals a

false alarm, since the program is non-

interferent but our analysis outputs

an abstract memory assigning ⊤ to all

variables. With an interval analysis we

are able to find that variable a is equal
to [1, 1] at the end of thewhile andwith

a domain tracking equalities we can de-

duce the same for variable b. Hence, at
the end of the program we can better our analysis obtaining the

abstract memory [a 7→ 1̄ b 7→ 1̄ x 7→⊤], allowing us to prove that

the program is non-interferent.

6 RELATEDWORK
The closest related works are [3] and [20], which both deal with hy-

perproperties by means of abstract interpretation. In the second, the

authors define a hyperproperty called Input Data Usage, claiming

that it generalizes a lot of notion of information flows, comprising

Non-Interference. They propose an ad-hoc hypersemantics useful

to verify that hyperproperty. Then they show how it is possible
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to obtain, by abstraction of their semantics, some known verifica-

tion methods for information flows. The work of [3] is focused on

Non-Interference, indeed they propose two abstract semantics: one

for (qualitative) Non-Interference and one for quantitative Non-

Interference. Quantitative information flows go beyond the scope

of the present work, hence we do not take in consideration that

case. For the other case, we have that our abstract domain is not

directly comparable with the “dependences” abstract domain of [3].

Nevertheless our abstract semantics is able to state correctly the

non-interference of the program in Listing 5 of [3] without any tun-

ing for precision. The dependences abstract semantics of [3] needs

to add the Intervals domain in order to reach this level of precision.

Finally, to the best of our knowledge, none of the previous works

have an implementation, even for a toy language, supporting their

theoretical results.

Another relatedwork is [2], where authors propose a newmethod-

ology for proving the absence of timing channels. This work is based

on the idea of “decomposition instead of self-composition”. The idea

is to partition the program semantics and to analyze each partition

with standard methods. Their approach is similar to our method for

simplifying the verification of Non-Interference. Nevertheless, for

each partition they verify a classic trace property, instead we verify

a hyperproperty. This lead us to better results w.r.t. precision.

Non-Interference is a k-hypersafety (with k = 2) hence it can

be verified with a classic mechanism for safety trace properties

on the k times self-composed system. The self-composition can be

sequential, parallel or in an interleaving manner and a lot of works

applied this methodology [5, 18, 19]. Unfortunately, this approach

seems to be computationally to expensive to be used in practice

[2]. Besides the reduction to safety, in [1] the authors introduce

a runtime refutation method for k-hypersafety, based on a three-

valued logic. Similarly, [6, 13] define hyperlogics (HyperLTL and

HyperCTL/CTL
∗
), i.e., extensions of temporal logic able to quantify

over multiple traces. Some algorithms for model-checking in these

extended temporal logics exist, but only for particular decidable

fragments, since the model-checking problem for these logics is, in

general, undecidable.

Classic methods for Non-Interference verification, which do not

take in consideration its hyperproperty nature, comprise the type

systems à la Volpano [21]. These latter perform just syntactic checks,

with our approach we have more precision since we can exploit

semantic information. The new logic-based approaches showed up

recently seem very promising, like the epistemic temporal logic

of [4] and SecLTL [12]. They extend classic temporal logics with

modalities useful for the verification of Non-Interference. It is not so

easy to compare our work with these latter, we let as a future work

to deepen the link between these logics and our abstract semantics.

7 CONCLUSION AND FUTURE DIRECTIONS
In this work, we show step by step how to build a static analyzer

for Non-Interference, based on abstract interpretation. The tool

is sound, meaning that it will not signals false negative, i.e., if

the analyzer returns that a program is non-interferent then it is

guaranteed that it satisfies Non-Interference. We have soundness

by design, exploiting the framework of abstract interpretation. We

follow the theoretical work of [17] and we made their abstract

domain computer-representable, hence we show how to make their

analysis feasible. Furthermore, we simplified the process of Non-

Interference verification, moving from a semantics computing on

input/output traces to a simpler semantics computing on memories.

We implemented our analyzer, called nonInterfer in order to

validate our abstract semantics. The testing on our prototype has

lead to very promising results, in particular w.r.t. analysis speed.

Non-Interference verification is undecidable, hence we have ob-

viously false negative, namely sometimes our analyzer marks as

interferent a program which actually satisfies Non-interference.

Despite its simplicity and speed, our analyzer is quite precise, at

least as precise as classic type systems for Non-Interference.

As a future work, we will increase the precision of nonInterfer,
adding the possibility to track relational information between dif-

ferent variables. Finally, since the results on Imp are promising, we

planned the porting of nonInterfer to a real-world programming

language, in order to see its performance on more challenging tests.
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