
Math. Struct. in Comp. Science (2019), vol. 29, pp. 339–388. c© Cambridge University Press 2018

doi:10.1017/S0960129518000038 First published online 15 May 2018

Semantics-based software watermarking by

abstract interpretation

MILA DALLA PREDA† and MICHELE PASQUA

Department of Computer Science, University of Verona

Strada le Grazie 15, Verona 37134, Italy

Emails: mila.dallapreda@univr.it, michele.pasqua@univr.it

Received 10 November 2016; revised 22 January 2018

Software watermarking is a software protection technique used to defend the intellectual

property of proprietary code. In particular, software watermarking aims at preventing

software piracy by embedding a signature, i.e. an identifier reliably representing the owner,

in the code. When an illegal copy is made, the owner can claim his/her identity by

extracting the signature. It is important to hide the signature in the program in order to

make it difficult for the attacker to detect, tamper or remove it. In this work, we present a

formal framework for software watermarking, based on program semantics and abstract

interpretation, where attackers are modelled as abstract interpreters. In this setting, we can

prove that the ability to identify signatures can be modelled as a completeness property of

the attackers in the abstract interpretation framework. Indeed, hiding a signature in the code

corresponds to embed it as a semantic property that can be retrieved only by attackers that

are complete for it. Any abstract interpreter that is not complete for the property specifying

the signature cannot detect, tamper or remove it. We formalize in the proposed framework

the major quality features of a software watermarking technique: secrecy, resilience,

transparence and accuracy. This provides a unifying framework for interpreting both

watermarking schemes and attacks, and it allows us to formally compare the quality of

different watermarking techniques. Indeed, a large number of watermarking techniques exist

in the literature and they are typically evaluated with respect to their secrecy, resilience,

transparence and accuracy to attacks. Formally identifying the attacks for which a

watermarking scheme is secret, resilient, transparent or accurate can be a complex and

error-prone task, since attacks and watermarking schemes are typically defined in different

settings and using different languages (e.g. program transformation vs. program analysis),

complicating the task of comparing one against the others.

1. Introduction

A major issue in computer security is the protection of proprietary software against

attacks that aim at stealing, modifying or tampering with the code in order to obtain

(economic) advantages over it. Frontier Economics and the Business Software Alliance

(BSA) estimated that the global value of software piracy in 2015 was around 24$ Billion,

Frontier Economics also estimated that the projection of this value for 2022 is 42–

95$ Billion (BSA 2016; Frontier-Economics 2016). Software developers are interested in

† This work was partly supported by the MIUR FIRB 2013 project FACE RBFR13AJFT.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

http://orcid.org/0000-0002-9475-4836
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 340

protecting the intellectual property of their products against software piracy, namely to

prevent the illegal (unlicensed) use of their code.

A key challenge in defending code running on an untrusted host is that there is no limit

on the techniques that the host can use to extract sensitive data from the code and to

violate its intellectual property and integrity. Code obfuscation, whose aim is to obstruct

code comprehension, represents a preventive tool against software piracy: attackers cannot

steal or tamper what they do not understand (Collberg et al. 1998). Once an attacker goes

beyond this defence, software watermarking allows the owner of the violated code to prove

the ownership of the pirated copies (Collberg and Thomborson 2002, 1999; Davidson and

Myhrvold 1996; Moskowitz and Cooperman 1996). Software watermarking is a technique

for embedding a signature, i.e. an identifier reliably representing the owner, in a cover

program. This allows software developers to prove their ownership by extracting their

signature from the pirated copies. In the last two decades, researchers have developed a

variety of software watermarking techniques, e.g. (Collberg and Thomborson 2002, 1999;

Dalla Preda et al. 2008; Nagra et al. 2002), that can be classified in three main categories

according to their extraction process: static, dynamic and abstract watermarking. Static

watermarking inserts signatures in the cover program either as data or code and then

extracts them statically, namely without executing the code (Collberg and Thomborson

1999). Conversely, dynamic watermarking inserts signatures in the program execution state

(i.e. in its semantics) and the extraction process requires the execution of the program,

often on a special enabling input (Collberg and Thomborson 1999). Abstract watermarking,

introduced in Cousot and Cousot (2004), encodes the signature in such a way that it could

be extracted only by a suitable abstract execution of the program.

The efficiency of a watermarking scheme is typically evaluated according to the

following features: credibility that measures how strongly it proves authorship, secrecy that

deals with the complexity degree of signatures extraction by attackers, transparency that

measures how difficult it is for an attacker to realize that a program is marked, accuracy

that evaluates the observational equivalence of the marked and original program, resilience

that measures how difficult it is for an attacker to compromise the correct extraction of

the signature and data-rate that considers the amount of information that can be encoded

by the considered watermarking scheme. When researchers propose a new watermarking

technique they usually claim its efficiency in terms of the aforementioned features by

discussing how the peculiar signature embedding and extraction methods are able to

ensure good degrees of quality with respect to different attackers. However, existing

embedding and extraction algorithms often work on different objects (control flow graph,

variables, registers, etc) and attackers may use different program analysis techniques to

compromise the embedded signature. This makes it difficult to formally compare the

efficiency of different watermarking systems with respect to attacks and to discuss limits

and potentialities of the watermarking schemes in order to decide which one is better to

use in a given scenario. A unifying framework for software watermarking and attackers

would help this evaluation.

These problems also derive from the lack of theoretical studies on software wa-

termarking. Software watermarking has been formally defined in Barak et al. (2001),

where the authors show that the existence of indistinguishability obfuscators implies that

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 341

software watermarking cannot exist. Furthermore, the recent candidate construction of an

indistinguishability obfuscator (Garg et al. 2013) lowers the hope of building meaningful

watermarking scheme. Fortunately, this impossibility results rely on the fact that the

signed program computes the same function as the original program. Indeed, in Barak

et al. (2001) the authors suggest that if we relax this last constraint, i.e. we require

that the watermarking process has only to preserve an ‘approximation’ of the original

program’s functionality, then positive results might come. This naturally leads to reason

about software watermarking at semantic level, as we do in the present work.

A first attempt to provide a formal semantics-based definition of software watermarking

has been proposed in Giacobazzi (2008). Here, the author introduces the idea of viewing

static and dynamic watermarking schemes as particular instances of a general abstract

watermarking scheme. Intuitively, abstract watermarking is static because no execution

is needed for signature extraction, and dynamic because the signature is hidden in the

semantics of the code. The idea is to see static, dynamic and abstract watermarking

techniques as particular instances of a common watermarking scheme based on program

semantics and abstract interpretation. In this work, we follow this intuition and we

transform the scheme proposed in Giacobazzi (2008) in a formal and consistent definition

of a software watermarking system. The idea is to embed a signature s in a program

by encoding it as a semantic property M(s), to be inserted in the semantics of the cover

program. In this setting, the extraction process requires an analysis of the semantics of

the marked code that has to be at least as precise as M(s). Interestingly, this notion of

precision of the extraction corresponds to the notion of completeness of the analysis in

abstract interpretation. This means that in order to extract the signature it is necessary

to know how it is encoded. In this view, the semantic property for which the analysis has

to be complete in order to extract the signature plays the role of an extraction key. The

signature is hidden to any observer/analyzer of program’s semantics that is incomplete

for M(s), namely to any observer/analyzer that does not know the ‘secret key’.

Based on these ideas, we provide a formal semantics-based definition of a watermarking

system. Moreover, we provide a specification of the quality features of a watermarking

system in terms of semantic program properties. For example, it turns out that a

watermarking scheme is transparent w.r.t. an observer when the embedding process

preserves the program properties in which the observer is interested. Moreover, the

resilience of a watermarking scheme to collusive attacks, which attempt to remove the

signature by comparing different marked programs, can be modelled as a property of

abstract non-interference (Giacobazzi and Mastroeni 2004) among programs. Finally, we

do a wider and more precise validation rather the one done in Giacobazzi (2008) (which

is just sketched). We take into account five known watermarking techniques and we define

them in our framework, with a comparison of their quality features. Our investigation

and study in this direction has led to the following contributions.

— Specification of a formal framework based on program semantics and abstract

interpretation for modelling software watermarking. The framework refines and

extends the one proposed in Giacobazzi (2008).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 342

— Formalization of the quality features (resilience, secrecy, transparence and accuracy)

used to measure the quality of a watermarking system in the framework.

— Validation of the framework on five watermarking techniques, together with a

qualitative comparison of their features.

The results presented in this work are a revised and extended version of Dalla Preda

and Pasqua (2016).

2. Preliminaries

In this section, we present the background knowledge needed to read the rest of the

paper. We start by recalling some standard mathematical notations (Section 2.1) and

then the basic principles of abstract interpretation (Section 2.2). Next, in Section 2.3

we present the toy imperative programming language that we will use. We first present

the syntax (Section 2.3.1) and the semantics (Section 2.3.2) of the toy language. In

particular, in Section 2.3.2 we define the semantics for expressions and actions and the

auxiliary functions, namely all the basic parts needed for the definition of the transitional

semantics. From this latter, we define the trace semantics of programs, since we need

the full history of programs executions in order to model the watermarking techniques.

Then, we define the (traces) abstract semantics (Section 2.3.3) of programs written in

the proposed toy language since we need abstract interpreters for modelling attackers

and signature embedding. In Section 2.4, we introduce the notion of non-interference

among programs, namely an high-order notion of non-interference since standard non-

interference is defined among the variables of a program. We need this high-order notion

of non-interference when modelling certain quality features of the watermarking scheme

(as secrecy).

2.1. Mathematical notation

In the following, the symbol � stands for ‘is defined as’. Given two sets S and T , we

denote with ℘(S) the powerset of S , with S\T the set-difference between S and T , with

S ⊂ T strict inclusion and with S ⊆ T inclusion. Let S⊥ be set S augmented with the

undefined value ⊥, i.e. S⊥ � S ∪ {⊥}. 〈P ,�〉 denotes a poset P with ordering relation

�, while a complete lattice P , with ordering �, least upper bound (lub) ∨, greatest

lower bound (glb) ∧, greatest element (top) � and least element (bottom) ⊥ is denoted

by 〈P ,�,∨,∧,�,⊥〉. Given functions f ∈ S −→ T and g ∈ T −→ R, their composition

g ◦ f ∈ S −→ R is g ◦ f � λx . g(f(x)). We denote with � the pointwise ordering between

functions (on pesets). Given f ∈ P
c−→ Q on posets, f is (Scott)-continuous when it

preserves lub of countable chains in P (we use the superscript c to denote a continuous

function). Given f ∈ P
m−→ Q on posets, f is monotone if for any p, p′ ∈ P we have

that p �P p′ implies f(p) �Q f(p′) (we use the superscript m to denote a monotone

function). Given f ∈ C −→ D on complete lattices, f is additive [co-additive] when, for any

Y ⊆ C, f(∨CY) = ∨Df(Y) [f(∧CY) = ∧Df(Y)]. The right [left] adjoint of a function f is

f+ � λx.
∨
{y|f(y) � x}[f− � λx.

∧
{y|x � f(y)}].

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 343

2.2. Abstract interpretation

Abstract interpretation is based on the idea that the behaviour of a program at different

levels of abstraction is an approximation of its (concrete) semantics (Cousot and Cousot

1977, 1979). The concrete program semantics is computed on the concrete domain 〈C,�C〉,
while approximation is given by an abstract domain 〈A,�A〉. In abstract interpretation,

the abstraction is specified as a Galois connection, GC in short, (C, α, γ, A), namely as an

abstraction map α ∈ C −→ A and a concretization map γ ∈ A −→ C that are monotone

and that form an adjunction: ∀y ∈ A, x ∈ C . α(x) �A y ⇒ x �C γ(y) (Cousot and

Cousot 1977, 1979). α [resp. γ] is the left[right]-adjoint of γ [α] and it is additive [co-

additive]. Abstract domains can be equivalently formalized as upper closure operators

on the concrete domain (Cousot and Cousot 1979). The two approaches are equivalent,

modulo isomorphic representations of the domain objects. An upper closure operator, or

closure, on poset 〈C,�〉 is an operator ϕ ∈ C −→ C that is monotone, idempotent and

extensive (i.e. ∀c ∈ C . c � ϕ(c)). Closures are uniquely determined by the set of their

fixpoints ϕ(C). The set of all closure on C is denoted by uco(C). The lattice of abstract

domains of C is therefore isomorphic to uco(C) (Cousot and Cousot 1977, 1979). If C is

a complete lattice, then 〈uco(C),�,�,�, λx .�, id〉 is a complete lattice, where id � λx . x

and for every ρ, η ∈ uco(C), ρ � η iff ∀y ∈ C . ρ(y) � η(y) iff η(C) ⊆ ρ(C). The glb �
is isomorphic to the so called reduced product, i.e.

�
i∈I ρi is the most abstract common

concretization of all ρi. Given X ⊆ C , the least abstract domain containing X is the least

closure including X as fixpoints, which is the Moore-closure M(X) � {
∧
S |S ⊆ X}. Note

that
�
i∈I ρi = M(

⋃
i∈I ρi). If (C, α, γ, A) is a GC then ϕ = γ ◦ α is the closure associated

with A, such that ϕ(C) is a complete lattice isomorphic to A.

Precision of an abstract interpretation is typically defined in terms of completeness.

Depending on where we compare the concrete and the abstract computations, we obtain

two different notions of completeness (Giacobazzi and Quintarelli 2001; Giacobazzi et al.

2000). If we compare the results in the abstract domain, we obtain what is called backward

completeness (B-completeness) while, if we compare the results in the concrete domain,

we obtain the so called forward completeness (F-completeness). Formally, if f ∈ C −→ C

and ρ ∈ uco(C), then ρ is B-complete for f if ρ ◦ f = ρ ◦ f ◦ρ, while it is F-complete for f

if f ◦ρ = ρ◦f ◦ρ. In a more general setting, if f ∈ C −→ C and ρ, η ∈ uco(C), then 〈ρ, η〉 is

a pair of B[F]-complete abstractions for f if ρ◦f = ρ◦f◦η [f◦η = ρ◦f◦η] (equivalently,

we say that f is B[F]-complete for 〈ρ, η〉). A complete over-approximation means that no

false alarms are returned by the analysis, i.e. in B-completeness the approximate semantics

computed by manipulating abstract objects corresponds precisely to the abstraction of the

concrete semantics, while in F-completeness concrete semantics does not lose precision

computing on abstract objects.

The least fixpoint (lfp) of an operator F on a poset 〈P ,�〉, when it exists, is denoted

by lfp�F , or by lfpF when � is clear. Any continuous operator F ∈ C −→ C on a

complete lattice 〈C,�,∨,∧,�,⊥〉 admits a lfp: lfp�
⊥F =

∨
n∈N F

i(⊥), where for any i ∈ N
and x ∈ C: F0(x) = x and Fi+1(x) = F(Fi(x)). Given an abstract domain 〈A,�A〉
of 〈C,�C〉, F	 ∈ A −→ A is a correct (sound) approximation of F ∈ C −→ C when

α(lfp�CF) �A lfp�AF	.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 344

Inducing forward completeness. The problem of minimally modifying the abstract

domains in order to gain completeness w.r.t. a given function has been solved in Giacobazzi

and Quintarelli (2001); Giacobazzi et al. (2000). While in Giacobazzi and Mastroeni (2008)

the authors addressed the dual problem, i.e. they show how to minimally modify a function

in order to gain completeness w.r.t. the given abstract domains. So, it is always possible

to minimally transform a given semantic function f in order to satisfy completeness.

Minimally means to find the closest function, by reducing or increasing the images of f,

w.r.t. a given property we want to hold for f (in this context, completeness). Here, we take

into account only the case of increasing a given function, so we move upwards. According

to Giacobazzi and Mastroeni (2008) given a monotone function f ∈ C m−→ C and a pair

of closures η, ρ ∈ uco(C) we can define

Fη,ρ � λf . λx .

{
ρ ◦ f(x) if x ∈ η(C)

f(x) otherwise

We have that Fη,ρ(f) =
�
{h ∈ C −→ C|f � h ∧ h ◦ η = ρ ◦ h ◦ η}, namely Fη,ρ(f) is

the smaller function greater than f that is F-complete for 〈ρ, η〉. Unfortunately, Fη,ρ(f)

may lack monotonicity. But any function can be transformed to the closest monotone

function by considering the following basic transformer: M � λf . λx .
∨
C{f(y)|y �C x}

(Giacobazzi and Mastroeni 2008). So, we can define the forward completeness transformer

as Fη,ρ � M ◦ Fη,ρ, such that Fη,ρ(f) =
�
{h ∈ C m−→ C|f � h ∧ h ◦ η = ρ ◦ h ◦ η}.

2.3. Programming language and semantics

In this section, we introduce a simple imperative programming language, which is used in

the rest of the work. It is a simple extension of the one introduced in Cousot and Cousot

(2002). The main difference is the ability of programs to interact with the user, namely

programs can receive input values.

2.3.1. Syntax. The syntax of our toy programming language is given by the following

grammar:

E ::= n | X | E + E | E · E | E − E
B ::= b | E < E | E = E | B ∧ B | B ∨ B | ¬B
A ::= X := E | inputX | skip
C ::= L : A→ L′; | L : B → {Ltt, Lff}; | L : stop,

where the syntactic categories are described in Figure 1.

A program is defined as a set of commands, each one labelled with an unique identifier

(its label). A command L : A → L′; performs an action A and it passes the execution

to the command labelled with L′. A command L : B → {Ltt, Lff}; passes the execution

to the command at label Ltt if the guard B is evaluated to tt, and to the command at

label Lff otherwise. The command L : stop; stops the execution. Note that this latter

can be simulated by L : skip→ ⊥; and the command L : skip→ L′; can be simulated

by L : tt → {L′,⊥}; where ⊥ is the undefined label. In the following, with a little abuse

of notation, we use ⊥ to refer to an undefined value of any type. The action X := E;

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 345

n ∈ Int � integers

b ∈ Bool � booleans

X ∈ Var � program variables

L ∈ Lab � program labels

E ∈ Exp � arithmetic expressions

B ∈ Bexp � boolean expressions

A ∈ Act � program actions

C ∈ Com � commands

P ∈ Imp

�

= ℘(Com) � programs

Fig. 1. Syntactic categories.

n ∈ Z integer numbers

b ∈ B = {tt, ff} truth values

ρ ∈ Env = Var −→ Z⊥ environments

ι ∈ Sin = Z = n∈N
Z

n standard inputs

ζ ∈ Con = Env× Sin contexts

ς ∈ Σ = Com× Con program states

Fig. 2. Value domains.

assigns the value of expression E to the variable X. The action inputX takes an input

from the user and assigns its value to the variable X. The action skip does not perform

any operation.

2.3.2. Semantics. An environment ρ ∈ Env maps each variable X ∈ dom(ρ) to its value

ρ(X) ∈ Z⊥. A context ζ ∈ Con is a pair binding an environment ρ ∈ Env to a standard

input ι ∈ Sin, i.e. ζ = 〈ρ, ι〉. The value domains used in the definition of the semantics

are reported in Figure 2.

In order to present the semantics, we need the following auxiliary functions.

— A function that returns the set of labels of a given command
lab�L : A→ L′; � � {L}
lab�L : B → {Ltt, Lff}; � � {L}
lab�L : stop; � � {L}

and lab�P � � {lab�C�|C ∈ P } denotes the set of all labels of a program P .

— A function that returns the set of variables of a given expression, action or command.
var�D� � {X ∈ Var|X is in D} where D ∈ {E,B}
var�X := E� � {X} ∪ var�E�
var�inputX� � {X}
var�skip� � �
var�L : A→ L′; � � var�A�
var�L : B → {Ltt, Lff}; � � var�B�
var�L : stop; � � �

and var�P � �
⋃
C∈P

var�C� denotes the set of all variables of P .

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 346

— A function that returns the set of actions of a given command.

act�L : A→ L′; � � {A}
act�L : B → {Ltt, Lff}; � � �
act�L : stop; � � �

— A function that returns the set of successor labels of a given command.

suc�L : A→ L′; � � {L′}
suc�L : B → {Ltt, Lff}; � � {Ltt, Lff}
suc�L : stop; � � {⊥}

— A function that returns the set of possible environments of a given set of variables.

env�X � � {ρ ∈ Env|dom(ρ) = X } where X ⊆ Var

and env�P � � env�var�P �� denotes the set of all possible environments of P .

— A function that returns the set of possible contexts of a given environment.

con�ρ� � {〈ρ, ι〉 ∈ Con|ι ∈ Sin} where ρ ∈ Env

and con�P � � {con�ρ�|ρ ∈ env�P �} denotes the set of all possible contexts of P .

— Two functions top ∈ Sin −→ Z⊥ and next ∈ Sin −→ Sin that deal with standard

inputs. The function top, given a standard input, returns the next value that will be

passed to the program:

top(ι) �

{
⊥ if ι = ε

z ∈ Z if ι = zι′

The function next, given a standard input, returns another standard input without

the current value passed to the program:

next(ι) �

{
ε if ι = ε

ι′ ∈ Sin if ι = zι′ ∧ z ∈ Z

Semantics of expressions and actions. In order to define the semantics of programs, we need

to define the semantics of boolean/arithmetic expressions and the semantics of actions.

Arithmetic expressions: E�E� ∈ Con −→ Z⊥
E�n�ζ � n
E�X�〈ρ, ι〉 � ρ(X)

E�E1 opE2�ζ �

{
E�E1�ζ op E�E2�ζ if E�E1�ζ ∈ Z and E�E2�ζ ∈ Z

⊥ otherwise

Boolean expressions: B�B� ∈ Con −→ B⊥
B�tt�ζ � tt
B�ff�ζ � ff

B�E1 < E2�ζ �

{
E�E1�ζ < E�E2�ζ if E�E1�ζ ∈ Z and E�E2�ζ ∈ Z

⊥ otherwise

B�E1 = E2�ζ �

{
E�E1�ζ = E�E2�ζ if E�E1�ζ ∈ Z and E�E2�ζ ∈ Z

⊥ otherwise

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 347

B�¬B�ζ �

{
¬B�B�ζ if B�B�ζ ∈ B

⊥ otherwise

B�B1 ∧ B2�ζ �

{
B�B1�ζ ∧ B�B2�ζ if B�B1�ζ ∈ B and B�B2�ζ ∈ B

⊥ otherwise

B�B1 ∨ B2�ζ �

{
B�B1�ζ ∨ B�B2�ζ if B�B1�ζ ∈ B and B�B2�ζ ∈ B

⊥ otherwise

Actions: A�A� ∈ Con −→ Con

A�X := E�〈ρ, ι〉 � 〈ρ[X ←� E�E�〈ρ, ι〉], ι〉
A�inputX�〈ρ, ι〉 �

{
〈ρ[X ←� top(ι)], next(ι)〉 if top(ι) �= ⊥
〈ρ[X ←� ⊥], ι〉 otherwise

A�skip�ζ � ζ

Semantics of programs. A program state ς ∈ Σ is a pair ς = 〈C, ζ〉, where C is the

command to be executed and ζ is the current context of execution. The transition relation

S ∈ Σ −→ ℘(Σ) specifies the successor states of a given state:

S(〈C, ζ〉) �
{
〈C ′, ζ ′〉|ζ ′ = A�act�C��ζ ∧ lab�C ′� ∈ suc�C�} .

The set of states of a program is defined as: sts�P � � P×con�P �. The transitional semantics
S�P � ∈sts �P � −→ ℘(sts�P �) of a program P is

S�P �〈C, ζ〉 � {〈C ′, ζ ′〉 ∈ S(〈C, ζ〉)|ζ, ζ ′ ∈ con�P � ∧ C,C ′ ∈ P }.
A trace σ ∈ Σ is a sequence of states σ0, . . . σn−1 of length |σ| = n > 0 such that for all

i ∈ [1, n) we have σi ∈ S(σi−1). With Σ+ we indicate the set of all finite traces. If σ is a

finite trace, we indicate with σ� its first element, i.e. σ� = σ0, and we indicate with σ� its

last element, i.e. σ� = σ|σ|−1.

The partial finite traces semantics �P �⊕ ⊆ Σ+ of a program P is the set of all finite

partial traces of P . This semantics can be computed as the least fixpoint of the so called

transition function F⊕P ∈ ℘(Σ+)
m−→ ℘(Σ+), defined as follows:

F⊕P � λS . sts�P � ∪ {
σςς′|ς′ ∈ S�P �(ς) ∧ σς ∈ S} .

So �P �⊕ = lfp⊆�F
⊕
P . If we are only interested in those executions of a program P starting

from a given set L ⊆ lab�P � of entry points, so that I � {〈C, ζ〉|ζ ∈ con�P � ∧ C ∈
P ∧ lab�C� ∈ L} is the set of initial states, we can consider the partial traces semantics

�P [I]�⊕ ⊆ Σ+ of P which is the set of partial traces σ ∈ Σ+ starting from an initial state

σ0 ∈ I . The partial traces semantics �P [I]�⊕ can be expressed in fixpoint form as lfp⊆�F
⊕
P [I]

where F⊕P [I] ∈ ℘(Σ+)
m−→ ℘(Σ+) is

F⊕P [I] � λS . I ∪
{
σςς′|σς ∈ S ∧ ς′ ∈ S�P �(ς)} .

So, we can define a function, called partial input semantics, �P �⊕∈ ℘(Σ) −→ ℘(Σ+) defined

as follow:

�P �⊕� λS . lfp⊆�F
⊕
P [S] = λS . �P [S]�⊕

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 348

A state ς is blocking (or final), w.r.t. a program P , if S�P �(ς) = �. So the set of blocking

states of the program P is TP � {〈C, ζ〉 ∈ sts�P �|suc�C� �⊆ lab�P �}. A maximal finite trace

of a program P , is a trace σ ∈ Σ+ of length n where the last state σn−1 is blocking. �P �n is

the set of all finite traces of length n of the program P . The maximal finite traces semantics

�P �+ of the program P is given by the union of all maximal finite traces of length n > 0,

namely �P �+ �
⋃
n>0{σ ∈ �P �n|σ� ∈ TP }. This semantics can be expressed as the least

fixpoint of the transition function F+
P ∈ ℘(Σ+)

m−→ ℘(Σ+) defined as follow:

F+
P � λS . TP ∪

{
ςς′σ|ς′ ∈ S�P �(ς) ∧ ς′σ ∈ S} .

Similarly, we can define a function, called maximal input semantics, �P �+∈ ℘(Σ) −→ ℘(Σ+)

defined as follow:

�P �+� λS . {σ ∈ �P �+|σ� ∈ S}
Unfortunately, it seems that this semantic function cannot be expressed in fixpoint form in

the lattice 〈℘(Σ+),⊆,∪,∩,Σ+,�〉. A possible way for avoiding the problem is to calculate

the function as the combination of partial input and maximal traces semantics, so as,

�P �+= λS . �P �⊕(S) ∩ �P �+.

But a better solution would be the definition of a specific semantic domain in which we

are able to compute this function directly.

Prefix ordering. Let pref ∈ Σ+ −→ ℘(Σ+) be a function that returns the set of prefixes

of a given trace, so pref(σ) � {σ′ ∈ Σ+|∃σ′′ ∈ Σ+ ∪ {ε} . σ = σ′σ′′}. We can define the

relation �⊆ ℘(Σ+)×℘(Σ+) which is a partial order between sets of traces:

X � Y ⇔ ∀σ ∈ X ∃σ′ ∈ Y . σ ∈ pref(σ′)∧
(∀σ′ ∈ Y ∃σ ∈ X . σ ∈ pref(σ′)⇒ Y ⊆ X)

Now, we have to define the elements that extend the poset 〈℘(Σ+),�〉. The least upper

bound
⊎

is defined as follows:

⊎
X �

{
σ ∈

⋃
X∈X

X

∣∣∣∣∀σ′ ∈ ⋃
X∈X

X . σ ∈ pref(σ′)⇒ σ = σ′

}

The bottom element is � ∈ ℘(Σ+), i.e. ∀X ∈ ℘(Σ+) .� � X holds.

Proposition 2.1. 〈℘(Σ+),�,�,�〉 is a directed-complete partial order (DCPO).

Proof. See Appendix A.1, Page 379.

Finally, let us define the maximal input semantic in this new domain. As for partial traces

semantics, we can consider the maximal traces semantics �P [I]�+ ⊆ Σ+ of P , which is the

set of maximal traces σ ∈ Σ+ starting from an initial state σ� ∈ I . Recall that the maximal

finite traces semantics �P �+ is equal to
⋃
n>0{σ ∈ �P �n|σ� ∈ TP }. This latter, computed

starting from states in I , is defined as �P [I]�+ �
⋃
n>0{σ ∈ �P �n|σ� ∈ I ∧ σ� ∈ TP }. In

the following, we indicate with �P �nI the set {σ ∈ �P �n|σ� ∈ I} and with �P �n̄I the set

{σ ∈ �P �n|σ� ∈ I ∧ σ� ∈ TP }, so �P [I]�+ can be rewritten as
⋃
n>0�P �n̄I . Now we can note

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 349

that the following holds: ⋃
n>0

�P �n̄I =
⊎
n>0

�P �n̄I ,

because for every n the traces in �P �n̄I are not prefixes of any trace in �P �n+1
I , due to the

fact that they are maximal (and so the lub returns the union of this two sets).

So, the semantics can be expressed as lfp�
�F

+
P [I] of the Scott-continuous, and so

monotone, function F+
P [I] ∈ ℘(Σ+)

c−→ ℘(Σ+):

F+
P [I] � λS . �P �1

I �
{
σςς′|ς′ ∈ S�P �(ς) ∧ σς ∈ S} .

Proposition 2.2. �P [I]�+ = lfp�
�F

+
P [I].

Proof. See Appendix A.2, Page 380.

2.3.3. Abstract semantics. If we are interested in the abstract semantics of a program,

computed on a specific abstract domain, we need to compute the semantics using the best

correct approximation of the transfer function on the abstract domain. So if a semantics

is computed in a concrete domain C , as fixpoint of the transfer function F , then we

can compute its abstract interpretation in an abstract domain ρ ∈ uco(C) as the fixpoint

of the function ρFρ. If the abstract domain is B-complete for F then, we have that

lfp ρFρ = ρ(lfpF) (Giacobazzi et al. 2000).

For example, let 〈℘(Σ+),⊆,∪,∩,Σ+,�〉 be the concrete domain and �P �⊕ the semantics

computed as fixpoint of the transfer function F⊕P . Then, the best correct approximation

of P in ρ ∈ uco(℘(Σ+)) is as follows:

�P �ρ⊕ � lfp⊆� ρ ◦ F⊕P ◦ ρ.

Let 〈℘(Σ+),�,�,�〉 be the concrete domain and let �P [S]�+ be the semantics computed

as fixpoint of the transfer function F+
P [S]. The best correct approximation of P in ρ ∈

uco(℘(Σ+)) is:

�P [S]�ρ+� lfp�
� ρ ◦ F+

P [S] ◦ ρ
So, we can define the abstract maximal input semantics of P in ρ as follows:

�P �ρ+� λS . lfp�
� ρ ◦ F+

P [S] ◦ ρ

2.4. Abstract non-interference

In order to define some features of watermarking systems, as secrecy, we need to constrain

the information flows occurring in the marked program, so we need a form of semantic

interference. Abstract non-interference, ANI in short, Giacobazzi and Mastroeni (2004)

is a weakening of non-interference by abstract interpretation. Let η, ρ ∈ uco(℘(ZL
⊥)) and

φ ∈ uco(℘(ZH
⊥)), where ZL

⊥ and ZH
⊥ are the domains of public (L) and private (H)

variables. Here, η and ρ characterize the attacker, instead φ states what, of the private

data, can flow to the output observation, the so called declassification of φ (Mastroeni

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 350

2005). A program P satisfies ANI, and we write [η]P (φ ⇒ ρ), if ∀h1, h2 ∈ ZH
⊥ and

∀l1, l2 ∈ ZL
⊥:

η(l1) = η(l2) ∧ φ(h1) = φ(h2)⇒ ρ(�P �D(〈h1, l1〉)L) = ρ(�P �D(〈h2, l2〉)L).

Where with �P �D ∈ ℘(Σ) −→ ℘(Σ) we denote the (angelic) denotational semantics of the

program P (Cousot and Cousot 2002; Giacobazzi and Mastroeni 2002). This notion says

that, whenever the attacker is able to observe the input property η and the property ρ of the

output, then it can observe nothing more than the property φ of the private input. In order

to model non-interference in code transformations, such as software watermarking, we

consider an higher-order version of ANI, where the objects of observations are programs

instead of values. Hence, we have a part of a program (semantics) that can change, and

that is secret, and the environment that remains the same up to an observable property:

these are the new private and public inputs. The function that, in some way, has to hide

the change is now a program transformer, which takes the two parts of the program and

provides a program as result. The output observation is the best correct approximation

of the resulting program.

Here, the semantics we take into account is the maximal finite trace semantics. Let P

be the set of cover programs, Q the set of secret programs and I ∈ Imp × Imp −→ Imp

an integration function. As usual, the attacker is modelled as a couple 〈η, ρ〉, with

η, ρ ∈ uco(℘(Σ+)), that represents the input and output public observation power. Instead

φ ∈ uco(℘(Σ+)) is the property of the secret input.

Definition 2.1 (HOANI for maximal finite traces semantics). The integration program I,

given η, φ, ρ ∈ uco(℘(Σ+)), satisfies higher-order abstract non-interference (for maximal

finite traces semantics) w.r.t. 〈η, φ, ρ〉 and 〈P,Q〉 if

∀P1, P2 ∈ P ∀Q1, Q2 ∈ Q .

�P1�η+ = �P2�η+ ∧ �Q1�φ+ = �Q1�φ+ ⇒ �I(P1, Q1)�ρ+ = �I(P2, Q2)�ρ+.

We write H
+

[η]I(φ⇒ ρ)bca to indicate that the program I satisfies higher-order abstract

non-interference (for maximal finite traces semantics) w.r.t. 〈η, φ, ρ〉.
Deriving attackers. In this section, we introduce a method for defining attackers, via

abstract interpretation, for which a program is safe. In this case, security refers to abstract

non-interference. In particular, it is interesting to characterize the most concrete (i.e.

the most precise) attacker for which a program is safe. In fact it can be shown that

if [η]P (φ ⇒ ρ) then, for any β such that ρ � β, it holds [η]P (φ ⇒ β) (Giacobazzi

and Mastroeni 2004). That is, if abstract non-interference holds observing in output the

property ρ, then it holds also observing in output any property more abstract than ρ.

In Giacobazzi and Mastroeni (2004); Mastroeni (2005) it is shown how to derive the

most concrete attacker for which ANI holds. Following these results, we can analogously

derive the most concrete attacker for which HOANI holds. In this case, sets of values are

replaced by sets of traces. Attackers are defined as pairs of abstract domains, therefore

we characterize a domain transformer, parametric on the program to be analyzed, that

transforms each non-secret output abstraction into the nearest abstraction for which

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 351

HOANI holds. We fix a public input property η and a private input property φ, with

η, φ ∈ uco(℘(Σ+)). We then consider an abstraction ρ ∈ uco(℘(Σ+)) such that HOANI

does not hold w.r.t. a program I ∈ Imp, i.e. H
+

[η]I(φ⇒ ρ)bca does not hold. We can derive

the most concrete ρ̂ that is more abstract than ρ and such that H
+

[η]I(φ⇒ ρ)bca holds,

which is called higher-order abstract secret kernel for I.

Definition 2.2 (Secret kernel for HOANI). Let I ∈ Imp and KH+
I,η,(φ) ∈ uco(℘(Σ+)) −→

uco(℘(Σ+)). Then,

KH+
I,η,(φ) � λρ .

�{
β

∣∣∣∣ρ � β ∧ H
+

[η]I(φ⇒ β)bca

}

is the higher-order abstract secret kernel trasformer for I.

To characterize this transformer we must characterize when a program property is safe.

Program properties are collections of traces so, we have to characterize the sets of traces

that can belong to the kernel in order to satisfy HOANI. To this end, we define a predicate

on sets of traces identifying the elements that form the secret kernel. Clearly, these elements

must ensure non-interference, namely they must abstract in the same element all objects

that should be indistinguishable. To achieve this, we define two equivalence relations that

group programs according to a property on public programs (η) and a property on private

programs (φ). Let ≡η,≡φ⊆ Imp× Imp be such that:

≡η � {〈P , P ′〉|P , P ′ ∈ P ∧ �P �η+ = �P ′�η+}
≡φ � {〈Q,Q′〉|Q,Q′ ∈ Q ∧ �Q�φ+ = �Q′�φ+}.

So, we can define the set of indistinguishable elements for HOANI

ΥH+
I,η,(φ)(P ,Q) = {�I(P ′, Q′)�+|P ′ ≡η P ∧ Q′ ≡φ Q}.

These sets are collections of sets of traces that should be indistinguishable for each secure

abstraction, i.e. they should be approximated in the same object. Similarly, we can define

the predicate Secr for HOANI

∀X ∈ ℘(Σ+) . SecrH+
I,η,(φ)(X)⇔ ∀P ∈ P∀Q ∈ Q .

(∃Z ∈ ΥH+
I,η,(φ)(P ,Q) . Z ⊆ X ⇒ ∀W ∈ ΥH+

I,η,(φ)(P ,Q) .W ⊆ X).

So Secr(X) holds if X contains all the elements, i.e. all the sets of traces, that have to be

indistinguishable or non of them. Indeed, Secr identifies all and only the sets which are

in the secret kernel.

Theorem 2.1. Let η, φ ∈ ℘(Σ+):

KH+
I,η,(φ)(id) =

{
X ∈ ℘(Σ+)

∣∣∣SecrH+
I,η,(φ)(X)

}
.

Proof. See Appendix A.3, Page 381.

This means that the set of elements in ℘(Σ+) for which Secr holds corresponds to the

secret kernel of id, namely it coincides with the most concrete domain for which HOANI

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 352

holds. This abstraction is called most powerful harmless attacker for HOANI and it is

precisely the most precise attacker for which the program is safe. Furthermore, we can

characterize the secret kernel of a generic domain ρ.

Corollary 2.1. Let η, φ ∈ ℘(Σ+):

KH+
I,η,(φ)(ρ) =

{
X ∈ ρ

∣∣∣SecrH+
I,η,(φ)(X)

}

Proof. By definition KH+
I,η,(φ) = λρ .KH+

I,η,(φ)(id) � ρ, so we have to prove that this domain

is exactly {X ∈ ρ|SecrH+
I,η,(φ)(X)}. This means that this latter has to be equal to {X ∈

℘(Σ+)|SecrH+
I,η,(φ)(X)} � ρ. Remember that two sets are the same if one is included in the

other and vice versa. Consider an element Y ∈ {X ∈ ρ|SecrH+
I,η,(φ)(X)}. Clearly for this

element Y ∈ ρ and SecrH+
I,η,(φ)(Y) hold, i.e. Y belongs to KH+

I,η,(φ)(id) � ρ. Similarly the

inverse inclusion holds.

3. Semantics-based software watermarking

3.1. The framework

We follow the nomenclature introduced in Cousot and Cousot (2004) for describing the

basic components of a watermarking technique for programs written in Imp and signatures

s ∈ S .

Stegomarker M ∈ S −→ Imp, a function that generates a program which is the encoding

of a given signature s ∈ S , i.e. it generates the stegomark M(s) ∈ Imp

Stegoembedder L ∈ Imp × Imp −→ Imp, a function that generates a program which is the

composition of a stegomark and a program, called stegoprogram L(P ,M(s)) ∈ Imp.

Stegoextractor F ∈ Imp −→ S , a function that extracts the signature from a stegoprogram;

for all s ∈ S it must be s = F(L(P ,M(s))).

When L and M are clear from the context we denote the stegoprogram L(P ,M(s)) as

Ps. The stegoextractor takes a stegoprogram, analyzes it either statically or dynamically,

and then it returns the signature encoded in the stegomark. It is well known (Cousot and

Cousot 1979) that static analysis can be modelled in the context of abstract interpretation,

where a property is extensionally represented as a closure operator representing the

abstract domain of data satisfying it. In particular, static analysis is performed as an

abstract execution of the program, namely as the (fixpoint) semantic computation on

the abstract domain. Instead, dynamic analysis can be modelled as an approximated

observation of a potentially abstract execution since it describes partial knowledge of the

execution (only on certain inputs). This means that, in all cases, the encoded signature can

be seen as a property of the stegomark’s semantics and therefore of the stegoprogram’s

semantics. In this view, a stegoextractor is an abstract interpreter that executes the

stegoprogram in the abstract domain β ∈ uco(℘(Σ+)) that allows to observe the hidden

signature. In order to deal with dynamic watermarking, we need to model the enabling

input that allows to extract the signature. Since in our model the residual input stream

is part of the program state, the enabling input can be modelled as a state property

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 353

η ∈ uco(℘(Σ)). We consider a set P ⊆ Imp of cover programs that do not already encode

a signature† and we specify a watermarking system as a tuple 〈L,M, β〉.

Definition 3.1 (Software Watermarking System). Given L ∈ Imp× Imp −→ Imp, M ∈ S −→ Imp

and β ∈ uco(℘(Σ+)), the tuple 〈L,M, β〉 is a software watermarking system for programs

in P and signatures in S if M is injective and there exists η ∈ uco(℘(Σ)) such that

∀P ∈ P ∀s ∈ S:

�L(P ,M(s))�β+= λX .

{�M(s)�β+(X) if X ∈ η(℘(Σ+))

�P �β+(X) otherwise

X ∈ η(℘(Σ+))⇒ �M(s)�β+(X) = �M(s)�β+.

This means that when computing the semantics in the abstract domain β, the stegoprogram

L(P ,M(s)) behaves like the stegomark M(s) on the enabling inputs, and like the

cover program P otherwise. Here, �M(s)�β+ is precisely the information representing

the watermark at the semantic level, namely the property of the stegomark that hides

(encodes) the signature. In this setting, it is clearly possible to reduce the precise extraction

of the signature to a completeness problem. To this end, we associate the stegomarker

M with its semantic counterpart M : S −→ uco(℘(Σ+)), which encodes a signature in a

semantic program property. In particular, given the watermarking system 〈L,M, β〉 we

define M � λs.{�, �M(s)�β+,Σ+}, namely M takes a signature s and it returns the atomic

closure of �M(s)�β+. Indeed, M(s) provides a semantic representation of the signature s.

Observe that, by construction, we have that ∀s ∈ S . β � M(s) and this ensures that β

is precise enough for extracting the signature. Moreover, the abstract semantics of the

stegoprogram computed on β reveals the watermark information �M(s)�β+ ∈M(s) under

the enabling input X ∈ η(℘(Σ)) only if it is F-complete for η and M(s). This means that

the semantics of the programs built by the stegoembedder can be fully understandable

by the stegoextractor, namely this latter is able to extract the property representing the

signature. Recalling the operator F inducing F-completeness introduced in Section 2, we

can say that if Ps is a stegoprogram then: �Ps�β+= Fη,M(s)(�Ps�β+), i.e. �Ps�β+ is F-complete

for η and M(s).

Indeed, if �Ps�β+ is F-complete then �Ps�β+◦ η = M(s) ◦ �Ps�β+◦ η holds. When η(℘(Σ))

contains X, we have that �Ps�β+(X) = M(s) ◦ �Ps�β+(X) and consequently that �Ps�β+(X) ∈
M(s). This means that �Ps�β+(X) is an element of M(s), more precisely it is exactly �M(s)�β+
and it represents the signature s. If η(℘(Σ)) does not contain X, the system should

guarantee that the abstraction of the stegoprogram does not reveal the signature, so we

have to chose β in such a way that �P �β+(X) /∈M(s), i.e. M(s)(�P �β+(X)) = Σ+ minimizes

false positive. Note that, if the abstract semantics of the stegoprogram is complete, it may

well happen that the concrete semantics of the stegoprogram is not complete, i.e. �Ps�+

is not F-complete for η and M(s) (see Figure 3). This means that the knowledge of the

† This is an assumption usually made by software watermarking techniques, i.e. before the insertion the

stegoembedder checks if the cover program is watermarkable.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 354

Fig. 3. F-incompleteness[-completeness] for the cover program[stegoprogram].

stegomark may not be sufficient to extract the signature without knowing the semantic

property used to encode it.

The different kinds of software watermarking techniques can be seen as instances of

Definition 3.1.

— Static and abstract watermarking correspond to a watermarking system, where η = id

and β is decidable (i.e. implementable with static analysis). This captures the fact that

the interpretation of the stegoprogram always reveals the stegomark, independently

from the input.

— Dynamic watermarking corresponds to a watermarking system where η �= id and β is a

generic (concrete) interpreter. In this case, the concrete semantics of the stegoprogram

reveals the stegomark only when a particular input sequence is given.

Finally, since F is idempotent we can use it for tamper detection. In fact it holds

that Fη,M(s)(�Ps�β+) = �Ps�β+. If we consider an attacker t ∈ Imp −→ Imp we have

that Fη,M(s)(�t(Ps)�β+) �= �t(Ps)�β+ and we can recognize that the stegoprogram has been

tampered.

3.2. Software watermarking features

Given a software watermarking technique it is desirable to know if it is better or worse

rather than other existing techniques, in some specific context of interest. In order to

perform such a comparison we need to define some ‘features’ that allow us to measure

the efficacy of a watermarking system. For this reason, in the following, we describe

and formalize in the proposed framework the most significant features that a software

watermarking system should have. The features that we introduce are the ones that

can be formalized in terms of program semantics and abstract interpretation. There are

features that cannot be formalized in this way as for example data-rate and credibility.

Data-rate deals with the amount of information that can be embedded by the considered

watermarking scheme and it strictly depends on the implementation of the stegomarker,

so it is not an intrinsic property of the watermarking system. Credibility measures how

strongly a watermarking scheme provides authorship and it typically requires statistical

evaluations.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 355

In the rest of this section, we refer to a watermarking system 〈L,M, β〉, to a set of cover

programs P and to a set of signatures S . Moreover, we use β to denote the extraction

domain and M(s) to denote the domain that semantically encodes the signature s.

3.2.1. Resilience. Resilience concerns the capacity of a software watermarking system to

be immune to attacks. There are four major types of attacks (Collberg and Thomborson

1999).

Distortive attacks. The attacker modifies the stegoprogram in order to compromise the

stegomark, i.e. the attacker applies syntactic or semantic transformations in order to

make the signature no more recoverable by the stegoextractor.

Collusive attacks. The attacker compares different stegoprograms of the same cover

program in order to obtain information on the stegomark. Doing so it could, for

example, identify the location of the stegomark within the stegoprogram and then

remove it.

Subtractive attacks. The attacker tries to eliminate the stegomark from the stegoprogram

so that it is no longer possible to extract the signature (usually this attack needs a

preliminary analysis for identifying the location of the stegomark).

Additive attacks. The attacker adds another stegomark to the stegoprogram so that the

previous stegomark is ‘overwritten’ or so that the program contains more than one

stegomark. In the latter case, it is not possible to establish which stegomark has been

inserted first and therefore the legitimate owner cannot be determined.

A software watermarking system is resilient w.r.t. a particular kind of attack when it

is immune to any attack of that type. We can classify attacks as conservative and not

conservative according to the effects that they have on program semantics. Conservative

attacks maintain the program denotational semantics (input/output) unmodified, while

non-conservative attacks do not ensure this.

Observe that subtractive attacks and collusive attacks are related to the localization

of the stegomark and hence the resilience to these attacks reduces to a secrecy problem

(as explained below). In fact, following (Collberg and Thomborson 1999), we consider

subtractive attacks to be those attacks that somehow locate the stegomark and then

remove it. On the other hand, those attacks that eliminate the signature by creating a

functionally equivalent unsigned program are considered to be distortive attacks in this

work (they can be seen as distortive attacks that preserve the denotational semantics).

Resilience to additive attacks is very difficult to obtain, in fact if an attacker adds another

signature (with another technique) it is impossible to prove which stegomark was inserted

first. For this reasons in the following, we focus on the resilience to distortive attacks.

A distortive attack can be seen as a program transformer t ∈ Imp −→ Imp that modifies

programs preserving their denotational semantics, namely their input/output behaviour.

Indeed, a distortive attack wants to modify the marked program as much as possible

(while preserving its functionality) in order to compromise the stegomark. So, there

are program’s properties that the attack preserves and others that it does not preserve,

namely there are abstractions ψ ∈ uco(℘(Σ+)) such that ψ(�P �+) �= ψ(�t(P)�+). According

to Dalla Preda and Giacobazzi (2009), we denote with δt ∈ uco(℘(Σ+)) the most concrete

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 356

property preserved by the transformation t on programs semantics, namely such that

∀P ∈ Imp . δt(�P �+) = δt(�t(P)�+). This implies that every property ψ more abstract than

δt, i.e. δt � ψ, is preserved by t. Observe that when δt �
�
{M(s)|s ∈ S} it means that

the distortive attacker t preserves the semantic encoding of all signatures and therefore

the watermarking system is resilient w.r.t. t. When t preserves the semantic encoding of

a subset of possible signatures, those for which δt � M(s), we can identify the class of

stegoprograms that resist to t. In the worst case, when ∀s ∈ S . δt �� M(s), the software

watermarking system is not able to contrast in any way the attacker t. This leads to the

definition of the following levels of resilience.

Definition 3.2 (t-resilience). A software watermarking system 〈L,M, β〉 is:

— t-resilient when δt �
�
{M(s)|s ∈ S}.

— t-vulnerable when ∃s ∈ S . δt ��M(s).

— t-ineffective when ∀s ∈ S . δt ��M(s).

Furthermore, if an attacker t is conservative it must preserve the denotational semantics,

DenSem ∈ uco(℘(Σ+)), of the original program so we have that δt � DenSem. This domain

is obtained from maximal finite traces semantics as DenSem(X) � {σ ∈ Σ+|∃σ′ ∈ X . σ� =

σ′� ∧ σ� = σ′�}. In this context, every property more abstract than DenSem is preserved.

Definition 3.3 (Resilience). A software watermarking system is resilient if

DenSem �
�{

M(s)|s ∈ S
}

Basically, we say that a watermarking system is resilient when it is t-resilient to all those

distortive attackers t that preserve DenSem. A software watermarking system that exhibits

such behaviour has not been yet found and it is an open research topic to demonstrate its

existence or not.‡ If the attacker is not conservative, so it is willing to lose some original

program functionalities in order to nullify the stegomark, then δt �� DenSem. In this case,

we have a stronger notion of attackers and it is not possible to assert the resilience of a

software watermarking system to distortive not conservative attacks.

This formalization of resilience allows us to compare two watermarking systems w.r.t.

resilience. Given two watermarking systems A1 = 〈L1,M1, β1〉 and A2 = 〈L2,M2, β2〉, if

it holds that
�
{M1(s)|s ∈ S} �

�
{M2(s)|s ∈ S} then we have the following inclusion

{t|δt � {M1(s)|s ∈ S}} ⊆ {t|δt � {M2(s)|s ∈ S}}. Therefore, A2 is, in general, more

resilient than A1. In Section 4, we show what we can do when M1 and M2 are not

comparable.

3.2.2. Secrecy. Secrecy concerns the difficulty of recovering the stegomark embedded in a

stegoprogram. Ideally, a watermarking system is secret when it is impossible to extract the

signature from a stegoprogram without knowing the stegoextractor. In practice, secrecy

can be seen as the ability of the watermarking system to make indistinguishable to

‡ The results in Barak et al. (2001) and recently in Garg et al. (2013) about impossibility of watermarking

seem to lead to a negative answer.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 357

an attacker the set of signatures embedded in a program. This clearly relates to the

resilience to collusive attacks, which requires that an attacker is not able to distinguish

between stegoprograms that embed different signatures in the same cover program. This

notion can be formalized in terms of higher-order abstract non-interference, introduced in

Subsection 2.4. The private input is the set of possible stegomarks Q = {M(s)|s ∈ S},
while the public input is the set of cover programs P = P . Let φ ∈ uco(℘(Σ+)) be a

property that represents some stegomarks, and indeed some signatures. We assume that

the attacker does not have access to cover programs, so the abstraction of the public

input is id.

Definition 3.4 (φ-secrecy). A software watermarking system 〈L,M, β〉 is φ-secret w.r.t. an

attacker ρ if H
+

[id]L(φ⇒ ρ)bca holds, i.e. if ∀P ∈ P ∀Q1, Q2 ∈ Q we have that

�Q1�φ+ = �Q2�φ+ ⇒ �L(P ,Q1)�ρ+ = �L(P ,Q2)�ρ+.

This means that if we mark a cover program with two different signatures that are

equivalent modulo φ, then the attacker ρ does not distinguish between the two generated

stegoprograms. Thus, any signature with the same property φ can be used for generating

stegoprograms resilient to collusive attacks made by the attacker ρ. We say that a system

is secret when it is �-secret, meaning that the set of indistinguishable signatures is S .

Given a property φ specifying a set of signatures, we can characterize the most concrete

observer ρ̂ for which H
+

[id]L(φ⇒ ρ̂)bca holds, called most powerful φ-secret attacker. It can

be characterized in terms of the secret kernel of higher-order abstract non-interference.

Indeed, it corresponds to the most concrete domain ρ̂ that is more abstract than id and

such that H
+

[id]L(� ⇒ ρ̂)bca holds, i.e. ρ̂ = KH+
L,id,(φ)(id). The operator KL,id,(φ) and the

definition of the higher-order abstract non-interference can be found in Subsection 2.4.

For example, the most powerful �-secret attacker is KL,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈
P, X =

⋃
Q∈Q�L(P ,Q)�+} ∪ {Σ+} and it abstracts in the same object the traces of all

possible stegoprograms related to the same cover program. Of course, any attacker with

at least the same precision of the extractor β violates secrecy.

Thus, the secrecy level of a watermarking system is given by the most abstract property

φ and by the most concrete observer ρ̂ for which non-interference H
+

[id]L(φ⇒ ρ̂)bca

holds. The more φ is abstract and the more the system is secret. Vice versa, the more

ρ̂ is concrete and the more the system is secret. Observe that φ can range from id (all

the signatures are distinguishable) to � (no signature is distinguishable). When the most

powerful φ-secret attacker ρ̂ is equal to � then every attacker is able to distinguish the

signatures. Otherwise, the more ρ̂ is concrete and the more the system is secret.

This formalization of secrecy allows us to compare two watermarking systems w.r.t.

secrecy. Given two software watermarking systems A1 = 〈L1,M1, β1〉 and A2 =

〈L2,M2, β2〉 we consider their most powerful φ-secret attackers ρ̂1 and ρ̂2. If ρ̂1 � ρ̂2 we

have that A1 is more secret than A2 w.r.t. φ. Indeed, a stronger attacker is necessary in

order to violate φ-secrecy for A1, rather than A2. In Section 4, we show what we can do

when ρ̂1 and ρ̂2 are not comparable.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 358

3.2.3. Transparence. Transparence concerns the ability to make it hard to realize that a

program is a stegoprogram, namely if it contains a signature. A watermarking system is

transparent w.r.t. an observer if the latter is not able to distinguish a cover program from

every stegoprogram generated starting from it.

Definition 3.5 (Transparence). A software watermarking system 〈L,M, β〉 is transparent

w.r.t. an attacker ρ ∈ uco(℘(Σ+)) if ∀P ∈ P ∀s ∈ S . �P �ρ+ = �L(P ,M(s))�ρ+.

The greatest is the set of observers for which the system is transparent and the greatest

is the level of transparence of the watermarking system. So, the characterization of the

most concrete observer ρ̃ for which the system is transparent is a good measure of

the transparence of the software watermarking system. This observer ρ̃ is called the

most powerful transparent attacker. This attacker can be characterized following the same

approach used for the most powerful �-secret attacker. In fact a system, in order to be

transparent w.r.t. an attacker has clearly to be �-secret w.r.t. that attacker. So, recalling

the set of indistinguishable elements for HOANI ΥH+
I,η,(φ)(P ,Q) introduced in Section 2.4,

we can define its counterpart for transparence, namely the set of all elements that have

to be indistinguishable for ensuring transparence as follows:

ΥH+
L,id,(�)(P ,M(s)) =

{�L(P ′,M(s′))�+|P ′ ≡id P ∧M(s′) ≡� M(s)
}
∪ {�P �+}.

These sets are collections of sets of traces that a secure abstraction should not distinguish,

i.e. that a secure abstraction should approximate in the same object. Then, we can

continue the construction of the secret kernel as done in Section 2.4. Clearly, the analysis

is useful for any observer most concrete, or as concrete as, β. In fact the system cannot

be transparent for attackers that are at least as precise as the extractor.

Similarly to what we have done for secrecy, given two software watermarking systems

A1 = 〈L1,M1, β1〉 and A2 = 〈L2,M2, β2〉, we consider their most powerful transparent

attackers ρ̃1 and ρ̃2: if ρ̃1 � ρ̃2 we have that A1 is more transparent than A2. In Section 4,

we show what we can do when ρ̃1 and ρ̃2 are not comparable.

3.2.4. Accuracy. A watermarking system is accurate if it preserves the functionality of

the cover program, i.e. the cover program and the stegoprogram have to exhibit the same

observable behaviour. This concept can be defined as ‘behaviour as experienced by the

user’ (Collberg et al. 1997). This means that the stegoprogram can do something that

the cover program does not do, as long as these side-effects are not visible to the user.

Clearly, this definition is very loose and it depends on what the user is able to observe of

program’s execution. We formalize this concept by requiring that the stegoprogram and

the original program have the same observable denotational semantics. This means that,

fixed what the user is able to observe, the stegoprogram and the cover program must

exhibit the same input/output behaviour w.r.t. the fixed observation level.

Formally, we define an observational abstraction αO that characterizes what is inter-

esting to observe about the denotational semantics of programs. Then, accuracy requires

that the cover program P and its stegoprogram Ps are indistinguishable w.r.t. αO , i.e.

αO(�P �D) = αO(�Ps�D) (Cousot and Cousot 2002). Here, �P �D denotes the (angelic)

denotational semantics defined in Cousot (2002), which is an abstraction of the maximal

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 359

trace semantics. Indeed, �P �D is isomorphic to DenSem(�P �+). Then let 〈DO ,�O〉 be a

poset and αO ∈ ℘(Σ) −→ DO be a function such that (〈℘(Σ),⊆〉, αO , α+
O , 〈DO ,�O〉) is a

Galois connection. We say that two programs P ,Q ∈ Imp are αO-observationally equivalent

iff αO(�P �D) = αO(�Q�D).

Hence, a software watermarking system is accurate for an observational abstraction

αO , if for every program P ∈ P and for every signature s ∈ S it holds that P is

αO-observationally equivalent to Ps.

Definition 3.6 (Accuracy). Given a poset 〈DO ,�O〉 and an observational abstraction αO ∈
℘(Σ) −→ DO such that (〈℘(Σ),⊆〉, αO , α+

O , 〈DO ,�O〉) is a GC, we have that a watermarking

system 〈L,M, β〉 is accurate, w.r.t. αO , if for each program P ∈ P and for each signature

s ∈ S it holds that αO(�L(P ,M(s))�D) = αO(�P �D).

Accuracy states that given an observational abstraction αO , every cover program P is

αO-observationally equivalent to any stegoprogram Ps embedding a signature s.

For example, a reasonable observational abstraction could be the output given to the

user. In the language, Imp there is a command for catching the values inserted by the

user, but there are no commands for showing the results provided to the user. This can be

simulated by restricting a subset of program’s variables to store the values that are shown

to the user. We denote with Varout(P) ⊆ var�P � this set of output variables. The user who

wants to observe the output of the program P has to check the values of the variables in

this set. Let us recall that the environment function ρ ∈ Env defines the binding between

variables and their current values. We denote with domout(ρ) ⊆ dom(ρ) the set of output

variables of environment ρ. The abstraction that catches the output given to the user

has to observe only the values of those variables, so αO � αoutO ∈ ℘(Σ) −→ ℘(Env) can be

defined in the following way:

αoutO (X) �

⎧⎨
⎩ρ′ ∈ Env

∣∣∣∣∣∣ ∃ς ∈ X .
ς = 〈C, 〈ρ, ι〉〉∧
dom(ρ′) = domout(ρ)∧
∀y ∈ domout(ρ) . ρ′(y) = ρ(y)

⎫⎬
⎭

In this case, αoutO (�P �D) catches the input/output behaviour of P , specified as a relation

between the inputs inserted by the user and the outputs provided to the user during the

execution of P . Clearly, this approach is not applicable to programs that do not interact

with the user. In this case, it is necessary to chose another type of observable abstraction,

more suitable for the context.

If we apply αoutO to Definition 3.6, we obtain that a software watermarking system is

accurate, w.r.t. αoutO , if

∀P ∈ P ∀s ∈ S . αoutO (�P �D) = αoutO (�Ps�D),

As regarding accuracy, this is a property that is not directly comparable among different

watermarking techniques since it is defined w.r.t. the observational abstraction of interest.

However, the proposed formal framework provides the right setting for formally proving

the accuracy of a watermarking system w.r.t. an observational property.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 360

4. Validation

In order to validate our model, we have formalized five known watermarking techniques

in our framework and we have compared them w.r.t. resilience, secrecy, transparence and

accuracy. In the following, we indicate with
�
M the reduced product of all the abstract

stegomark M(s), i.e.
�

M �
�
{M(s)|s ∈ S} (see Subsection 2.2).

4.1. Watermarking techniques

In order to cover a wide range of watermarking systems and to prove the generality of our

framework, we took in consideration an heterogeneous set of techniques. In the following,

we report a brief description of the considered watermarking techniques.

Block-reordering watermarking. Static technique, introduced in the patent (Davidson and

Myhrvold 1996). The signature is a natural number and it is codified as a permutation

of the basic blocks of the cover program by modifying the program’s Control Flow

Graph, shortly CFG, (direct jumps are inserted to preserve program semantics). The

embedding ensures that the semantics of the cover program remains unmodified.

Static graph-based watermarking. Static technique, introduced in Venkatesan et al. (2001).

The signature is a natural number and it is codified as a graph which is added to the

CFG of the cover program while preserving its semantics. In particular, a program

whose CFG has the same shape of the graph generated starting from the signature

is derived and then added to cover program’s CFG. The embedding ensures that the

semantics of the cover program remains unmodified. The nodes of the graph encoding

the signature are marked before embedding in order to be identifiable at extraction

time.

Dynamic graph-based watermarking. Dynamic technique, introduced in Collberg and

Thomborson (1999). The signature is a natural number and it is codified as a graph

allocated in the dynamic memory (in the heap) of the program, during a particular

execution. This execution is generated by a particular sequence of enabling input

values. Given a signature, a graph that encodes the signature and the code that builds

this graph are generated. The embedder adds the code that generates the signature

graph to the cover program in such a way that this code is executed only with the

enabling input. Furthermore, in order to facilitate the extraction process, the code that

builds the root of the signature graph is the last one to be executed, in this way the

root of the signature graph is the last node inserted in the heap.

Path-based watermarking. Dynamic technique, introduced in Collberg et al. (2004). The

signature is a natural number and it is codified as a sequence of choices (true/false)

made at conditional statements during a particular execution of the program. This

execution is generated by a particular sequence of enabling input values. The embedder

takes the program code and it adds bogus branches in order to generate the desired

true/false sequence when executed on the enabling input.

Abstract constant propagation watermarking. This is the only known abstract watermark-

ing technique and it was introduced in Cousot and Cousot (2004). The signature is a

natural number and it is inserted into a particular variable w which, although being

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 361

φff

CFG of P

CFG of M(s)sgb

CFG of Lsgb(P, M(s)sgb)

Fig. 4. Static graph-based watermarking.

modified during program execution, remains constant modulo an integer n. This means

that w is constant only in the domain of congruences modulo n, while other domains

consider w to have stochastic behaviour. Thus, only the abstract interpretation of the

program on a domain which is able to represent precisely congruences modulo n can

extract the signature. In order to embed arbitrarily long signatures the technique refers

to the Chinese remainder theorem. The insertion of the signature does not alter the

semantics of the cover program.

We provide the formalization for static, dynamic and abstract watermarking techniques.

Doing so, we want to emphasize our main claim, i.e. that static and dynamic watermarking

are instances of abstract watermarking (for this latter the encoding in the framework is

intuitively more natural).

4.1.1. Static techniques. We present block-reordering watermarking and static graph-

based watermarking together because they are very similar. In the following, we use the

apex br to refer to block-reordering watermarking and the apex sgb to refer to static

graph-based watermarking.

In block-reordering watermarking the signature is codified as a permutation of the

basic blocks of the cover program’s CFG, where direct jumps are inserted to preserve the

cover program’s semantics. Instead, in static graph-based watermarking a program whose

CFG encodes the signature is added to the cover program in a way that the semantics of

this latter remains unmodified, as showed in Figure 4. The nodes of the added graph are

marked before the embedding.

Let graph ∈ N −→ G be a function that codifies a signature in a graph. Let cfg ∈ Σ+ −→
G be a function that, given a trace σ, returns the CFG of σ and let mark ∈ Σ+ −→ G be

a function that, given a trace σ, outputs the marked subgraph of the CFG of σ, for a

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 362

certain marking criterion (building the CFG and locating its marked nodes are both task

easily implementable analyzing a program trace).

The semantics �P �βbr

+ extracts the CFG of P , for block-reordering, and the semantics

�P �βsgb

+ extracts the marked subgraph of the CFG of P , for static graph-based. So the

extraction domains βbr and βsgb are as follows:

βbr � {X ∈ ℘(Σ+)|∃g ∈ G . X = {σ ∈ Σ+|cfg(σ) = g}} ∪ {�,Σ+},
βsgb � {X ∈ ℘(Σ+)|∃g ∈ G . X = {σ ∈ Σ+|mark(σ) = g}} ∪ {�,Σ+}.

In βbr there are all the sets of traces with the same CFG, instead, in βsgb there are

all the sets of traces whose CFG contains the same marked graph. We indicate with

Wbr

s � {σ ∈ Σ+|graph(s) = cfg(σ)} the set of traces whose CFG codifies the signature s,

and with W sgb

s � {σ ∈ Σ+|graph(s) = mark(σ)} the set of traces whose CFG contains the

marked graph that codifies the signature s. Both are static techniques so η = ηbr = ηsgb = id.

Clearly, �M(s)�βbr

+ = Wbr

s and so M(s)br = {�,Wbr

s ,Σ
+}. Analogously, �M(s)�βsgb

+ = W sgb

s

and so M(s)sgb = {�,W sgb

s ,Σ
+}.

Let G � {⊥,G} ∪ {G}. The domains βbr, βsgb can be defined as βbr � βbrγ ◦ βbrα,
βsgb � βsgbγ ◦ βsgbα, where βbrα, βsgbα ∈ ℘(Σ+) −→ G and βbrγ, βsgbγ ∈ G −→ ℘(Σ+) are as
follows:

βbrα � λX .

⎧⎪⎪⎨
⎪⎪⎩

⊥ if X = �

g if ∀σ ∈ X . g = cfg(σ)

G otherwise

βbrγ � λg .

⎧⎪⎪⎨
⎪⎪⎩

� if g = ⊥
{σ ∈ Σ+|g = cfg(σ)} if g ∈ G

Σ+ otherwise

βsgbα � λX .

⎧⎪⎪⎨
⎪⎪⎩

⊥ if X = �

g if ∀σ ∈ X . g = mark(σ)

G otherwise

βsgbγ � λg .

⎧⎪⎪⎨
⎪⎪⎩

� if g = ⊥
{σ ∈ Σ+|g = mark(σ)} if g ∈ G

Σ+ otherwise

Instead M(s)br and M(s)sgb can be defined as M(s)br � M(s)br

γ ◦M(s)br

α and M(s)sgb �
M(s)sgb

γ ◦M(s)sgb

α , where M(s)br

γ ,M(s)sgb

γ ∈ ℘(Σ+) −→ ℘(Σ+) are M(s)br

γ = M(s)sgb

γ � id and

M(s)br

α ,M(s)sgb

α ∈ ℘(Σ+) −→ ℘(Σ+) are as follows:

M(s)br

α � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

Wbr

s if X ⊆Wbr

s

Σ+ otherwise

M(s)sgb

α � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

W sgb

s if X ⊆W sgb

s

Σ+ otherwise

It is simple to see that for all signatures s we have M(s)br(℘(Σ+)) ⊆ βbr(℘(Σ+)) and

M(s)sgb(℘(Σ+)) ⊆ βsgb(℘(Σ+)), hence βbr � M(s)br and βsgb � M(s)sgb. The input domain is

id so there is not an enabling input or, equivalently, all the inputs reveal the watermark.

Clearly, for every possible set of initial states, the CFG of the stegoprogram is the same,

i.e. it exists g ∈ G such that ∀σ ∈ �Lbr(P ,M(s)br)�+ we have that g = cfg(σ) and it exists

g′ ∈ G such that ∀σ ∈ �Lsgb(P ,M(s)sgb)�+ we have that g′ = cfg(σ). Due to the techniques’

definitions, the graph g is equal to graph(s) and in g′ there is a marked subgraph equal to

graph(s). So, we have that �Lbr(P ,M(s)br)�βbr

+ (X) = Wbr

s and �Lsgb(P ,M(s)sgb)�βsgb

+ (X) = W sgb

s ,

for every possible set of initial states.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 363

Now, we can note that the CFG of M(s)br is graph(s), so �M(s)br�βbr

+ (X) = Wbr

s for

every possible set of initial states. Therefore, we have ∀X ∈ ℘(Σ) . �Lbr(P ,M(s)br)�βbr

+ (X) =

�M(s)br�βbr

+ (X) = �M(s)br�βbr

+ . Analogously, the CFG of M(s)sgb is graph(s) and it is marked

by design, so �M(s)sgb�βsgb

+ (X) = W sgb

s for every possible set of initial states. Hence, for every

set of initial states X, we have that both �Lsgb(P ,M(s)sgb)�βsgb

+ (X) and �M(s)sgb�βsgb

+ (X) are

equal to W sgb

s , which represents the signature s.

So we can note that, as expected, for every signature s, �Lbr(P ,M(s)br)�βbr

+ is F-complete

for η and M(s)br and �Lsgb(P ,M(s)sgb)�βsgb

+ is F-complete for η and M(s)sgb.

Let us briefly discuss the features of these techniques.

Resilience. The systems are not resilient, because they are not fully immune to distortive

attacks, i.e. DenSem ��
�
{M(s)br|s ∈ S} and DenSem ��

�
{M(s)sgb|s ∈ S}. In fact, suppose

that DenSem �
�

M
br

and DenSem �
�

M
sgb

, so ∀X ∈ ℘(Σ+) it holds that DenSem(X) ⊆�
M

br

(X) and ∀Y ∈ ℘(Σ+) it holds that DenSem(Y) ⊆
�

M
sgb

(Y). Let X = Wbr

s and

Y = W sgb

s , for a generic signature s, so
�

M
br

(X) = Wbr

s and
�

M
sgb

(Y) = W sgb

s . But

Wbr

s � DenSem(Wbr

s), because there is at least a trace with the same initial and final state

of a trace in Wbr

s with cfg(σ) �= graph(s). For example, take a program equal to M(s)br in

which we insert an opaque predicate.

Clearly its traces are in DenSem(Wbr

s) but they are not in Wbr

s , because this traces have

a different CFG. Analogously, W sgb

s � DenSem(W sgb

s), because there is at least a trace with

the same initial and final state of a trace in W sgb

s with mark(σ) �= graph(s). For example,

take a program equal to Lsgb(P ,M(s)sgb) in which all the nodes of its CFG are unmarked.

Clearly its traces are in DenSem(W sgb

s) but they are not in W sgb

s , because these traces do

not have a marked subgraph.

So there are X and Y such that DenSem(X) �⊆
�

M
br

(X) and DenSem(Y) �⊆
�

M
sgb

(Y).

Hence DenSem ��
�
M

br

and DenSem ��
�
M

sgb

. Indeed, the systems are vulnerable to

control flow obfuscation techniques (basically the ones which modify the CFG). For

example, a CFG flattening attack is able to damage the stegomark.

Secrecy. As regarding secrecy, the most powerful �-secret attackers for block-reordering

watermarking and static graph-based watermarking are as follows:

KLbr ,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈ P, X =
⋃
Q∈Q�Lbr(P ,Q)�+} ∪ {Σ+},

KLsgb ,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈ P, X =
⋃
Q∈Q�Lsgb(P ,Q)�+} ∪ {Σ+}.

They abstract in the same object the traces of all possible stegoprograms related to the

same cover program.

Accuracy. Finally, the systems are αoutO accurate, where αoutO is an abstraction that

observes only the output values showed to the user, since this property of the denotational

semantics is preserved. Clearly, for every program P and for every signature s it holds that

αoutO (�P �D) = αoutO (�Lbr(P ,M(s)sgb)�D) and αoutO (�P �D) = αoutO (�Lsgb(P ,M(s)sgb)�D). In fact, the

reordering of nodes of the CFG for block-reordering does not affect the variables of the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 364

cover program (there are new variables in the stegoprogram but, by design, these do not

interfere with the variables of the cover program) and the same holds for the embedding

algorithm of static graph-based, which guarantees that the added code does not affect

the variables of the cover program. So, with the same input, the cover program and the

stegoprogram give the same output, in both cases. Other features of these techniques are

presented in Tables 1–3.

4.1.2. Dynamic techniques. These techniques need a notion of enabling input, namely a

sequence I = I0 I1 . . . Ik of input values which ‘activates’ the watermark. In our framework,

we model the enabling input as a state property η ∈ uco(Σ). In a dynamic technique,

η = ℘(Υ) ∪ {Σ}, where Υ represents the set of states enabling the watermark, i.e.

Υ �

{
ς ∈ Σ

∣∣∣∣ ς = 〈C, 〈ρ, ι〉〉 ∧ |ι| = |I |∧
∀j ∈ [0, |I |) . top(next(ι)j) = Ij

}
.

The domain η can be defined as η � ηγ ◦ ηα where ηα, ηγ ∈ ℘(Σ) −→ ℘(Σ) are

ηα � λX .

{
X if X ⊆ Υ

Σ otherwise
ηγ � id.

The first dynamic technique, we present is dynamic graph-based watermarking. The

signature, a natural number, is encoded by a graph allocated in the dynamic memory (in

the heap), during a particular execution of the program. As said before, this execution is

generated by a particular sequence of input values I = I0 I1 . . . Ik called enabling sequence.

Given a signature, a graph that encodes the signature and the code that builds this graph

are generated. The embedder takes the program and it adds the code that generates the

graph in some locations of the cover program and this code is executed only on the

enabling input.

Let graph ∈ N −→ G be a function that codifies a signature in a graph, as the one

used for static techniques, and heap ∈ H −→ ℘(G) be a function that extracts the graphs

memorized in an heap. For the formalization of this technique in the framework, we have

to extend the information contained in the states of execution traces. We insert in the

state the heap of the program at the current execution step, i.e. Σ = 〈Com× Con×H〉. So

σ = 〈C, ζ,H〉, where H ∈ H is an heap. Let G ∈ G −→ ℘(Σ+) the function

G � λg .

⎧⎨
⎩σ ∈ Σ+

∣∣∣∣∣∣
|σ| = n+ 1 ∧ σn = 〈Cn, 〈ρn, ιn〉,Hn〉∧
top(ιn) = ε ∧ g ∈ heap(Hn) ∧ root(g) ∈ heap(Hn)∧
∀j ∈ [0, n) . root(g) /∈ heap(Hj) ∧ top(ιn) = ε

⎫⎬
⎭ .

The semantics �P �β+ extracts the graph (with the root inserted at last) memorized in the

heap of the program P when all the input values are consumed, so the domain β is

β � {X ∈ ℘(Σ+)|g ∈ G, X = G(g)} ∪ {�,Σ+},

and it contains all the sets of traces that have the same graph (with the root inserted at last)

memorized in the heap, when all the input values are consumed. With Ws � G(graph(s))

we indicate the set of traces for which, when all the input values are consumed, the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 365

heap contains the encoding of the signature s. Clearly, �M(s)�β+ = Ws and so M(s) =

{�,Ws,Σ
+}. Let again G � {⊥,G} ∪ {G}. The domain β can be defined as β � βγ ◦ βα

where βα ∈ ℘(Σ+) −→ G and βγ ∈ G −→ ℘(Σ+) are

βα � λX .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if X = �

g ∈ G if ∀σ ∈ X .
|σ| = n+ 1 ∧ σn = 〈Cn, 〈ρn, ιn〉,Hn〉∧
g ∈ heap(Hn) ∧ root(g) ∈ heap(Hn)∧
∀j ∈ [0, n) . root(g) /∈ heap(Hj) ∧ top(ιn) = ε

G otherwise

βγ � λg .

⎧⎪⎪⎨
⎪⎪⎩

� if g = ⊥
G(g) if g ∈ G

Σ+ otherwise

Instead M(s) can be defined as M(s) � M(s)γ ◦M(s)α where M(s)α,M(s)γ ∈ ℘(Σ+) −→
℘(Σ+) are

M(s)α � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

Ws if X ⊆Ws

Σ+ otherwise

M(s)γ � id

It is simple to see that for any signature s we have M(s)(℘(Σ+)) ⊆ β(℘(Σ+)) and so

β � M(s). If X ∈ η(Σ) then X ⊆ Υ. All these sets X contain states that encode the

enabling input, so L(P ,M(s)) executes the code which builds the graph graph(s) in the

heap. Indeed, we have that �L(P ,M(s))�β+(X) = Ws for every possible set of initial states

contained in X. Now, the same reasoning can be done for M(s), because it codifies the

signature by design (starting from the sets of input states which encode the enabling

input). So �M(s)�β+(X) = Ws for every X ∈ η(Σ). If X /∈ η(Σ) then X �⊆ Υ. All these X

do not contain states which encode the enabling input, so L(P ,M(s)) does not execute

the code which builds graph(s) in the heap. So, when the set of initial states X encodes

the enabling input, we have that both �L(P ,M(s))�β+(X) and �M(s)�β+(X) are equal to Ws,

which represents the signature s. We can note that, as expected, for every signature s, we

have that �L(P ,M(s))�β+ is F-complete for η and M(s).

Let us briefly discuss the features of this technique.

Resilience. The system is not resilient, because it is not fully immune to distortive attacks,

i.e. DenSem ��
�
{M(s)|s ∈ S}. In fact, suppose that DenSem �

�
M, so ∀X ∈ ℘(Σ+) it

holds that DenSem(X) ⊆
�
M(X). Let X = Ws, for a generic signature s, so

�
M(X) = Ws.

But Ws � DenSem(Ws), because there is at least a trace with the same initial and final

state of a trace in Ws without graph(s) among the objects memorized in the heap. For

example, take a program equal to M(s) in which the code that inserts the root node is

duplicated.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 366

Watermark: 11001

Enabling input: 3

int main(int argc) {
if (argc == 3)

printf("Secret!");

return 0;

}

int main(int argc) {
int a = 1, b = 0;

if (argc == 3) {
if (b == 0) a = 0;

if (b != 0) a = 0;

if (b != 0) a = 0;

if (b == 0) a = 0;

printf("Secret!");

}
return 0;

}

Fig. 5. Path-based watermarking.

Clearly, the traces of this program are in DenSem(Ws) but they are not in Ws, because

in this traces the last heap is not the only one containing the root of the graph. So

there is a X such that DenSem(X) �⊆
�
M(X) and hence DenSem ��

�
M. Indeed, the

system is vulnerable to attacks that modify the structure of the runtime objects created.

For example, a node-splitting attack is able to damage the stegomark (if it modifies the

structure of the root node of the graph then the extractor is not able to recognize the

stegomark).

Secrecy. As regarding secrecy, the most powerful �-secret attacker for dynamic graph-

based watermarking is KL,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈ P, X =
⋃
Q∈Q�L(P ,Q)�+} ∪ {Σ+}

and it abstracts in the same object the traces of all possible stegoprograms related to the

same cover program.

Accuracy. Finally, the system is αoutO accurate. Indeed, the behaviour of the cover program

is preserved w.r.t. this observation. Clearly, for every program P and for every signature

s it holds that αoutO (�P �D) = αoutO (�Ps)�D). In fact the embedding algorithm guarantees that

the inserted code does not affect the variables of the cover program. So, with the same

input, the cover program and the stegoprogram give the same output. Other features of

this technique are presented in Tables 1–3.

The second dynamic technique, we present is path-based watermarking. Let again

I = I0 I1 . . . Ik be the enabling input, i.e. the sequence of input values which activates the

watermark. The embedder takes the program and it adds bogus branches in a way that

the sequence of choices at conditional statements during the execution on the enabling

input is equal to the binary encoding of the signature (see Figure 5).

Let bin ∈ N −→ {0, 1}� be a function that returns the binary encoding of a natural

number and branch ∈ Σ+ −→ {0, 1}� be a function that extracts the sequence of choices at

conditional statements in a trace. For example, we could encode a 1 whenever the guard

of an instruction is evaluated to tt, and a 0 whenever the guard is evaluated to ff . Let

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 367

N ∈ N −→ ℘(Σ+) be the function

N � λk .

{
σ ∈ Σ+

∣∣∣∣ |σ| = n+ 1 ∧ branch(σ) = bin(k)∧
σn = 〈C, 〈ρ, ι〉〉 ∧ top(ι) = ε

}

The semantics �P �β+ has to extract the sequence of choices at conditional statements for

the program P , so the domain β is β � {X ∈ ℘(Σ+)|k ∈ N ∧X = N (k)} ∪ {�,Σ+} and it

contains all the sets of traces that have done the same choices, when all the input values

are consumed. With Ws � N (s) we indicate the set of traces for which, when all the

input values are consumed, the sequence of choices at conditional statements codify the

signature s.

Clearly �M(s)�β+ = Ws and so M(s) = {�,Ws,Σ
+}. Let N � {⊥,N} ∪N . The domain

M(s) can be defined as M(s) � M(s)γ ◦M(s)α where M(s)α,M(s)γ ∈ ℘(Σ+) −→ ℘(Σ+) are

M(s)α � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

Ws if X ⊆Ws

Σ+ otherwise

M(s)γ � λid

Instead β can be defined as β � βγ ◦ βα where βα ∈ ℘(Σ+) −→ N , βγ ∈ N −→ ℘(Σ+) are

βα � λX .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if X = �

k ∈ N if ∀σ ∈ X :

|σ| = n+ 1∧
σn = 〈C, 〈ρ, ι〉〉 ∧
top(ι) = ε∧
branch(σ) = bin(k)

N otherwise

βγ � λk .

⎧⎪⎪⎨
⎪⎪⎩

� if k = ⊥
N (k) if k ∈ N

Σ+ otherwise

It is simple to see that for all signatures s we have M(s)(℘(Σ+)) ⊆ β(℘(Σ+)) and

so β � M(s). If X ∈ η(℘(Σ)) then X ⊆ Υ, therefore the choices at conditional

statements made by L(P ,M(s)) starting from states in X are equal to bin(s), i.e.

�L(P ,M(s))�β+(X) = Ws. The same reasoning can be done for M(s), because it codifies

the signature by design (starting from the sets of input states which encode the enabling

input) and therefore �M(s)�β+(X) = Ws for every X ∈ η(℘(Σ)). If X /∈ η(Σ) then X �⊆ Υ.

All these X do not contain states which encode the enabling input, so the choices at

conditional statements made by L(P ,M(s)) starting from states in X are not equal to

bin(s). Hence, when the set of initial states X encodes the enabling input, we have that

both �L(P ,M(s))�β+(X) and �M(s)�β+(X) are equal to Ws, which represents the signature s.

So, we can note that, as expected, for every signature s, �L(P ,M(s))�β+ is F-complete for

η and M(s).

Let us briefly discuss the features of this technique.

Resilience. The system is not resilient since it is not immune to distortive attacks that

preserve the denotational semantics, i.e. DenSem ��
�
{M(s)|s ∈ S}. In fact, suppose that

DenSem �
�
M, so ∀X ∈ ℘(Σ+) it holds that DenSem(X) ⊆

�
M(X). Let X = Ws, for a

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 368

generic signature s, so
�

M(X) = Ws. But Ws � DenSem(Ws), because there is at least a

trace with the same initial and final state of a trace in Ws with branch(σ) �= bin(s). For

example, take a program equal to M(s) in which we insert an opaque predicate. Clearly,

its traces are in DenSem(Ws) but they are not in Ws, because this traces have a different

number of conditional statements. So, there is a X such that DenSem(X) �⊆
�
M(X)

and hence DenSem ��
�
M. Indeed, the system is vulnerable to control flow obfuscation

techniques. For example, both edge-flipping and opaque predicate insertion attacks are

able to damage the stegomark.

Secrecy. As regarding secrecy, the most powerful �-secret attacker for path-based

watermarking is KL,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈ P, X =
⋃
s∈S�L(P ,M(s))�+} ∪ {Σ+}. It

abstracts in the same object the traces of all possible stegoprograms related to the same

cover program.

Accuracy. Finally, the system is αoutO accurate, where αoutO is an abstraction that observes

only the output values showed to the user, since this property of denotational semantics

is preserved. Clearly, for every program P and for every signature s it holds that

αoutO (�P �D) = αoutO (�Ps)�D). In fact the embedding algorithm guarantees that the insertion

and modification of the conditional statements do not affect the variables of the cover

program. Thus, for every input, the cover program and the stegoprogram return the same

output to the user. Other features of this technique are presented in Tables 1–3.

4.1.3. Abstract watermarking. There is only one known abstract watermarking technique,

namely abstract constant propagation watermarking (Cousot and Cousot 2004). The

signature is a natural number and it is inserted in a particular variable that, although

being modified during program execution, remains constant modulo an integer n. The

signature is inserted ensuring no modifications to the semantics of the original program.

This method allows us to insert a signature that is arbitrarily large, since its embedding

in the cover program relies on the decomposition of the signature into k parts using the

Chinese remainder theorem. In this case the inserted mark is given by the composition of

k partial marks that encode numbers smaller than the limit imposed by the considered

programming language. Without loss of generality, in the following, in order to keep the

presentation simple, we assume that such limit does not exist and the signature is inserted

without decomposition.

The embedder modifies the original program in the following way. First, a new variable

w that hides the signature value s is declared. Next, two integer-valued polynomials init

and iter are chosen for the initialization and the modification of the value of w. The

instruction w := init(1) (initialization) is inserted in a random point of the program that

is always executed. The instruction w := iter(w) (iteration) is inserted in a random point

of the program (after initialization), possibly inside a loop. The polynomials must satisfy

the following conditions§: init(1) ≡n s and iter(w) ≡n s. Therefore, once initialized, w

remains constant modulo n, even if its value changes in Z at each iteration.

§ For the generation of such polynomials one can take advantage of the Horner method (Cousot and Cousot

2004).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 369

For the formalization of this technique in the framework, we have to extend the inform-

ation contained in the states of execution traces. So, assuming to have an enumeration of

the programs in Imp, we insert in the state the identifier of the program which contains

it. We denote with σi the identifier contained in the states of trace σ. Now, we can define

the relation ≈⊆ Σ+ × Σ+ such that for all σ, σ we have that σ ≈ σ iff σi = σi. It is

straightforward to note that ≈ is an equivalence relation. So, given a set of traces X we

denote with X/≈ its quotient set, i.e. the set of its equivalence class induced by ≈. Let Zn

be the (quotient) ring of integers modulo n and Zn � {⊥,Zn} ∪Zn. We assume to have a

function IsConstn ∈ ℘(Σ+) × Lab −→ (Var −→ Zn) such that: given a set of traces X and

a label l, IsConstn(X, l)(y) returns the value of y modulo n if the variable is constant in

Zn into the set of traces X at label l. If the variable is undefined it returns ⊥ and Zn if

the variable is not constant modulo n (this function implements a constant propagation

analysis). Finally, constn ∈ ℘(Σ+) −→ ℘(Zn) is defined as follows:

constn � λX .
⋃
y∈Var

{IsConstn(X, l)(y)|∃l ∈ Lab . IsConstn(X, l)(y) ∈ Zn} .

In short, this function returns all the values in Zn of the variables that are constant

modulo n into a given set of traces (at some label). The semantics �P �β+ performs constant

propagation modulo n for the program P , so

β =

⎧⎨
⎩X ∈ ℘(Σ+)

∣∣∣∣∣∣
∃N ⊆ Zn . N �= �∧

X =
⋃
id∈N

{
Y ∈ ℘(Σ+)

∣∣∣∣ ∀σ ∈ Y . σi = id∧
constn(Y) = N

} ⎫⎬
⎭ ∪ {�,Σ+}

The domain β contains all the sets of traces with the same values of the variables constant

modulo n. With Ws �
⋃
id∈N{X ∈ ℘(Σ+)|∀σ ∈ X . σi = id ∧ constn(X) = {s mod n}} we

indicate the set of traces that have a constant variable encoding of the signature s. Clearly,

�M(s)�β+ = Ws and so M(s) = {�,Ws,Σ
+}. The domain β can be defined as β � βγ ◦ βα,

where βα ∈ ℘(Σ+) −→ ℘(Zn) and βγ ∈ ℘(Zn) −→ ℘(Σ+) are

βα � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

N if N � Zn ∧N �= � ∧ ∀Xj ∈ X/≈ . constn(Xj) = N

Zn otherwise

βγ � λN .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� if N = �

⋃
id∈N

{
X ∈ ℘(Σ+)

∣∣∣∣ ∀σ ∈ X . σi = id∧
constn(X) = N

}
if N /∈ {�,Zn}

Σ+ otherwise

Instead M(s) can be defined as M(s) � M(s)γ ◦M(s)α where M(s)α,M(s)γ ∈ ℘(Σ+) −→
℘(Σ+) are

M(s)α � λX .

⎧⎪⎪⎨
⎪⎪⎩

� if X = �

Ws if X ⊆Ws

Σ+ otherwise

M(s)γ � id

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 370

It is simple to see that for all signatures s we have M(s)(℘(Σ+)) ⊆ β(℘(Σ+)) and so

β � M(s). The input domain is id so there is no an enabling input, or equivalently,

all the inputs reveal the watermark. For every possible set of initial states, the constant

propagation modulo n of L(P ,M(s)) is the same, i.e. it exists N � Zn not empty such

that constn(�L(P ,M(s))�+) = N. Due to the definition of this watermarking technique,

N is the set [s]≡n , namely it contains all the values that are equivalent modulo n to s.

So, we have that �L(P ,M(s))�β+(X) = Ws for every possible set of initial states. Now, the

constant propagation modulo n of M(s) is exactly [s]≡n , so �M(s)�β+(X) = Ws for every

possible set of initial states. Hence, for every set of initial states X, we have that both

�L(P ,M(s))�β+(X) and �M(s)�β+(X) are equal to Ws, which represents the signature s. So

we can note that, as expected, for every signature s, �L(P ,M(s))�β+ is F-complete for η

and M(s).

Let us briefly discuss the features of this technique.

Resilience. The system is not resilient, since it is not immune to distortive attacks that

preserve the denotational semantics, i.e. DenSem ��
�
{M(s)|s ∈ S}. In fact, suppose that

DenSem �
�

M, so ∀X ∈ ℘(Σ+) it holds that DenSem(X) ⊆
�
M(X). Let X = Ws, for a

generic signature s, so
�
M(X) = Ws. But Ws � DenSem(Ws), because there is at least a

trace with the same initial and final state of a trace in Ws which belongs to a program

that does not have a constant variable modulo n equal to s. So there is a X such that

DenSem(X) �⊆
�
M(X) and hence DenSem ��

�
M. Indeed the system is vulnerable to data

obfuscation techniques: if we alter the representation of variables then the stegomark is

lost.

Secrecy. The most powerful �-secret attacker for abstract constant propagation water-

marking is KL,id,(�)(id) = {X ∈ ℘(Σ+)|P ∈ P, X =
⋃
Q∈Q�L(P ,Q)�+}∪ {Σ+}. It abstracts in

the same object the traces of all possible stegoprograms related to the same cover program.

Accuracy. Finally, the system is αoutO accurate, where αoutO is an abstraction that observes

only the output values showed to the user, since this property of the denotational semantics

is preserved. In fact, the embedding algorithm guarantees that the added code do not

affect the variables of the cover program. So, with the same input, the cover program and

the stegoprogram give the same output. Other features of this technique are presented in

Tables 1–3.

4.2. Comparison: resilience

Until now we have formalized and validated the framework. The next step is clearly to

show how to use the work done so far for comparing different software watermarking

systems, in order to be able to chose a technique rather than another according to the needs.

In Section 3, we have discussed how different watermarking systems A1 = 〈L1,M1, β1〉
and A2 = 〈L2,M2, β2〉 could be compared w.r.t. resilience by comparing the degree of

abstraction of
�
{M1(s)|s ∈ S} and

�
{M2(s)|s ∈ S}. Of course it may happen that these

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 371

two abstractions are not comparable. In this case, what we can do is to compare their

resilience w.r.t. a specific distortive attack.

Distortive attacks are semantics-preserving program transformations that try to com-

promise the extraction of the watermark. There are program transformations specifically

designed for this purpose like code obfuscation techniques, and others that may corrupt the

watermark as a side effect, like code optimization. Given the semantics-based formalization

of software watermarking and its features, we model distortive attacks as semantic

program transformations as done in Dalla Preda and Giacobazzi (2005), considering that

their syntactic counterpart can always be derived (Cousot and Cousot 2002). Indeed, any

syntactic program transformer t, altering the code of P and returning a new program P ′,

induces a corresponding semantic transformer t turning �P �+ into �P ′�+. In the following,

we consider some well known obfuscations and optimization techniques that can be used

as distortive attacks.

4.2.1. Edge-flipping. The edge-flipping obfuscation exchanges the code executed in the

true branch with the code executed in the false branch of every conditional statement.

In order to preserve the program semantics every branch condition is replaced with its

negation.

We semantically model the edge-flipping attacker tef ∈ Imp −→ Imp as the semantic

transformation tef(X) � {tef(σ)|σ ∈ X} with

tef(〈C, ζ〉σ) �

⎧⎪⎪⎨
⎪⎪⎩
〈C, ζ〉tef(σ) if

C = L : stop; ∨
C = L : A→ L′;

〈L : ¬B → {LF, LT }; , ζ〉tef(σ) if C = L : B → {LT , LF}.

The most concrete preserved property is

δtef =
⊔

P∈Imp

{X ⊆ Σ+|Pres
P ,tef

(X)},

where Pres
P ,tef

(X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃
{Z ⊆ Σ+|Z = tef(Y)} ⊆ X.

This means that a set of traces X is preserved by the edge-flipping transformation if it

contains all the traces that can be obtained from traces in X by inverting every conditional

branch and negating the related guard.

4.2.2. Dead code elimination. This is an optimization technique and it consists in the

elimination of those parts of the program that are never executed or which do not affect

the semantics of the program. Let I ∈ Imp −→ ℘(Lab) be the result of a preliminary static

analysis that returns the subset of program labels corresponding to dead code commands.

Usually, the preliminary static analysis consists of dead/faint variable analysis. Given a

program P , we assume to know the set IP ⊆ lab�P � of labels that the preliminary static

analysis has classified as dead code. We assume that conditional commands cannot be

classified as dead code. We denote with slab(ς) the label of the command contained in

the state ς, i.e. if ς = 〈C, ζ〉 then slab(ς) = lab�C�.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 372

We semantically model the dead code elimination attacker tdce ∈ Imp −→ Imp as the

semantic transformation tdce ∈ ℘(Σ+)×℘(Lab) −→ ℘(Σ+) with

tdce(X, IP) � {tdce(σ, IP)|σ ∈ X}
tdce(σ, IP) � Elimination(σ, IP)

See Appendix B for the algorithm Elimination, Algorithm 1 - Page 383. The most

concrete preserved property is

δtdce =
⊔

P∈Imp

{
X ⊆ Σ+

∣∣∣PresP ,tdce(X)
}
,

where Pres
P ,tdce(X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃{

Z ⊆ Σ+
∣∣∣Z = tdce(Y , IP)

}
⊆ X.

This means that a set of traces X is preserved by the dead code elimination transformation

if it contains all the traces that can be obtained from traces in X by eliminating every

command indicated by IP .

4.2.3. Loop-unrolling. This is an optimization technique but it is often used in distortive

attacks. It consists in the unfolding of the loop a certain number of times, i.e. the

body of the loop is replicated for a given factor, the so called unrolling factor. Next,

the number of iterations is divided by the loop unrolling factor. The easiest looping

constructs to unroll are for-loops. Whenever a program P includes a for-loop F , we write

F ∈ fors(P). More formally, F ∈ fors(P) iff F � {G, I} ∪H and F ⊆ P . The command

G � lG : X < E → {lH , lO};, with lG �= lH and lG �= lO , implements a branching named

guard. As F always starts with the evaluation of its guard, we have that lG is the entrypoint

of F , lab�F�∩ lab�P \ F� = � and suc�P \ F�∩ lab�F� ⊆ {lG}. The guard is satisfied as long as

X ∈ Var is less than E ∈ Exp (for short, we ignore similar kinds of for-loops which use>, �
or � as comparison operator). If the guard is not satisfied, the for-loop ends transferring

the control flow at entrypoint lO /∈ lab�F�. Otherwise, the execution goes on through

H , a set of commands named body, and eventually through an increment command

I � lI : X := X+E ′ → lG;, with lI �= lG and lI = lH ∨ lI ∈ suc�H� (notice that I makes the

control flow return to the guard again). We formally define H as the collection of all the

commands of P that are reachable from G without going through I , i.e. H � lfp⊆flow(P),

where flow(P)(Q) � {C ∈ P \ {I}|lab�C� = suc�G�∨∃C ′ ∈ Q . lab�C� = suc�C ′�}. We require

lG, lI /∈ lab�H�. We expect both X and the variables in E and E ′ not to be assigned inside

H . We require X not to be used in E or E ′.

The finite partial trace 〈G, ζ〉η〈I, ζ ′〉 ∈ �F�⊕ is an iteration of the for-loop F , where

η ∈ �H�⊕ (if H = � then η = ε). A maximal trace σ ∈ �F�⊕ is a sequence of ‘terminating’

iterations followed by a state with the command at label lO . Along the trace, the values

of E and E ′ do not change, while the value of X, which is constant throughout each

iteration, increases by E ′ from one iteration to another. Thus, if ζ is a context in a state of

σ ∈ �F�⊕, we can predict how many increments X still has to undergo, i.e. the number of

the iterations from ζ till the end of σ (actually we only need the environment ρ contained

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 373

in ζ). We just need to define αF ∈ con�F� −→ N such that

αF (ζ) �

⎧⎨
⎩
⌊

(E�E�ζ−E�X�ζ)+(E�E ′�ζ−E�X�ζ)
E�E ′�ζ

⌋
if E�E�ζ � E�X�ζ

0 otherwise

We let τ be the total number of iterations of σ. Along σ ∈ �F�⊕, the iterations are

naturally unfolded, i.e. they come sequentially one after another. In the original program

F they fold because any command C ∈ F , although occurring in many different iterations,

always appears with the same entrypoint lab�C�.
Loop-unrolling changes the labels in the following way: given the so-called unrolling

factor u ∈ N , it makes all and only the occurrences of C at iterations k mod u have

the same label (with 0 � k < τ), thus partitioning the iterations of σ into u classes.

Only iterations from the same class fold together. So, the code of the unrolled loop is u

times longer than F and each of its iterations sequentially executes the task of u native

iterations. In this work, we consider only the case in which the total number of iterations

is known (it is constant), and so we can set u = τ. This is also the standard optimizing

behaviour of most compilers, like gcc. So, we assume that fors(P) contains only the

for-loops that have a constant number of iterations (we need a preliminary analysis of

program P) and that iters(F) returns the number of iterations of F ∈ fors(P). Let

I ∈ Imp −→ ℘(Lab × Lab) be the result of a preliminary static analysis that given a

program returns the for-loops that can be unrolled. It represents the loop by mean of a

pair of labels which identify the guard and the increment of the loop. Given a program

P , we assume to know the set IP ⊆ lab�P �× lab�P � of pairs of labels that the preliminary

static analysis has classified as representative of loops that can be unrolled.

We semantically model the loop unrolling attacker tlu ∈ Imp −→ Imp as the semantic

transformation tlu ∈ ℘(Σ+)×℘(Lab× Lab) −→ ℘(Σ+) with

tlu(X, IP) � {tlu(σ, IP)|σ ∈ X}

tlu(σ, IP) � Unroll(σ, IP)

See Appendix B for the algorithm Unroll – Algorithm 2, Page 384. The most concrete

preserved property is

δtlu =
⊔

P∈Imp

{
X ⊆ Σ+

∣∣∣ PresP ,tlu(X)
}
,

where Pres
P ,tlu

(X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃{

Z ⊆ Σ+
∣∣∣Z = tlu(Y , IP)

}
⊆ X.

This means that a set of traces X is preserved by the loop-unrolling transformation if it

contains all the traces that can be obtained from traces in X by substituting the loops at

program points indicated by IP with their sequences of iterations.

4.2.4. Opaque predicate insertion. It is a well known obfuscation technique that obfuscates

the control flow of the program by inserting opaque predicates. A predicate is opaque if

it is evaluated to a constant value. Let I ∈ Imp −→ ℘(Lab) be the result of a preliminary

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 374

static analysis that returns the set of program labels where it is possible to insert opaque

predicates. Usually, the preliminary static analysis consists of a liveness analysis. Given

a program P , we assume to know the set IP ⊆ lab�P � of labels that the preliminary

static analysis has classified as candidates for opaque predicate insertion. Let Pt be a true

opaque predicate, i.e. a Boolean expression that is always evaluated to tt, let L̂ be a label

not in P , i.e. L̂ /∈ lab�P �, and let L̃ be a random label of P . Again, we denote with slab(ς)

the label of the command contained in the state ς, i.e. if ς = 〈C, ζ〉 then slab(ς) = lab�C�.
We semantically model the opaque predicate insertion attacker topi ∈ Imp −→ Imp

as the semantic transformation topi ∈ ℘(Σ+) × ℘(Lab) −→ ℘(Σ+) with topi(X, IP) �
{topi(σ, IP)|σ ∈ X}, where topi(〈C, ζ〉σ, IP) �⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈C, ζ〉topi(σ, IP) if slab(〈C, ζ〉) /∈ IP

〈L : Pt → {L̂, L̃}; , ζ〉〈L̂ : A→ L′; , ζ〉topi(σ, IP) if
slab(〈C, ζ〉) ∈ IP∧
C = L : A→ L′;

〈L : Pt → {L̂, L̃}; , ζ〉〈L̂ : B → {LT , LF}; , ζ〉topi(σ, IP) if
slab(〈C, ζ〉) ∈ IP∧
C = L : B → {LT , LF};

〈L : Pt → {L̂, L̃}; , ζ〉〈L̂ : stop; , ζ〉topi(σ, IP) if
slab(〈C, ζ〉) ∈ IP∧
C = L : stop;

The most concrete preserved property is

δtopi =
⊔

P∈Imp

{
X ⊆ Σ+

∣∣∣PresP ,topi (X)
}

where Pres
P ,topi (X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃{

Z ⊆ Σ+
∣∣∣Z = topi(Y , IP)

}
⊆ X

This means that a set of traces X is preserved by the opaque predicate insertion

transformation if it contains all the traces that can be obtained from traces in X by

inserting the opaque predicate Pt at program points indicated by IP .

4.2.5. Loop-invariant code motion. This is an optimization technique and it consists in

moving outside the loops the code which is loop-invariant, i.e. those instructions that can

be moved outside the body of a loop without affecting the semantics of the program.

In this context, we assume that only assignments can be moved outside loops. Let

I : Imp −→ ℘(Lab) be the result of a preliminary static analysis that returns the set of

program labels of those commands that can be moved without affecting the behaviour

of the program. Usually, the preliminary static analysis consists of a reaching definitions

analysis. Given a program P , we assume to know the set IP ⊆ lab�P � of labels that the

preliminary static analysis has classified as loop-invariant. For every l ∈ IP it is trivial to

retrieve the for-loop F ∈ fors(P) (function defined formally at Page 372) that contains

the command at label l. This can be done observing a program trace. So, we assume

to have a function entry that retrieves the label of the loop’s guard related to the loop

which contains the command with label l, namely lG = entry(l) iff F = {G, I} ∪ H ,

l ∈ lab�H ∪ I� and lG = lab�G�. We assume also to have a function exit that retrieves

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 375

the label of the command just next to the loop which contains the command with label

l, namely lO = exit(l) iff F = {G, I} ∪ H , l ∈ lab�H ∪ I� and G = lG : B → {lH , lO}. Let

L̂ be a label not in P , i.e. L̂ /∈ lab�P �. Again we denote with slab(ς) the label of the

command contained in the state ς, i.e. if ς = 〈C, ζ〉 then slab(ς) = lab�C�.
We semantically model the loop-invariant code motion attacker tlicm ∈ Imp −→ Imp as

the semantic transformation tlicm ∈ ℘(Σ+)×℘(Lab) −→ ℘(Σ+) with

tlicm(X, IP) � {tlicm(σ, IP)|σ ∈ X}

tlicm(σ, IP) � Motion(σ, IP).

See Appendix B for the algorithm Motion – Algorithm 3, Page 385. The most concrete

preserved property is

δtlicm =
⊔

P∈Imp

{
X ⊆ Σ+

∣∣∣ PresP ,tlicm(X),
}

where Pres
P ,tlicm

(X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃{

Z ⊆ Σ+
∣∣∣Z = tlicm(Y , IP)

}
⊆ X.

This means that a set of traces X is preserved by the loop-invariant code motion

transformation if it contains all the traces that can be obtained from traces in X by

moving each command, at program points indicated by IP , just before (outside) the loop

that contains it.

4.2.6. Data-obfuscation. This is a class of obfuscation techniques that obscure the data

structures used by programs. These transformations convert the representation of variables

to a representation that is harder to analyze: variables are encoded in an unnatural

way (Collberg et al. 1997), either changing variables types or modifying their values.

Hence, these transformations affect how data is stored and the methods used to interpret

stored data. So, there is an data-encoding function Enc ∈ T −→ T ′ that gives the new

representation of a variable, and a data-decoding function Dec ∈ T ′ −→ T that gives back

the original representation. Of course, operations on variables need to be changed too.

Hence, for every operation op ∈ T×T −→ T we need a new operation op′ ∈ T ′×T ′ −→ T ′.

For example, a simple data-encoding for integers variables is the one that increments

values by one. In our language, the data-encoding of a value is Enc(n) = n + 1 and the

data-decoding is Dec(n) = n− 1. The new arithmetic operations are as follows:

E1 +′ E2 = Enc(E1) + Enc(E2)− 1 E1 −′ E2 = Enc(E1)− Enc(E2)

E1 ·′ E2 = Enc(E1) · Enc(E2)− Enc(E1)− Enc(E2) + 2 with Enc(X) = X.

The actions which need modifications are only assignments and inputs. For the first, we

need to replace X :=E with X := Enc(E), for the second we need to add after an input

inputX an assignment X :=X + 1. We semantically model the data-obfuscation attacker

tdo ∈ Imp −→ Imp as the semantic transformation tdo ∈ ℘(Σ+) −→ ℘(Σ+) with

tdo(X) � {tdo(σ)|σ ∈ X}
tdo(σ) � Enc-Dec(σ)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 376

See Appendix B for the algorithm Enc-Dec – Algorithm 4, Page 386. The most concrete

preserved property is

δtdo =
⊔

P∈Imp

{X ⊆ Σ+|Pres
P ,tdo(X)},

where Pres
P ,tdo(X) if and only if

∀Y ⊆ �P �+ . Y ⊆ X ⇒
⋃
{Z ⊆ Σ+|Z = tdo(Y)} ⊆ X.

This means that a set of traces X is preserved by the data-obfuscation transformation if

it contains all the traces that can be obtained from traces in X by data-encoding/data-

decoding all variables with the functions Enc and Dec.

4.2.7. Comparison results. The formalization of both the watermarking techniques and

the distortive attacks in the semantic setting has allowed us to formally prove the resilience

of the considered watermarking systems, w.r.t. the distortive attacks described above.

Proposition 4.1. Static graph-based watermarking is topi-ineffective. This means that ∀s ∈
S . δtopi ��M(s).

Proof. We prove this by showing that its negation leads to an absurd. So, suppose

that ∃s ∈ S . δtopi �M(s). Indeed, for every set of traces X we have δtopi (X) ⊆M(s)(X).

Take X = Ws. In this case, M(s)(X) = Ws and, due to extensivity, Ws ⊆ δtopi (Ws).

So Ws = δtopi (Ws) must necessarily hold. Note that δtopi (Ws) ∈ δtopi (℘(Σ+)) and that

Pres
P ,topi (Ws) does not hold. This latter implies Ws /∈ δtopi (℘(Σ+)). But this is absurd

because Ws = δtopi (Ws) ∈ δtopi (℘(Σ+)).

Proposition 4.2. Static graph-based watermarking is tef-resilient. This means that δtef ��
{M(s)|s ∈ S}.

Proof. We prove that the negation of this proposition leads to an absurd. So, suppose

that δtef ��
�
{M(s)|s ∈ S} =

�
M, which is equivalent to say that for every set of traces

X we have
�
M(X) � δtef (X). Recall that, for all s ∈ S , Ws = �M(s)�β+ ∈ �

M. Take

X = Ws, for some signature s. In this case,
�

M(X) = Ws and so Ws � δtef (Ws). Note that

Pres
P ,tef

(Ws) holds hence Ws ∈ δtef (℘(Σ+)). Indeed we have that Ws � δtef (Ws) = Ws,

which is absurd.

It is possible to reason about the resilience of the other watermarking techniques in a

similar manner. Table 1 summarizes our results by showing which watermarking system is

resilient (�), w.r.t. an attacker, and which one is ineffective (×). We can observe that path-

base watermarking is not resilient w.r.t. edge-flipping but it is resilient w.r.t. dead-code

elimination. Abstract watermarking is resilient w.r.t. control-flow obfuscations and code-

optimization techniques but it is not resilient w.r.t. data obfuscations, even the simplest.

Indeed, the attacker tdo maintains the signature variable w constant modulo n, but it

changes its value: after the attack the signature is s + 1 instead of s. More sophisticated

data obfuscations can be applied. For instance, it is possible to encode variables in a way

that they are congruent modulo an arbitrary value, so letting the stegoextractor unable

to retrieve any signature. Interestingly, the dynamic graph-based watermarking is resilient

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 377

Table 1. Resilience.

tef tdce tlu topi tlicm tdo

Block-reordering � � × × � �

Static graph-based � � × × � �

Dynamic graph-based � � � � � �

Path-based × � × × � �

Abstract constant propagation � � � � � ×

w.r.t. every attack, this means that it embeds the signature in an abstract property that

is preserved by all the considered attackers. Thus, if we want to develop a watermarking

system resilient to common obfuscation techniques we should encode the signature in an

abstract property implied by the denotational semantics.

We can also note that some optimization techniques, like dead-code elimination and

loop-invariant code motion, do not interfere with all the watermarking schemes analyzed,

so they can be applied safely. Instead, loop unrolling must be applied with more attention.

Indeed we cannot use this optimization technique with block-reordering or path-based

watermarking because it damages the stegomark.

4.3. Comparison: secrecy and transparence

In Section 3, we have discussed how different watermarking systems could be compared

w.r.t. secrecy and transparence based on the comparison of their most powerful secret

and transparent attackers, respectively. Also in this case, it may happen that the two

abstractions are not comparable. In this case, we compare secrecy and transparence w.r.t.

particular observations.

4.3.1. Observations. Let us denote with Ocfg the abstract interpreter that computes

the control flow graph of programs, with Oacp the abstract interpreter that performs

the analysis of constant propagation modulo n (n ∈ N), with Ohg the abstract in-

terpreter that extracts the graph allocated in the heap, and with Occs the abstract

interpreter that retrieves the choices made at conditional statements. Note that this

abstract interpreters implement the stegoextractors of the watermarking techniques

described in Section 4.1: Ocfg for block-reordering watermarking, Oacp for abstract

constant propagation watermarking, Ohg for dynamic graph-based watermarking and

Occs for path-based watermarking.

4.3.2. Comparison results. Given the semantic formalization of the considered water-

marking systems and of the four observers introduced above, we provide a formal proof

of the secrecy and transparence of these watermarking systems w.r.t. Ocfg, Oacp, Ohg, and

Occs.

Proposition 4.3. Static graph-based watermarking is not �-secret w.r.t Ocfg.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 378

Table 2. Secrecy.

Ocfg Oacp Ohg Occs

Block-reordering – – φ � φ � – –

Static graph-based – – φ � φ � φ �
Dynamic graph-based φ � φ � – – φ �
Path-based – – φ � φ � – –

Abstract constant propagation φ � – – φ � φ �

Table 3. Transparence.

Ocfg Oacp Ohg Occs

Block-reordering × � � ×
Static graph-based × � � ×
Dynamic graph-based � � × �

Path-based × � � ×
Abstract constant propagation � × � �

Proof. Let ρ = Ocfg, i.e. the semantic counterpart of Ocfg. ∀P ∈ P ∀s, s′ ∈ S , we

have that �L(P ,M(s))�ρ+ �= �L(P ,M(s′))�ρ+. In fact, ρ is more concrete than the extraction

domain and this makes it able to see differences between any stegoprogram. In fact the

extraction domain β distinguish programs looking at the marked subgraph of CFGs while

ρ can distinguish CFGs in a more precise way.

Proposition 4.4. Block-reordering watermarking is transparent w.r.t. Oacp.

Proof. Let ρ = Oacp, i.e. the semantic counterpart of Oacp. ∀P ∈ P ∀s ∈ S we have

that �P �ρ+ = �L(P ,M(s))�ρ+. In fact, the reordering of the basic block of P does not alter

the values of the program’s variables. So, the constant propagation modulo n computed

on P and every possible stegoprogram returns the same results.

It is possible to reason about secrecy and the transparence of the other watermarking

techniques in a similar manner. Tables 2 and 3 summarize our results. For example, block-

reordering watermarking is not �-secret and it is not φ-secret, for any possible φ, w.r.t.

Ocfg. Instead, it is �-secret, and so φ-secret for all possible φ, w.r.t. an observer which looks

at constants (Oacp). Moreover, abstract constant propagation watermarking is invisible

w.r.t. Ocfg, while it is not invisible w.r.t. Oacp. So, as we can see, all these techniques are

not invisible only w.r.t. the observers which are more precise than
�
{M(s)|s ∈ S}.

Finally, the dynamic graph-based watermarking is secret and transparent w.r.t. all

attackers, except Ohg. Note that this latter retrieves the same information of the

dynamic graph-based watermarking stegoextractor, hence the technique cannot be secret/

transparent w.r.t. this observer. The same holds for abstract constant propagation wa-

termarking. Hence, even if we cannot compare directly the watermarking schemes, we

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 379

can say that the dynamic graph-based watermarking and abstract constant propagation

watermarking are the more safe techniques to use, w.r.t. the given set of attackers.

5. Conclusion

In this paper, we have introduced a semantics-based definition of software watermarking

and its qualifying features. This definition is general enough to allow the specification of

static, abstract and dynamic watermarking techniques. Indeed, all these techniques can

be seen as the exploitation of a completeness hole for the insertion of the signature in

an efficient way. Only attackers that are complete w.r.t. the semantic encoding of the

signature are able to observe the signature and potentially tamper with it. This means

that the abstract domain used for the semantic encoding of the signature M(s) acts like a

secret key that allows to disclose the signature only to those attackers that are complete

w.r.t. M(s).

Regarding the features of a watermarking scheme, our general framework provides a

formal setting for proving the efficiency of a watermarking scheme w.r.t. resilience, secrecy,

transparence and accuracy. To validate our theory we have proved the efficiency of five

known watermarking systems. Thus, we provide a general theory where researchers can

build a formal evidence of the quality of the watermarking system that they propose.

We believe that this is an important contribution that can be considered as the first step

towards a formal theory for software watermarking, where new and existing techniques

can be certified w.r.t. their efficiency.

We would like to thank Roberto Giacobazzi for the initial discussions on this work and

Isabella Mastroeni for the discussions on higher order abstract non-interference. We also

would like to thank the anonymous reviewers for the useful suggestions and comments,

helping us in improving the presentation of our work.

Appendix A. Proofs

A.1. Proof of Proposition 2.1

First, we have to prove that 〈℘(Σ+),�〉 is a partially ordered set.

Reflexivity. For all X ∈ ℘(Σ+), X � X holds, in fact ∀σ ∈ X ∃σ′ ∈ X . σ ∈ pref(σ′) holds

for σ′ = σ and hence X ⊆ X is trivially true.

Antisymmetry. For all X,Y ∈ ℘(Σ+):

a) from X � Y it follows that ∀σ ∈ X ∃σ′ ∈ Y . σ ∈ pref(σ′) and so from Y � X

(the second part of the conjunction) it follows that X ⊆ Y .
b) from Y � X it follows that ∀σ′ ∈ Y ∃σ ∈ X . σ′ ∈ pref(σ) and so from X � Y

(the second part of the conjunction) it follows that Y ⊆ X.
From a and b it follows that X = Y .

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 380

Transitivity. For all X,Y , Z ∈ ℘(Σ+)

c) from X � Y it follows that ∀σx ∈ X ∃σy ∈ Y . σx ∈ pref(σy).

d) from Y � Z it follows that ∀σy′ ∈ Y ∃σz ∈ Z . σy′ ∈ pref(σz).

Considering c and d it is easy to find for all σx ∈ X a σz ∈ Z such that σx ∈ pref(σz),

in fact with σy = σy
′
the relation is satisfied. In the end from Z ⊆ Y and Y ⊆ X, it

follows that Z ⊆ X. So X � Z holds.

So � is a partial order on ℘(Σ+).

Second, for all X ∈ X ⊆ ℘(Σ+) we have that X �
⊎
X , namely

⊎
X is an upper

bound of X , but we have to prove that it is the least. In order to prove that ∀X ⊆
℘(Σ+) ∀� ∈ ℘(Σ+) . (∀X ∈ X . X � �) ⇒

⊎
X � � we show that its negate is false,

i.e. we prove that it does not exist � ∈ ℘(Σ+) such that (∀X ∈ X . X � �) ⇒ (� �⊎
X ∧ � �=

⊎
X). ∀X ∈ X . X � � means that ∀σ ∈

⋃
X∈X X ∃σ′ ∈ � . σ ∈ pref(σ′) and

� �
⊎
X means that ∀σ′ ∈ � ∃σ′′ ∈

⊎
X . σ′ ∈ pref(σ′′). By definition,

⊎
X ⊆

⋃
X∈X X

so ∀σ′ ∈ � ∃σ′′ ∈
⋃
X∈X X . σ

′ ∈ pref(σ′′). From the last proposition and from ∀σ ∈⋃
X∈X X ∃σ′ ∈ � . σ ∈ pref(σ′) it follows that � =

⋃
X∈X X (and so

⊎
X ⊆ �). By the fact

that
⊎
X �= � we have that ∃σ′′ ∈

⊎
X ∀σ′ ∈ � . σ′′ /∈ pref(σ′) which is absurd because⊎

X ⊆ � .

Third, the bottom element is � ∈ ℘(Σ+), i.e. ∀X ∈ ℘(Σ+) .� � X holds. In fact, with

no traces, the conditions of the relation are vacuously true and, if X = �, � � � trivially

holds.

Finally, for all X ⊆ ℘(Σ+) it is easy to note that
⊎
X exists and it is a set of finite traces,

so
⊎
X ∈ ℘(Σ+). So, by the fact that 〈℘(Σ+),�〉 has minimum (bottom), in addition to

the fact that for each subset of ℘(Σ+) there is a least upper bound in ℘(Σ+), we get that

〈℘(Σ+),�,�,�〉 is a join semi-lattice and hence a DCPO. �

A.2. Proof of Proposition 2.2

The first iterates of F+
P [I] for lfp�

�F
+
P [I] are as follows:

X0 = �

X1 = F+
P [I](X

0) = �P �1
I � {σςς′|σς ∈ � ∧ ς′ ∈ S�P �(ς)} = I = �P �1

I

X2 = F+
P [I](X

1) = �P �1
I � {σςς′|σς ∈ X1 ∧ ς′ ∈ S�P �(ς)} =

= �P �1
I � (�P �1̄

I � �P �2
I) = �P �1̄

I � �P �2
I

X3 = F+
P [I](X

2) = �P �1
I � {σςς′|σς ∈ X2 ∧ ς′ ∈ S�P �(ς)} =

= �P �1
I � (�P �1̄

I � �P �2̄
I � �P �3

I) = �P �1̄
I � �P �2̄

I � �P �3
I

By recurrence the nth iterate of F+
P [I] is

Xn =

n−1⊎
i=1

�P �īI � �P �nI .

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 381

In fact

F+
P [I](X

n) = �P �1
I � {σςς′|σς ∈ Xn ∧ ς′ ∈ S�P �(ς)} =

= �P �1
I � (

n⊎
i=1

�P �īI � �P �n+1
I) =

=

n⊎
i=1

�P �īI � �P �n+1
I = Xn+1

Due to the fact that F+
P [I] is Scott-continuous and that it is defined over a DCPO, F+

P [I]

admits a fixpoint, i.e. exists k ∈ N such that F+
P [I](X

k) = Xk , and it is exactly the least

upper bound of the Kleene chain of F+
P [I] starting from �. Due to this considerations, we

get that

F+
P [I](X

k) =

k⊎
i=1

�P �īI � �P �k+1
I =

k−1⊎
i=1

�P �īI � �P �kI = Xk

and so that

�P �k̄I ∪ �P �k+1
I = �P �kI

�P �k̄I ∪ �P �k+1
I = �P �k̄I ∪ {σ ∈ �P �kI |σ� /∈ TP }

�P �k+1
I = {σ ∈ �P �kI |σ� /∈ TP }

The only way to make the last equation true is to have �P �k+1
I = � and {σ ∈ �P �kI |σ� /∈

TP } = �, due to the fact that {σ ∈ �P �kI |σ� /∈ TP } and �P �k+1
I do not share any element.

So finally, we have that it exists k ∈ N such that F+
P [I]

k
(�) =

⊎k
i=1�P �īI = lfp�

�F
+
P [I]. �

A.3. Proof of Theorem 2.1

First, it is necessary to prove that this set is an upper closure operator and, after that, we

have to prove that is the most concrete closure for which the program is safe. Upper closure

operators are isomorphic to Moore families, so we prove that {X ∈ ℘(Σ+)|SecrH+
I,η,(φ)(X)} is

a Moore family. For doing so, we have only to prove that this set contains the intersection

of all its elements. Consider X,Y ∈ {Z ∈ ℘(Σ+)|SecrH+
I,η,(φ)(Z)}. For hypothesis we have

that:

∀P ∈P ∀Q ∈ Q .

(∃Z ∈ ΥH+
I,η,(φ)(P ,Q) . Z ⊆ X ⇒ ∀W ∈ ΥH+

I,η,(φ)(P ,Q) .W ⊆ X)∧
(∃Z ∈ ΥH+

I,η,(φ)(P ,Q) . Z ⊆ Y ⇒ ∀W ∈ ΥH+
I,η,(φ)(P ,Q) .W ⊆ Y).

So, we have to prove that the same condition holds for X∩Y . Suppose that ∀P ∈ P ∀Q ∈ Q

it exists Z in ΥH+
I,η,(φ)(P ,Q) such that Z ⊆ X∩Y (indeed Z ⊆ X and Z ⊆ Y). For hypothesis

SecrH+
I,η,(φ)(X) and SecrH+

I,η,(φ)(Y) hold, so ∀W ∈ ΥH+
I,η,(φ)(P ,Q) we have that W is contained

in X and W is contained in Y , namely W ⊆ X ∩ Y . Therefore SecrH+
I,η,(φ)(X ∩ Y) holds.

This result can be easily extended to a generic intersection, so {X ∈ ℘(Σ+)|SecrH+
I,η,(φ)(X)}

is a Moore family.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 382

Second, we have to prove non-interference, i.e. for ρ̂ � {X ∈ ℘(Σ+)|SecrH+
I,η,(φ)(X)}

it is true H
+

[η]I(φ⇒ ρ̂)bca. Suppose that it exists P1, P2 ∈ P and Q1, Q2 ∈ Q such that

�P1�η+ = �P2�η+ ∧ �Q1�φ+ = �Q2�φ+, with �I(P1, Q1)�ρ̂+ �= �I(P2, Q2)�ρ̂+. We can note that

�I(P1, Q1)�+ and �I(P2, Q2)�+ are in ΥH+
I,η,(φ)(P1, Q1), in fact P1 ≡η P2 and Q1 ≡φ Q2. Let

X1, X2 ∈ ℘(Σ+) defined as X1 � �I(P1, Q1)�ρ̂+ and X2 � �I(P2, Q2)�ρ̂+. For hypothesis,

we have that X1 �= X2 but, due to the fact that X1, X2 ∈ ρ̂, we have SecrH+
I,η,(φ)(X1)

and SecrH+
I,η,(φ)(X2). Now, if X2 �⊆ X1, we have �I(P1, Q1)�+ ∈ ΥH+

I,η,(φ)(P1, Q1) such that

�I(P1, Q1)�+ ⊆ X1, whilst �I(P2, Q2)�+ ∈ ΥH+
I,η,(φ)(P1, Q1) such that �I(P1, Q1)�+ �⊆ X1:

absurd (for the hypothesis on X1). Similarly, reasoning on X2 ⊆ X1 we obtain the same

contradiction on X2. Therefore, �P1�η+ = �P2�η+ ∧ �Q1�φ+ = �Q2�φ+ implies that �I(P1, Q1)�ρ̂+
is equal to �I(P2, Q2)�ρ̂+.

Finally we have to prove that the closure is the most concrete. Suppose the contrary,

i.e. it exists a domain ρ such that ρ̂ �� ρ and H
+

[η]I(φ⇒ ρ)bca holds. Remember that

ρ̂ � ρ iff ρ ⊆ ρ̂. Take into account the case in which ρ̂ � ρ. At this point we can note

that it exists X ∈ ρ such that X /∈ ρ̂, i.e. for which SecrH+
I,η,(φ)(X) does not hold. But

this means that it exists P ∈ P and Q ∈ Q such that ∃Z ∈ ΥH+
I,η,(φ)(P ,Q) . Z ⊆ X and

∃W ∈ ΥH+
I,η,(φ)(P ,Q) .W �⊆ X. So Z = �I(P1, Q1)�+, for some P1 ∈ P, Q1 ∈ Q and W =

�I(P2, Q2)�+, for some P2 ∈ P, Q2 ∈ Q, with P1 ≡η P2 ≡η P and Q2 ≡φ Q2 ≡φ Q due to the

fact that both the sets belong to ΥH+
I,η,(φ)(P ,Q). All this implies that �I(P1, Q1)�ρ+ ⊆ X due to

�I(P1, Q1)�+ ∈ X, whilst �I(P2, Q2)�ρ+ �⊆ X due to �I(P2, Q2)�+ /∈ X. Indeed �I(P1, Q1)�ρ+ �=�I(P2, Q2)�ρ+, but this is impossible, in fact we supposed that H
+

[η]I(φ⇒ ρ)bca. So a domain

like ρ doesn’t exist. �

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 383

Appendix B. Algorithms

Algorithm 1 Elimination

Require: σ, I
1: for all l ∈ I do

2: Let σi such that slab(σi) = l

3: l′ ← slab(σi+1)

4: j ← 0

5: while j < |σ| do � |σ| is updated at every cycle

6: Let σj = 〈Cj, ζj〉
7: if slab(σj) = l then

8: Let σj+1 = 〈Cj+1, ζj+1〉
9: σj+1 ← 〈Cj+1, ζj〉

10: σj ← �
11: j ← j − 1

12: else

13: if Cj = L : A→ l; then

14: σj ← 〈L : A→ l′; , ζj〉
15: if Cj = L : B → {l, LF}; then

16: σj ← 〈L : B → {l′, LF}; , ζj〉
17: if Cj = L : B → {LT , l}; then

18: σj ← 〈L : B → {LT , l′}; , ζj〉
19: j ← j + 1

Ensure: σ

The syntactic encoding (for arithmetic expressions) Enc ∈ E −→ E is inductively defined

as follows:

Enc(n) = (n+ 1)

Enc(X) = X

Enc(E1 + E2) = (Enc(E1) + Enc(E2))

Enc(E1 · E2) = (Enc(E1) · Enc(E2))

Enc(E1 − E2) = (Enc(E1)− Enc(E2)).

The syntactic encoding (for boolean expressions) Enc ∈ B −→ B is inductively defined

as follows:

Enc(b) = b

Enc(¬B) = ¬Enc(B)

Enc(B1 ∧ B2) = Enc(B1) ∧ Enc(B2)

Enc(B1 ∨ B2) = Enc(B1) ∨ Enc(B2)

Enc(E1 < E2) = Enc(E1) < Enc(E2)

Enc(E1 = E2) = Enc(E1) = Enc(E2)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 384

Algorithm 2 Unroll

Require: σ, I
1: for all 〈lG, lI〉 ∈ I do

2: Let σi = 〈Ci, ζi〉 such that slab(σi) = lG

3: Let σj = 〈Cj, ζj〉 such that slab(σj) = lI

4: Let X the variable of the guard in Ci, i.e. Ci = lG : X < E → {lH , lO};
5: Let X the variable in the increment Cj , i.e. Cj = lI : X := X + Ė → lG;

6: Let ė be the value of expression Ė computed in context ζj

7: Itrs← ordered list of pairs 〈i, j〉 with, i < j, such that:

slab(σi) = lG ∧ slab(σj) = lO ∧ ∀k ∈ (i, j) . slab(σk) �= lO

8: for all 〈i, j〉 ∈ Itrs do � in list order

9: m← 0

10: for k = i to j − 1 do

11: Let σk = 〈Ck, 〈ρk, ιk〉〉
12: if slab(σk) = lG then

13: m← m+ 1

14: if m > 1 then

15: L← lG
m−1

16: ρk ← ρk[X ←� ρk(X)− mė]
17: else

18: L← lG

19: σk ← 〈L : skip→ lH
m
; 〈ρk, ιk〉〉

20: if slab(σk) = lI then

21: σk ← 〈lI
m

: skip→ lG
m
; , 〈ρk[X ←� ρk(X)− mė], ιk〉〉

22: if slab(σk) �= lG ∧ slab(σk) �= lI then � so Ck ∈ H
23: if Ck = L : B → {LT , LF}; then

24: B′ ← B[X ←� X + (m− 1)ė]

25: Ck ← Lm : B′ → {LmT , LmF};
26: if Ck = L1 : A→ L2; then

27: A′ ← A[X ←� X + (m− 1)ė]

28: Ck ← Lm1 : A′ → Lm2 ;

29: σk ← 〈Ck, 〈ρk[X ←� ρk(X)− mė], ιk〉〉
30: Let σj−1 = 〈Cj−1, ζj−1〉
31: σ′ ← σ0 . . . σi . . . σj−1

32: σ′ ← σ′〈lHm : X := X + (m− 1)ė→ lO; , ζj−1〉
33: σ ← σ′σj . . . σ|σ|−1

Ensure: σ

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 385

Algorithm 3 Motion

Require: σ, I
1: for all l ∈ I do

2: Let σk = 〈Cl, ζk〉 such that slab(σk) = l

3: Let X be the variable assigned in Cl , i.e. Cl = l : X := El → l′;

4: Let e be the value of expression El computed in context ζj
5: lG ← entry(l)

6: lO ← exit(l)

7: Itrs← ordered list of pairs 〈i, j〉, with i < j, such that:

slab(σi) = lG ∧ slab(σj) = lO ∧ ∀k ∈ (i, j) . slab(σk) �= lO

8: Let 〈i, j〉 the first element of Itrs

9: w ← 0

10: for all 〈i, j〉 ∈ Itrs do � in list order

11: σ′ ← σw . . . σi−2

12: Let σi−1 = 〈Ci−1, ζi−1〉
13: if Ci−1 = L : A→ lG; then

14: σ′ ← σ′〈L : A→ L̂; ζi−1〉〈L̂ : X := El → lG, ζi−1〉
15: if Ci−1 = L : B → {lG, LF}; then

16: σ′ ← σ′〈L : B → {L̂, LF}; ζi−1〉〈L̂ : X := El → lG, ζi−1〉
17: if Ci−1 = L : B → {LT , lG}; then

18: σ′ ← σ′〈L : B → {LT , L̂}; ζi−1〉〈L̂ : X := El → lG, ζi−1〉
19: for all k ∈ [i, j) do

20: Let σk = 〈Ck, 〈ρk, ιk〉〉
21: σk ← 〈Ck, 〈ρk[X ←� e], ιk〉〉
22: if slab(σk) �= l then

23: if Ck = L : A→ l then

24: σk ← 〈L : A→ l′; , 〈ρk, ιk〉〉
25: if Ck = L : B → {l, LF}; then

26: σk ← 〈L : B → {l′, LF}; , 〈ρk, ιk〉〉
27: if Ck = L : B → {LT , l}; then

28: σk ← 〈L : B → {LT , l′}; , 〈ρk, ιk〉〉
29: σ′ ← σ′σk

30: w ← j

31: Let 〈i, j〉 the last element of Itrs

32: σ′ ← σ′σj . . . σ|σ|−1

33: σ ← σ′

34: i← 0

35: for j = 0 to |σ| − 1 do

36: if slab(σj) /∈ I then

37: σ′i ← σj
38: i← i+ 1

Ensure: σ′

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 386

Algorithm 4 Enc-Dec

Require: σ
1: Itrs← list of variables of σ
2: Labs← set of labels of σ
3: Let σ0 = 〈C0, ζ0〉
4: σ′ ← 〈L : Itrs0 := Itrs0 + 1→ L′; , ζ0〉 such that L,L′ /∈ Labs
5: k ← 1
6: while k < |Itrs| do
7: Let σ′k−1 = 〈L : A→ L′; , 〈ρ, ι〉〉

8: σ′ ← σ′〈L′ : Itrsk := Itrsk + 1→ L′′; , 〈ρ[Itrsk−1 ← � ρ(Itrsk−1) + 1], ι〉〉
such that L′′ /∈ Labs

9: k ← k + 1

10: Let σ′k−1 = 〈L : A→ L′; , 〈ρ, ι〉〉
11: σ′′ ← σ′0 . . . σ

′
k−2

12: σ′ ← σ′′〈L : A→ lab�C0�, 〈ρ, ι〉〉〈C0, 〈ρ[Itrsk−1 ←� ρ(Itrsk−1) + 1], ι〉〉
13: σ′ ← σ′σ1 . . . σ|σ|−1

14: while k < |σ′| do
15: Let σ′k = 〈C, 〈ρ, ι〉〉
16: ρ′ ← ρ

17: for all j ∈ [0, |Itrs|) do
18: ρ′ ← ρ′[Itrsj ←� ρ′(Itrsj) + 1]

19: if C = L : B → {Ltt, Lff}; then
20: σ′ ← σ′0 . . . σ

′
k−1〈L : Enc(B)→ {Ltt, Lff}; , 〈ρ′, ι〉〉σ′k+1 . . . σ

′
|σ′ |−1

21: else if C = L : X := E → L′; then
22: σ′ ← σ′0 . . . σ

′
k−1〈L : X := Enc(E)→ L′; , 〈ρ′, ι〉〉σ′k+1 . . . σ

′
|σ′ |−1

23: else if C = L : inputX → L′; then
24: σ′′ ← σ′0 . . . σ

′
k−1〈L : inputX → L′′; 〈ρ, ι〉〉 such that L′′ /∈ Labs

25: Let σ′k+1 = 〈Ck+1, 〈ρk+1, ιk+1〉〉
26: σ′′ ← σ′′〈L′′ : X := X + 1→ L′; , 〈ρk+1, ιk+1〉〉
27: ρ′′ ← ρ′[X ←� ρk+1(X) + 1]
28: σ′ ← σ′′〈Ck+1, 〈ρ′′, ιk+1〉〉σ′k+2 . . . σ

′
|σ′ |−1

29: else
30: σ′ ← σ′0 . . . σ

′
k−1〈C, 〈ρ′, ι〉〉σ′k+1 . . . σ

′
|σ′ |−1

31: k ← k + 1

32: Let σ′k−1 = 〈L : stop, ζ〉
33: σ′ ← σ′0 . . . σ

′
k−2〈L : Itrs0 := Itrs0 − 1→ L′; , ζ〉 such that L′ /∈ Labs

34: j ← 1
35: while j < |Itrs| do
36: Let σ′k−1 = 〈L : A→ L′; , 〈ρ, ι〉〉

37: σ′ ← σ′〈L′ : Itrsj := Itrsj − 1→ L′′; 〈ρ[Itrsj−1 ←� ρ(Itrsj−1)− 1], ι〉〉
such that L′′ /∈ Labs

38: k ← k + 1
39: j ← j + 1

40: Let σ′k−1 = 〈L : A→ L′; , ζ〉
41: σ′ ← σ′〈L′ : stop; ζ〉
Ensure: σ′

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

Semantics-based software watermarking by abstract interpretation 387

References

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P. and Yang, K. (2001).

On the (im)possibility of obfuscating programs. In: CRYPTO ’01: Proceedings of the 21st Annual

International Cryptology Conference on Advances in Cryptology, Springer-Verlag 1–18.

BSA (2016). Global Software Survey: Seizing Opportunity Through License Compliance, Online. .

Available at http://globalstudy.bsa.org/2016/.

Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C. and Stepp, M. (2004).

Dynamic path-based software watermarking. SIGPLAN Not. 39 (6) 107–118.

Collberg, C. and Thomborson, C. (2002). Watermarking, tamper-proofing, and obfuscation-tools

for software protection. IEEE Transactions Software Engineering 28 735–746.

Collberg, C. and Thomborson, C.D. (1999). Software watermarking: Models and dynamic

embeddings. In: POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM 311–324.

Collberg, C., Thomborson, C.D. and Low, D. (1997). A taxonomy of obfuscating transformations;

Technical Report 148; Department of Computer Science, The University of Auckland.

Collberg, C., Thomborson, C.D. and Low, D. (1998). Manufactoring cheap, resilient, and stealthy

opaque constructs. In: Proceedings of Conference Record of the 25st ACM Symp osium on

Principles of Programming Languages (POPL’98), ACM Press 184–196.

Cousot, P. (2002). Constructive design of a hierarchy of semantics of a transition system by abstract

interpretation. Theoretical Computer Science 277 (1–2) 47–103.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In: Conference Record of the 4th

ACM Symposium on Principles of Programming Languages (POPL’77), ACM Press 238–252.

Cousot, P. and Cousot, R. (1979). Systematic design of program analysis frameworks. In: Conference

Record of the 6th ACM Symposium on Principles of Programming Languages (POPL’79), ACM

Press 269–282.

Cousot, P. and Cousot, R. (2002). Systematic design of program transformation frameworks by

abstract interpretation. In: Conference Record of the 29th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ACM Press 178–190.

Cousot, P. and Cousot, R. (2004). An abstract interpretation-based framework for software

watermarking. In: Conference Record of the 31st Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, ACM Press, New York, NY, USA 173–185.

Dalla Preda, M. and Giacobazzi, R. (2005). Semantic-based code obfuscation by abstract

interpretation. In: Proceeding of the 32nd International Colloquium on Automata, Languages and

Programming (ICALP’05), Lecture Notes in Computer Science, vol. 3580, Springer-Verlag 1325–

1336.

Dalla Preda, M. and Giacobazzi, R. (2009). Semantic-based code obfuscation by abstract

interpretation. Journal of Computer Security 17 (6) 855–908.

Dalla Preda, M., Giacobazzi, R. and Visentini, E. (2008). Hiding software watermarks in loop

structures. In: Proceedings of the Static Analysis, 15th International Symposium, SAS 2008 ’; ,

Valencia, Spain, July 16–18, 2008, Lecture Notes in Computer Science, vol. 5079 174–188.

Dalla Preda, M. and Pasqua, M. (2016). Software watermarking: A semantics-based approach.

In: Proceeding of the 6th Workshop on Numerical and Symbolic Abstract Domains (NSAD 2016),

Edinburgh, Scotland, September 11, 2016 Elsevier – Electronic Notes in Theoretical Computer

Science, 71–85. https://doi.org/10.1016/j.entcs.2017.02.005

Davidson, R.L. and Myhrvold, N. (1996). Method and system for generating and auditing a

signature for a computer program. US Patent number 5,559,884.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

M. Dalla Preda and M. Pasqua 388

Frontier-Economics (2016). The economic impacts of counterfeiting and piracy – report prepared

for bascap and inta. online. Available at: https://iccwbo.org/publication/economic-impacts-

counterfeiting-piracy-report-prepared-bascap-inta/.

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A. and Waters, B. (2013). Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: IACR Cryptology

ePrint Archive, 451.

Giacobazzi, R. (2008). Hiding information in completeness holes – new perspectives in code

obfuscation and watermarking. In: Proceedings of The 6th IEEE International Conferences on

Software Engineering and Formal Methods (SEFM’08), IEEE Press. 7–20.

Giacobazzi, R. and Mastroeni, I. (2002). Compositionality in the puzzle of semantics. In: Proceedings

of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM ’02), Portland, Oregon, USA, January 14–15 87–97.

Giacobazzi, R. and Mastroeni, I. (2004). Abstract non-interference: Parameterizing non-interference

by abstract interpretation. In: Proceedings of the 31st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’04), ACM-Press 186–197.

Giacobazzi, R. and Mastroeni, I. (2008). Transforming abstract interpretations by abstract

interpretation. In: Alpuente, M. (ed.), Proceedings of The 15th International Static Analysis

Symposium, SAS’08, Lecture Notes in Computer Science; vol. 5079, Springer-Verlag, 1–17.

Giacobazzi, R. and Quintarelli, E. (2001). Incompleteness, counterexamples and refinements in

abstract model-checking. In: Cousot, P. (ed.), Proceedings of the 8th Internat. Static Analysis

Symposium (SAS’01), Lecture Notes in Computer Science, vol. 2126, Springer-Verlag, 356–373.

Giacobazzi, R., Ranzato, F. and Scozzari, F. (2000). Making abstract interpretation complete. Journal

of the ACM 47 (2) 361–416.

Mastroeni, I. (2005). Abstract Non-Interference - An Abstract Interpretation-based Approach to

Secure Information Flow; PhD thesis; University of Verona – Dep. of Computer Science; Strada

le Grazie 15, 37134, Verona (Italy).

Moskowitz, S.A. and Cooperman, M. (1996). Method for stega-cipher protection of computer code;

US patent 5.745.569; Assignee: The Dice Company.

Nagra, J., Thomborson, C.D. and Collberg, C. (2002). A functional taxonomy for software

watermarking. Australian Computer Science Communications 24 (1) 177–186.

Venkatesan, R., Vazirani, V. and Sinha, S. (2001). A graph theoretic approach to software

watermarking. In: Moskowitz, I. (ed.), Information Hiding, Lecture Notes in Computer Science,

vol. 2137, Springer, Berlin/Heidelberg, 157–168.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000038
Downloaded from https://www.cambridge.org/core. Biblioteca Centrale Meneghetti, on 16 Feb 2021 at 20:52:15, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000038
https://www.cambridge.org/core

