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ABSTRACT
The immutable nature of Ethereum transactions, and consequently Ethereum smart-contracts, has
stimulated the proliferation of many approaches aiming at detecting defects and security issues before
the deployment of smart-contracts on the blockchain. Indeed, the actions performed by smart-contracts
instantiated on the blockchain, possibly involving substantial financial value, cannot be undone.

Unfortunately, smart-contracts source code is not always available, hence approaches based on
static analysis have very often to face the problem of inspecting the compiled Ethereum Virtual
Machine (EVM) bytecode, retrieved directly from the blockchain. However, due to the intrinsic
complexity of EVM bytecode (especially in jumps address resolution), the state-of-the-art static
analysis-based solutions have poor accuracy in the automated detection of Ethereum smart-contracts
programming defects and vulnerabilities.

This paper presents a novel approach based on symbolic execution of the EVM operands stack
that allows to resolve jumps address in the EVM bytecode and to construct a precise Control-Flow
Graph (CFG) of compiled smart-contracts. Many static analysis techniques are based on a CFG-based
representation of the smart-contract to validate, and would therefore benefit from our approach.

We have implemented the CFG reconstruction algorithm in a tool called EtherSolve. Then, we
have validated the tool on a large dataset of real-world Ethereum smart-contracts, showing that
EtherSolve extracts more precise CFGs, w.r.t. state-of-the-art available approaches. Finally, we have
extended EtherSolve with two detectors for two of the most prominent Ethereum smart-contracts
vulnerabilities (Reentrancy and Tx.origin). Experimental results show that exploiting the proposed
CFG reconstruction static analysis, leads to more accurate vulnerabilities detection, w.r.t. state-of-
the-art security tools.

1. Introduction
Smart-contracts extend blockchain-based cryptocurren-

cies (e.g., Ethereum), allowing to store programs trans-
parently on the blockchain, that are eventually executed
by the distributed network of miners. In other words, a
smart-contract is a self-executing program that runs on a
blockchain.

The peculiarity of a smart-contract is that the program
and all the actions it performs (e.g., money transactions)
are immutable: once written on the blockchain, they can-
not be modified nor deleted, even in case of programming
defects identified after deployment. Programming defects
and vulnerabilities might result in frauds or in financial
values that are frozen indefinitely [44]. Moreover, smart-
contracts security is becoming a crucial point due to the
advent of the so called Decentralised Financial (De-Fi): a
range of semi-familiar financial products re-skinned for the
cryptocurrency age [10]. DeFi sees a great involvement of
new smart-contracts, reaching 3.1 million contract calls in
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a single day [12] with $88.5 billion total value locked [45],
and these numbers are still growing.

For these reasons, code review, possibly supported by
automated analysis tools, is crucial, in order to detect pro-
gramming defects and vulnerabilities before smart-contracts
deployment or before erroneous transactions committed
(and permanently stored) in the blockchain. This is es-
pecially critical for closed-source smart-contracts, whose
source code cannot be inspected by end-users, and the only
available representation is the compiled EVM bytecode on
the blockchain [38].

The precision of the static analysis is one of the key
points to promptly deploy and run correct smart-contracts.
However, state-of-the-art tools for detecting programming
defects and vulnerabilities in Ethereum smart-contracts ex-
perience substantial limitations: analysis results contain lots
of false positives (false alarms) and false negatives (over-
looked issues) [31]. A possible explanation for such poor
performance could be the intrinsic difficulty of analyzing the
EVM bytecode. In fact, despite the bytecode is easy to parse
(fixed length opcodes) its semantics and control-flow graph
(CFG) are difficult to reconstruct due to the following EVM
design choices.

• Jumps destination is not an opcode parameter. A jump
opcode assumes the destination address to be available
on the stack, dynamically computed by previous code.
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• There is no opcode for returning from functions: the
“return” is implemented by pushing the return address
on the stack, and then performing a jump.

• Functions are removed by the compiler. Intra-contract
function calls are replaced by jumps. Inter-contract
function calls are resolved by a “dispatcher” placed
at the smart-contract entry-point, that decides what
address to jump to, depending on the call actual pa-
rameters.

• The smart-contract constructor is executed only when
the contract is deployed on the blockchain, and then
discarded. Thus, its bytecode is not available in the
blockchain.

The most effective static analysis algorithms rely heavily
on the particular representation of the code, that is usually
based on the control-flow graph. Indeed, CFG precision is
a key point of every analysis, and when research tools base
their analysis on a partial or imprecise CFG, the final tool
results are also imprecise. Since it is still quite difficult to
precisely compute a precise CFG, often, tools use alternative
program representations (e.g., trace tree [40] or three address
code [8]), sacrificing analysis accuracy.

In this paper we go in the opposite direction: we aim at
extracting a precise CFG from the EVM bytecode. To this
end, we propose a static analysis approach, called symbolic
stack execution, that resolves jumps destination based on
the symbolic execution of the operands stack. After the
jumps destination is resolved, an accurate CFG can be built.
The approach has been implemented and open sourced as
EtherSolve1, a fully automated tool to compute a precise
CFG starting from EVM bytecode. This result represents
a beneficial starting point for any subsequent sophisticated
static analysis meant to identify programming defects or
vulnerabilities in Ethereum smart-contracts. To quantify the
improved precision of this CFG, we have extended Ether-
Solve adding analyses aiming at detecting two of the most
prominent Ethereum smart-contracts vulnerabilities [23],
namely Reentrancy and Tx.origin. These detectors turn out
to perform better than state-of-the-art security EVM byte-
code scanning tools, with results comparable to analysis
tools that can also inspect smart-contracts source code.

The present paper is a deeply revised and extended ver-
sion of the companion conference paper [16]. In particular,
we better explained the problem and improved the overall
presentation of the proposed methodology. Furthermore, we
extended EtherSolve with a mechanism to identify functions
entry-point and a specific analysis detecting Tx.origin vul-
nerabilities. Finally, we extended the experimental valida-
tion, adding an assessment of the accuracy of EtherSolve
in identifying functions entry-point and a comparison of
vulnerabilities detection efficacy (Reentrancy and Tx.origin)
with the state-of-the-art source code level analysis tools.

1The open source tool is available at https://github.com/SeUniVr/
EtherSolve.

The paper is structured as follows. After covering the
background of smart-contracts in Section 2, the static anal-
ysis reconstructing the CFG of Ethereum smart-contracts
is described in Section 3. In Section 4, the static analysis
is extended in order to detect Reentrancy and Tx.origin
vulnerabilities. Section 5 presents our empirical validation
and comparison with state-of-the-art tools. Then, Section 6
discusses the related work and Section 7 closes the paper.

2. Background
2.1. Ethereum

Ethereum is an open-source platform for decentralized
applications, based on the blockchain technology. On the
Ethereum network, it is possible to write simple programs,
called smart-contracts [22, 4], that (semi-)automatically
manage the underlying network cryptocurrency, calledEther
(ETH). The actions that can be performed in Ethereum are
transactions, i.e., transfer of funds or data between different
ETH accounts. Every new transaction is irreversible and
it is permanently added in a new block that updates the
blockchain [22, 4].

In the Ethereum network each principle has an account
identified by an address (a sequence of 20 bytes). There are
two types of accounts: Externally Owned Accounts (EOA)
and contract accounts [9]. The former is a simple address
that does not point to any code: it can only emit and receive
transactions (similarly to Bitcoin wallets [5]). The latter is
the identifier of a smart-contract deployed in the network,
which is run whenever a transaction is sent to its address [4].

Ethereum uses a proof-of-work (POW) system as a
consensus mechanism [55, 6]. Participants of the network,
called miners, use their time, computational power and
crypto currency assets to compete. The miner that succeeds
is allowed to add blocks to the Ethereum blockchain and
gets a reward [9]. Rewards are paid by the users who invoke
the execution of a smart-contract or simply want to transfer
funds to other accounts. In fact, every operation in the
network has a cost expressed in the unit ofGas and the price
per unit is expressed in Wei, a fraction of an Ether. In the
near future, a switch to a proof-of-stake (POS) consensus
mechanism will be performed, yielding to Ethereum 2.0. In
a POS setting, miners are replaced by stackers, that validate
transactions based on the amount of cryptocurrecny they
have staked, instead of the computational power they are
able to employ.
2.2. The Solidity Language

Smart-contracts for Ethereum can be written with differ-
ent high-level programming languages, but Solidity [25] is
indubitably the most wide-spread [28]. Solidity is a Turing-
complete object-oriented language and smart-contracts are
basically objects with functions and fields.

The example in Listing 1 reports a smart-contract written
in Solidity to implement a bank. The field balances stores the
internal state of the smart-contract. It is a key-value map that
associates every address to an integer value representing the
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pragma solidity ^0.6.0;

contract SimpleBank {

mapping(address => uint256) private balances;

function deposit(uint256 amount) public payable {

require(msg.value == amount);

balances[msg.sender] += amount;

}

function deposit100 () public payable {

require(msg.value == 100);

balances[msg.sender] += 100;

}

function withdraw(uint256 amount) public {

require(amount <= balances[msg.sender ]);

balances[msg.sender] -= amount;

msg.sender.transfer(amount);

}

}

Listing 1. Solidity code example

funds owned by the address account. The functions deposit
and deposit100 allow the user to deposit currency into its
virtual account. The former allows to deposit an arbitrary
amount, the latter is a special case which allows to transfer
exactly 100 Wei. The withdraw function allows the user to
get back a certain amount of Ether previously deposited.
Solidity provides different primitives to interact with the
blockchain environment, for instance: transfer, that sends
Ether to a certain address; revert, that makes the transaction
fail and rolls-back to the state preceding the transaction;
require, that enforces a certain boolean condition and in case
the condition is not met a revert is performed.
2.3. Compiling Solidity into EVM Bytecode

In order to actually run a smart-contract on the Ethereum
blockchain, the Solidity source code needs to be compiled
into EVM bytecode, in order to be executed by the Ethereum
Virtual Machine [29].

Given a smart-contract, the Solidity official compiler
solc generates the creation code and the runtime code.
The former is the constructor of the smart-contract, that
performs the initial operations and deploys the runtime code
on the blockchain (the constructor code is then discarded and
not stored in the blockchain [26]). The latter is the actual
bytecode deployed on the blockchain and it is divided in
three main segments. The first segment contains the opcodes
that the EVM executes; the second segment is optional
and contains static data (e.g., strings or constant arrays);
the last segment contains the metadata. In particular, the
metadata segment contains compilation information, such
as the compiler version and the (hashed) sources used, in
order to verify its source code [25]. The metadata segment
is hashed and appended to the contract bytecode.

In addition, solc also produces the Application Binary
Interface (ABI), a file containing the list of the functions in
the smart-contracts that can be called by a user, together with
the type and number of parameters. Functions are not iden-
tified by their name but by the hash of their signature. The
ABI file is not deployed on the blockchain, it is distributed
separately to all parties that aim to interact with the smart-
contract.

� �
Runtime Code:

6080604052600436106100345760003560 e01c8063140

e9ac714610039 ... 600020600082825401925050819

055505056 fe

Metadata:

a2646970667358221220e62b6e0d256ecbc0a1b39b99b

f0a2b509ed60dd83c71541b2d00fed1bde5a9e464736f

6c634300060b0033� �
Listing 2. Bytecode example.

Concerning the EVM execution, the main memory of a
smart-contract consists in a stack, namely a volatile LIFO
queue with 1024 blocks of 32 bytes [25, 29]. The execution
relies heavily on it, as arithmetic and logic operations follow
the reverse polish notation, where the data are loaded into the
stack before the operation [48]. For instance, the (hexadec-
imal) bytecode string 6005600301 translates to opcodes list
PUSH1 0x05 PUSH1 0x03 ADD, and the EVM execution
will: (i) push a byte to the stack containing the value 0x05;
(ii) push the value 0x03; and (iii) execute the addition
operation, which consumes two elements from the stack and
produces their sum as result, leaving the final stack with the
value 0x08 only.

The EVM bytecode is composed by EVM opcodes that
can be grouped in categories, including arithmetic and logic
operations, control flow operations, stack operations, en-
vironmental and block information, memory and storage
operations and system operations. The complete list of op-
codes with their semantics is defined in the Ethereum yellow
paper [53], and there can be little variations among different
EVM versions. Listing 2 shows a portion of a Solidity
smart-contract compiled into EVM bytecode, while List-
ing 3 shows the translation of the bytes into EVM opcodes.
Bytecode can be easily parsed into opcodes, which are the
minimum instructions that the EVM can execute and are
identified with bytes.

Every opcode pushes or pops a certain number of el-
ements from/to the stack, and it can access memory, get
information about the execution environment or interact with
other blockchain smart-contracts. The only opcodes with a
parameter are those in the PUSH family: the value that the
EVM pushes into the stack is taken directly from the bytes
following the opcode. There are different variants of PUSH,
depending on the number of bytes that needs to be pushed
to the stack, varying from PUSH1 (1 byte is pushed) to
PUSH32 (32 bytes are pushed) [53, 29].

A portion of the code can be used as read-only data; in
fact with the CODECOPY opcode the execution can copy
a portion of the code to the memory and then treat it as
data [8]. Thus, parsing this segment of memory as code
might generate spurious results, including invalid opcodes
and wrong jumps destination.

The control-flow of the smart-contract is also managed
by means of the stack. In fact, in order to jump among
different portions of the code both the JUMP and the JUMPI
opcodes (unconditional and conditional jumps, respectively)
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PUSH1 0x80 PUSH1 0x40 MSTORE PUSH1 0x4

CALLDATASIZE LT PUSH2 0x34 JUMPI PUSH1 0x0

CALLDATALOAD PUSH1 0xE0 SHR DUP1

PUSH4 0x140E9AC7 EQ PUSH2 0x39 JUMPI

...

PUSH1 0x0 KECCAK256 PUSH1 0x0 DUP3 DUP3

SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE

POP POP JUMP INVALID� �
Listing 3. Opcodes example.

have to read the jump destination from the stack. Jumps des-
tination is not indicated with a label, but with the offset w.r.t.
the next instruction in the code [8]. Unlike x86 Assembly, in
the EVM there is not the concept of function: everything is
managed through jumps (there are no opcodes for function
calls nor for call returns). The only return available is for
function calls coming from external smart-contracts.

These design choices make the EVM bytecode quite
difficult to analyze statically. In particular, since jumps des-
tination is computed at run-time, the CFG cannot be recon-
structed without a sort of stack simulation, whose accuracy
directly affects the precision of extracted CFG.

When a transaction starts the execution of a smart-
contract, it can send both funds and information as call data.
In order to transfer the control to the code corresponding
to the intended function, the compiler adds a dispatcher at
the beginning of the contract code. When a caller is willing
to execute a certain contract function, it sends a transaction
that contains the hash of the function signature, so that the
dispatcher can compare it with all the hashes of the smart-
contract functions and then move the execution to the begin
of the corresponding function code. Instead, if no call data
are supplied or none of the hashes matches, the dispatcher
moves the execution to the beginning of the fallback func-
tion. This function has not parameters nor return values [25],
and it is called automatically when a money transfer is
performed (on the destination contract).

Every function call in the Solidity contract is translated
by the compiler into a sequence of PUSH opcodes, followed
by a JUMP and a JUMPDEST. This sequence loads into the
stack the return address of the calling context, the (optional)
actual parameters and the address of the function to call.
Then JUMP executes the function body, that eventually
consumes the parameters from the stack, leaving the re-
turn address which, once executed, moves the execution to
JUMPDEST, resulting in an actual return statement.

3. Control-Flow Graph Reconstruction
As already introduced, the main goal of our approach

is to reconstruct a precise Control-Flow Graph (CFG) of
Solidity smart-contracts, starting from the EVM bytecode
only (no ABI nor source code is needed). The CFG is
a directed graph representing the smart-contract flow of
execution: nodes are the contract basic blocks (sequence
of opcodes with no jumps), while edges connect potential
successive basic blocks. In this section we will describe in
details how we retrieve a CFG from EVM bytecode.

Fig. 1. Example of Control-Flow Graph.

3.1. Approach Overview
The CFG reconstruction algorithm is composed of the

following incremental steps.
Bytecode Parsing The binary representation of the byte-

code is split in the actual smart-contract code and in
the metadata. Then, the code part is further parsed to
identify opcodes.

Basic Blocks Identification Opcodes are grouped in basic
blocks and the explicit jump destinations between
basic blocks are computed.

Symbolic Stack Execution Symbolic execution is applied
to the execution stack, in order to resolve non-trivial
jump destinations.

Static Data Separation The static data segment is sepa-
rated from the actual executable code.

CFG Decoration The obtained CFG is decorated to high-
light the dispatcher and to identify the entry-point of
the fallback function.

Entry-points Detection Functions entry-point is detected
inspecting the dispatcher blocks.

In the following, we describe these steps in detail, referring
to the deposit100 function of the SimpleBank smart-contract
of Listing 1.
3.2. Bytecode Parsing

The analysis starts with the binary representation of the
EVMbytecode. The metadata section is identified by finding
the corresponding header reported in the official Solidity
documentation [25]. In case of metadata with experimental
features, the header is different and not documented. Indeed,
as stated in the Solidity documentation [25], some features
(such as the pragmas ABIEncoderV2 and SMTChecker) are
not enabled by default. Still, they can be enabled by using
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the experimental pragma modifier. We inferred the header
structure of non documented experimental cases by manu-
ally inspecting the bytecode of some contracts. The version
of the Solidity compiler used to generate the bytecode is
extracted from the metadata.

The metadata are then dropped and the remaining bytes
are considered as the actual smart-contract code to be further
parsed. An example of how the bytecode is parsed into
opcodes is shown in Listing 2 and Listing 3, where every
two characters of the bytecode are translated into the cor-
responding opcodes (e.g., 0x6080 becomes PUSH1 0x80).
Each opcode is unequivocally identified by its offset address,
i.e., the position of the opcode in the bytecode.
3.3. Basic Blocks Identification and Pushed Jumps

A basic block is a sequence of opcodes which are ex-
ecuted consecutively between a jump target and a jump
instruction, without any other instruction that alters the flow
of control. Thus, opcodes that alter the control flow of
the program divide the code into basic blocks. Opcodes
JUMP, JUMPI, STOP, REVERT, RETURN, INVALID,
SELFDESTRUCT mark the end of a basic block, whereas
JUMPDEST marks the beginning of a new basic block.
Every basic block is uniquely identified by its offset, i.e.,
the position of its first opcode in the bytecode. In Fig. 1 we
can see the basic blocks of the code in Listing 3 extracted
following this procedure. Indeed, each basic block either
starts with a JUMPDEST or ends with an opcode which
alters the control flow.

Once the code is divided into basic blocks, we proceed
with the computation of the CFG edges. This operation is
not always trivial as the jump destination is not an opcode
parameter, but rather it is available on top of the stack at
execution time. We identified two types of jumps: pushed
jumps and orphan jumps. A pushed jump is immediately
preceded by a PUSH opcode, so that its target is easy to
resolve, just by looking at the value in the preceding PUSH
opcode. Instead, orphan jumps are not preceded by a PUSH
and their target is not immediate to compute. In the example
CFG of Fig. 1 the block (starting at offset) 53 ends with
an orphan jump, whereas the remaining jumps are pushed
jumps.

We start by computing the edges resulting from pushed
jumps, then the edges resulting from orphan jumps will be
computed in a subsequent phase. To this end, each basic
block is analyzed according to its last opcode as follows.
JUMP preceded by a PUSH The argument of the push is

the destination offset of the jump and the correspond-
ing edge is added to the CFG.

JUMPI preceded by a PUSH The false branch goes to
the next block (in offset order), while the true branch
is the argument of the push interpreted as destination
offset for the JUMPI. The two corresponding edges
are then added to the CFG.

JUMP not immediately preceded by a PUSH The reso-
lution of the jump is not trivial and it needs to be

Fig. 2. Symbolic stack execution.

Fig. 3. Orphan jump resolution.

resolved through symbolic stack execution, described
in Subsection 3.4.

Others Opcodes like STOP, REVERT, RETURN, IN-
VALID and SELFDESTRUCT have no successors, as
the control flow is interrupted.

At the end of this phase we have extracted a partial CFG
where the edges related to orphan jumps are still unresolved.
For example, the extraction of the CFG of the code in
Listing 1 at this point is depicted by the basic blocks and
continuous edges of the CFG in Fig. 1, while the outgoing
edge from the basic block 53 has not been resolved yet.
3.4. Symbolic Stack Execution and Orphan Jumps

The most challenging step in the CFG reconstruction is
the resolution of the destination addresses for orphan jumps.
These jumps are very common: for instance, the Solidity
compiler uses them to return from function calls. Indeed,
between the function entry-point and the function exit-point
(i.e., the return), the stack is heavily used by the function
body to implement all the desired features (arithmetic oper-
ations, calls to other functions or transfer of funds).

The analysis consists in executing the stack symboli-
cally: the algorithm walks the partially built CFG executing
only the opcodes that interact with jump addresses, updat-
ing the state of the stack accordingly, in such a way that
orphan jump destinations can be found on the symbolic
stack. Indeed, the symbolic stack execution considers only
the opcodes in thePUSH,DUP and SWAP families, together
with theAND and POP opcodes. For every other opcode the
symbolic stack pops and pushes unknown elements, as they
do not deal with the jump addresses.

In the example depicted in Fig. 2 there is a simple piece
of code that has been executed symbolically to highlight the
procedure. In particular, the ADD is not modelled in full
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Table 1
Look-up table for the executeOpcode function of Algorithm 1.

Hex Opcode Popped Pushed Effect on the symbolic stack

0x16 AND 2 1 S.pop() 2 times,
S.pusℎ(unknown) 1 time

0x50 POP 1 0 S′ = S.pop()
0x60 PUSH1

⋮ PUSHn 0 1 S′ = S.pusℎ(opcode.argument),
|opcode.argument| = n bytes

0x7f PUSH32

0x80 DUP1

⋮ DUPn n n + 1 S′ = S.pusℎ(S[n − 1])
0x0f DUP16

0x90 SWAP1

⋮ SWAPn n + 1 n + 1 S′[0] = S[n], S′[n] = S[0]
0x9f SWAP16

0x* Other k l S.pop() k times,
S.pusℎ(unknown) l times

details (we do not need to): it simply consumes two elements
of the stack and then generates a single unknown value to
be pushed. The jump address is loaded before arithmetic
operations, but it persists until the actual JUMP, so it can
be resolved.

The symbolic stack execution handles the opcodes ac-
cording to the rules represented in the look-up Table 1, where
S denotes a stack that can contain numeric or the unknown
values. We indicate the top of the stack with the position 0.
The third and fourth columns of the table represent, respec-
tively, the number of pop and push operations executed on
the stack, according to the language documentation [53]. The
last column describes the effect of an opcode on the symbolic
stack, where S′ is the symbolic stack after the modification.
The last row of the table considers a generic opcode not
involving jump addresses, that performs an arbitrary number
of push and pop operations on the stack. Note that, l can be
only 0 or 1 since, at the moment, there are no operations that
push more than one element in the stack.

The algorithm walks through the CFG using a Depth-
First Search (DFS) keeping a snapshot of the stack state
for each basic block. The following constraints have been
introduced in order to avoid infinite loops: an edge cannot be
analyzed more than once with the same symbolic stack state;
and there is a limit on the number of elements to compare
when checking for stack equivalence.

Another important aspect to note is the fact that a func-
tion can be called from different points of the code, resulting
in different symbolic stacks and different paths of the CFG.
Indeed, blocks can be traversed during the symbolic execu-
tion by multiple paths. A path is said to be infeasible when a
real execution, given a particular state, would never take it.
An example is a path that contains branches that are guarded
by contrasting conditions, e.g., x > 0 in the first branch and
x ≤ 0 in the second branch. Even if the two branches are
not dead code, they can not be taken by the same execution
when x is an input. In order to avoid infeasible paths, when
the DFS visit encounters a block ending with JUMP, only
its destination block (obtained from the symbolic stack) is
added to the DFS queue.

Algorithm 1: Resolve Orphan Jumps
1: function RESOLVEORPHANJUMPS(basicBlocks)
2: V ← set() ⊳ visited
3: CB ← basicBlocks.f irst ⊳ current block
4: S ← symbolicExecutionStack() ⊳ stack
5: Q ← stack() ⊳ DFS queue
6: Q.pusℎ(⟨CB,S⟩) ⊳ DFS first element
7: while Q ≠ ∅ do
8: ⟨CB,S⟩ ← Q.pop()
9: for op ∈ CB.opcodes do
10: S.executeOpcode(op) ⊳ look-up Table 1
11: end for
12: if CB.opcodes.last = JUMP then
13: NO ← S.peek ⊳ next offset from stack
14: NB ← basicBlocks[NO] ⊳ next block
15: CB.addSuccessor(NB)
16: end if
17: if CB.opcodes.last ≠ JUMP then
18: for suc ∈ CB.successors do
19: edge ← ⟨CB.offset, suc.offset, S⟩
20: if edge ∉ V then
21: V .add(edge)
22: Q.pusℎ(⟨suc, S⟩)
23: end if
24: end for
25: else if CB.opcodes.last = JUMP then
26: edge ← ⟨CB.offset, NO, S⟩
27: if edge ∉ V then
28: V .add(edge)
29: Q.pusℎ(⟨NB,S⟩)
30: end if
31: end if
32: end while
33: end function

The detailed algorithm for resolving orphan jumps is
shown in Algorithm 1. It starts at Line 2 by initializing
the variable V , that stores the edges that have already been
analyzed using stack equivalence as described before (lines
20 and 27). An edge is also labelled with the symbolic stack
that has been used for its symbolic execution (lines 19 and
26). Then, the queue Q used for the DFS is initialized at
Line 5: it contains pairs with a block and a symbolic stack.
The first pair ⟨CB,S⟩ contains the first block and an empty
stack. Then, the algorithm proceeds with the symbolic stack
execution by iteratively repeating the following steps untilQ
is empty.
Lines 9-11 symbolically execute the opcodes of the basic

block and update the state of the symbolic stack ac-
cording to the look-up Table 1.

Lines 12-16 resolve orphan jumps destination with the
newly updated symbolic stack. The target block is
added as a successor of the basic block under analysis.

Lines 17-31 handle the update of the queue Q. If the edge
from the analyzed basic block to the target one has not
been already analyzed using the same stack, then the
successor blocks are added to Q. If the last opcode is
a JUMP then only its target block is added to Q.

An example of the symbolic stack execution for the
resolution of orphan jumps is shown in Fig. 3 and refers to a
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Fig. 4. Example of CFG with complex dispatcher (outgoing edges
to not reported nodes omitted).

portion of the contract shown in Listing 3 (the corresponding
CFG is depicted in Fig. 1). The symbolic execution starts at
the offset 36, which loads into the stack the value 0x29 after
the value 0x27. Then, our approach symbolically executes
the JUMP opcode that, according to Table 1, consumes a
value. Next, the symbolic execution of JUMPDEST leaves
the stack unchanged and then the value 0x01 is loaded.
The execution proceeds until the opcode at offset 129 is
reached, which leaves an unknown value on the stack, that is
then removed by the POP. Finally, the opcode at offset 131
contains the orphan jump, which can be resolved with the
value pushed into the stack back at offset 34. At this point,
the symbolic stack execution can detect that the successor
basic block is the one at offset 39.

Eventually, we have resolved the target of all branches in
the CFG, so the dashed edge in Fig. 1 is added at the end of
this phase.
3.5. Static Data Separation

The proposed approach proceeds with the removal of
static data (if present). The first basic block containing the
instruction 0xFE, which is the designated opcode for an
invalid instruction, is identified. In fact, the Solidity compiler
uses this opcode to mark the end of the executable code
section and the beginning of the static data section. All
the subsequent opcodes are removed from the graph, and
considered as static data and not as code. Then, the algorithm
proceeds by removing from the graph any basic block that is
not connected to the main graph, if any.

The static data are usually strings contained in the source
code or child contracts which are instantiated by the main
one through the opcodes CREATE and CALL. Even if, in
principle, we cannot be sure that the removed data is actually
data and not code, our experimental validation indicates that
this assumption is reasonable.

3.6. Control-Flow Graph Decoration
In order to provide to the CFG additional information

potentially useful to an analyst or for a static analysis (e.g.,
for vulnerabilities detection), our approach tries to highlight
some relevant code portions, such as the dispatcher, the
fallback function and the last basic block of the contract.

The dispatcher is the entry-point of the smart-contract,
so it is at the beginning of the bytecode. The dispatcher
directs the execution to the intended Solidity function and
it manages parameters and return values. The fact that the
dispatcher manages return values is the key used for its de-
tection. In fact, the only basic blocks that contain instructions
such as RETURN and STOP are part of the dispatcher.
These opcodes cannot be present in other locations as they
would manage return values outside the dispatcher. So, the
algorithm considers as dispatcher every block with an ad-
dress lower than the address of these opcodes. In the example
of Fig. 1, the dispatcher blocks are highlighted in gray.

This approach is effective in identifying both the lin-
ear dispatchers, used in the older versions of the Solidity
compiler, and the tree dispatchers, introduced in the latest
versions of Solidity in order to improve performances.

The detection of the fallback function entry-point is more
difficult, because the dispatcher structure has been changing
continuously across different versions of the Solidity com-
piler. In Figure 4 we report a portion of the CFG retrieved
from a simple contract with declared fallback function. In
the picture, white nodes are code nodes, while gray nodes
are dispatcher nodes (we reported only some code and dis-
patcher nodes for simplicity, outgoing edges to not reported
nodes have been omitted). As you can see from the picture,
the dispatcher is quite complex and it is not trivial to identify
automatically that the node at offset 0x97 is the first block of
the fallback function.

The first check of the dispatcher is the presence of call
data and, if missing, it moves the execution to the fallback
function. Hence, the currently implemented technique starts
from the entry block searching for the highest successor
offset. The successor with the highest offset is considered as
fallback only if it does not end with a REVERT. Indeed, that
would mean that the fallback function has not been declared
or has been declared with only the REVERT statement.
However, this approach does not work with some versions
of solc, due to different compilation patterns.

The last step of the CFG decoration is the addition of
an artificial unique exit-point, for all the basic blocks with
no successor. This could be useful for many static analyses
techniques. This particular basic block in the example in
Fig. 1 is the number 132.
3.7. Functions Entry-point Identification

In this final step we try to extract the hashes of the
functions in the dispatcher blocks. As mentioned before, in
order to pass the control to a desired function, the dispatcher
matches the call data with the hash of the functions signa-
tures. Hence, the algorithm navigates the dispatcher blocks
looking for the opcodes dealing with such hash comparisons,
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1 pragma solidity ^0.5.0;

2 contract ReentrantContract {

3 mapping (address => uint) private balances;

4 ⋯
5 function withdraw (uint amount) public {

6 require(amount <= balances[msg.sender ]);

7 if (msg.sender.call.value(amount)())

8 balances[msg.sender] -= amount;

9 }

10 }

Listing 4. A Solidity smart-contract vulnerable to Reentrancy.

1 pragma solidity ^0.5.0;

2 contract MaliciousContract {

3 ReentrantContract reentrantContract;

4 ⋯
5 function attack () public {

6 reentrantContract.withdraw (100);

7 }

8 function () payable {

9 reentrantContract.withdraw (100);

10 }

11 }

Listing 5. A Solidity smart-contract exploting the Reentrancy
vulnerability of Listing 4.

obtaining a set of likely function hashes. The fallback func-
tion has no associated hash, and it is called in case no hash
matches the call data.

In the example in Fig. 1, the function with hash 909dd8f6
is identified by the block starting at offset 12 (the fallback
function is not present).

4. Smart-Contract Vulnerabilities
To demonstrate the usefulness of a precise CFG rep-

resentation of Ethereum smart-contracts, we defined two
static analyses for detecting smart-contracts vulnerabilities
on top of EtherSolve, and compared their efficacy w.r.t.
state-of-the-art detection tools. In particular, EtherSolve has
been pipelined with two subsequent static analyses meant
to detect cases of Reentrancy and Tx.origin vulnerabilities.
Note that, we selected two security-related vulnerabilities,
but any generic CFG-based analysis would benefit from
our approach (e.g., data-flow analyses or under/over-flow
detection mechanisms).

In this section, we first describe Reentrancy and Tx.origin
vulnerabilities and then we explain the approach used to
check such bugs in the EVM bytecode, based on the CFG
extracted by EtherSolve. In the next section we will validate
the efficacy of the proposed detectors on a dataset of real-
world smart-contracts.
4.1. Reentrancy

One of the most prominent and dangerous vulnerabili-
ties in Solidity (and, hence, in Ethereum smart-contracts)
consists in the mishandling of possibly reentrant code. It
has been made famous due to the catastrophic DAO inci-
dent [44], that caused the loss of a large amount of money
and serious consequences to the whole Ethereum network.

This vulnerability consists in reentering a paying function
multiple times while the contract is in an inconsistent state,
thus causing possible leak of funds [31]. In the general
case, the “reentrance” exploits the fact that the vulnerable
contract calls primitives, such as money transfer, that the
malicious contract can redefine, in such a way to reenter
the vulnerable contract. If a money transfer occurs at each
iteration of this loop, the process can be repeated and used
to drain all resources from the attacked contract. Indeed,
Reentrancy is consequence of an abuse of dynamicity in
Solidity: the semantics of money transfer is dynamic and can
be redefined.

A simpler, yet quite common, programming error that
may lead to Reentrancy attacks consists in updating the
contract state after (instead of before) executing a fund send
primitive (i.e., a call). An example of a Reentrancy vulner-
able contract following this pattern is shown in Listing 4,
where the call statement at line 7 precedes the update of the
variable balances at line 8. In Listing 5 we have a (malicious)
contract that exploits the reentrancy vulnerability of the
ReentrantContract. In particular, the attack is launched call-
ing the withdrawmethod on the vulnerable contract (line 6).
When the call primitive is executed in the withdrawmethod,
performing the money transfer, the fallback function of the
contract MaliciousContract is fired. The latter contains a
recursive call to the vulnerable contract, again on the with-
draw method (this is the reentrant code). Since the balances
variable in the vulnerable contract is updated after themoney
transfer, the second withdraw can be legitimately called,
and a second money transfer is performed. The process
is repeated until all money is drained from the vulnerable
contract.
Reentrancy Detector. Reentrancy vulnerabilities be ex-
ploited when a contract state update is performed after
calling a, possibly unsafe, paying function. The proposed
approach consists in traversing the CFG in order to de-
tect potential flows of execution where a SSTORE opcode
(which updates the contract state) is executed after a CALL
opcode. This pattern is considered unsafe if the contract
address where funds are transferred to by the CALL cannot
be statically determined by the symbolic stack execution.
Indeed, in this case the funds destination could be con-
trolled by an attacker who can mount an attack to exploit a
Reentrancy vulnerability (e.g., with an particularly crafted
fallback function). Note that, Solidity statements to send
funds are translated with the CALL opcode, that has the
callee address hard-coded into the bytecode.

In particular, the detector traverses the contract CFG
in order to detect blocks that refer to a CALL opcode,
namely blocks that may call a paying function. For each
such block, the detector checks if the block is unsafe. To
do so, a symbolic stack execution on the block is fired,
retrieving the pushed element on the stack when the CALL
is executed. If the element is an unknown address the block
is unsafe. Finally, for each unsafe blocks the detector checks
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1 function sendTo (address payable dest , uint amount) public {

2 require(tx.origin == owner);

3 dest.transfer(amount);

4 }

Listing 6. A Solidity smart-contract method vulnerable to
Tx.origin.

1 pragma solidity ^0.5.0;

2 contract MaliciousContract {

3 VulnerableContract vulnContract;

4 address attackerAddr;

5 ⋯
6 function () payable {

7 vulnContract.sendTo(attackerAddr , msg.sender.balance);

8 }

9 }

Listing 7. A Solidity smart-contract exploting the Tx.origin
vulnerability of Listing 6.

if a SSTORE opcode can be reached. In case a SSTORE is
reachable the detector signals a reentrancy vulnerability.
4.2. Tx.origin

Another quite dangerous vulnerability is related to the
misuse of the tx.origin command, that returns the address of
the (first) EOA in the callers path ended up in the current
contract instance. Indeed, during a contract execution, a
chain of calls may happen: an EOA calls a contract method
that, in turn calls another contract, and so on. In this case,
tx.origin returns the address of the EOA performing the first
transaction. Instead, the command msg.sender returns the
address of the closest parent caller, that could be either a
EOA or a contract.

Among the first instructions of a contract method, very
often we can find an authorization check: the contract veri-
fies that the caller is authorized to perform the subsequent
operations. Indeed, a contract can execute operations on
behalf of the caller, comprising funds transfer. The latter
check should be performed using the msg.sender instead of
the tx.origin, since the actual contract caller may be different
from the initial EOA starting the first transaction.

We have a Tx.origin vulnerability in a smart-contract
when into a method of the contract the command tx.origin is
used incorrectly (i.e., in place of the commandmsg.sender),
as we can see in the example described in Listing 6. In the
example, we can see that tx.origin is used in the method
sendTo to perform the caller authentication (line 2). To
exploit the vulnerability of the method sendTo, another
contract may use the code described in Listing 7. In this
case, the fallback function (line 6) of the (malicious) contract
MaliciousContract is able to call the vulnerable method
sendTo (line 7) and to perform operations on behalf of the
user that have called the contract. In particular, when the
victim calls the malicious contract, the latter transfers all
money of the victim to a specific address (of the attacker
that have crafted the malicious contract). The execution of
this contract calls chain is performed without errors on the
blockchain.

The vulnerability arises because when an EOA calls a
contract, all the recursive calls performed by that contract
have the address of the EOA as tx.origin, potentially trans-
ferring the EOA credentials, as we have seen the example.
Tx.origin Detector. Concerning Tx.origin vulnerabili-
ties, they can be exploited when we perform an autho-
rization check on the contract caller using tx.origin in-
stead of msg.sender, namely when we have a line like
require(tx.origin==msg.sender) in the vulnerable contract.
The proposed approach consists in traversing the CFG in
order to detect the blocks resulting from the translation
of that kind of line of code in the corresponding EVM
bytecode. In particular, the block is identified by the opcode
ORIGN, namely the translation of tx.origin, and it ends with
a JUMPI, namely a conditional jump based on the equality
concluding the block. Considering that the authorization
check is usually performed at the beginning of the function,
we can assume that the block is completely demanded to
the translation of the require line. To identify this kind of
blocks, EtherSolve scans the contract CFG in order to find
the following common patterns:� �
ORIGIN PUSH20 AND EQ PUSH2 JUMPI

ORIGIN PUSH20 AND EQ ISZERO ISZERO PUSH2 JUMPI� �
Unfortunately, patterns may miss potential vulnerability

instances. Indeed, some particular compiler versions may
translate the require line to slightly different bytecode. To
mitigate the problem, EtherSolve performs, in addition to the
pattern matching check, a simple taint analysis on the block
containing the opcode ORIGIN. In particular, EtherSolve
performs a symbolic execution in order to propagate in the
stack the value inserted by theORIGIN and to verify whether
the value inserted influences the JUMPI at the end of the
block or not.

5. Experimental Validation
In this section we present the results of our empirical

validation of the CFGs computed by EtherSolve. The fol-
lowing five research questions guide the definition of our
experimental validation.
RQ1 What is the success rate of EtherSolve in analyz-

ing real-world smart-contracts compiledwith different
versions of the Solidity compiler?

RQ2 What is the accuracy of EtherSolve in identifying
functions entry-point?

RQ3 How precise is the smart-contracts CFG reconstruc-
tion performed by EtherSolve? How does it compare
to state-of-the-art tools?

RQ4 How does the Reentrancy detector built on top of
EtherSolve compare to state-of-the-art source code
level analysis tools?

RQ5 What is the efficacy of the Tx.origin detector built on
top of EtherSolve? How does it compare to state-of-
the-art source code level analysis tools?
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The first research question investigates the extent to
which EtherSolve can process instances of existing smart-
contracts with no errors. We are interested in verifying this
on a wide range of smart-contracts, directly taken from
the Ethereum blockchain. In the second research question
we assess the accuracy of EtherSolve in finding functions
entry-point, by comparing entry-points found with Ether-
Solve with the actual entry-points present in smart-contracts
source code. The third research question compares our ap-
proach with the state-of-the-art EVM bytecode static anal-
ysis tools, w.r.t. success rate and CFG reconstruction pre-
cision. The fourth research question compares the results
of the Reentrancy vulnerability detection based on Ether-
Solve with state-of-the-art vulnerability detection tools. Fi-
nally, the fifth research question compares the results of the
Tx.origin vulnerability detection based on EtherSolve with
state-of-the-art vulnerability detection tools. Note that, the
last two research questions are quite challenging since Ether-
Solve works at the bytecode level while the considered tools
work at source code level. Indeed, having the possibility to
inspect the source code enhances considerably the analysis
performance. We considered tools working at source code
level since, to the best of our knowledge, there are no tools
that detect vulnerabilities based on bytecode only2.
5.1. The Smart-Contracts Datasets

Our empirical validation has been conducted using two
datasets of smart-contracts. The first one, dubbed Etherscan
dataset, is used to answer RQ1, RQ2 and RQ3, and it is ob-tained from the list of verified contracts published by Ether-
scan3 [27]. They are publicly available open-source smart-
contracts with information about compilation, deployment
and transactions. From this list we have randomly extracted
1,000 contracts, by using the standard random function of
Python 3 (that samples from a uniform distribution) Using
the APIs provided by Etherscan, both the EVMbytecode and
the relevant information have been downloaded, obtaining
for each smart-contract its name, address, hash, deployment
date, bytecode length and compiler version. Note that, we do
not use the Etherscan information during the analysis, we use
it only to validate the information retrieved by EtherSolve.
For instance, the compiler version is automatically retrieved
by EtherSolve from the contract metadata, so the com-
piler version obtained from Etherscan is only used to check
whether the version extracted from the metadata is correct
or not. We enforced the uniqueness of smart-contracts byte-
code, in order to avoid duplicates in the dataset. Indeed,
it is common practice to reuse existing smart-contracts,
especially libraries and interfaces, and deploy them multiple
times in the blockchain, at different accounts. For this rea-
son, we computed the hash of the bytecode of each smart-
contract, which has been used to delete the duplicates.

Figure 5 shows some demographics of the dataset, com-
puted on the source code available on Etherscan. It reports

2Some tools work at bytecode level but use the information contained
in the contract ABI. We do not consider such tools as bytecode-only.

3Contracts have been download on June 10, 2020

the histograms of the length of contracts solidity source code
(left-hand side) and the number of public functions in their
ABI (right-hand side). On average, contracts contain 1,374
lines of code, with the largest one with 11,743 lines. They,
on average, contain 19 named functions (i.e., excluding the
fallback function, when defined), with the largest contract
having 108 functions.

The average bytecode length of the smart contracts in
the dataset is 7,351 bytes, with a maximum length of 24,570
bytes (65 contracts exceeded the length of 20 Kbytes). The
average number of transactions of the smart contracts in the
dataset is 337, with 27 contracts having 0 transactions. Note
that, the Etherscan APIs allow to download at most 1,000
transactions, hence for some contracts the count has been
truncated (13 smart contracts in the dataset have more than
1,000 transactions). The most diffused EVM version in the
dataset is Petersburg (340 contracts), followed by Istanbul
(210 contracts), Byzantium (114 contracts) and Costantino-
ple (4 contracts). For some contracts compiled with old
versions of solc (v0.4.26 and before) EtherScan does not
provide the precise target EVM version, it just signals that
theDefault version is used. Unfortunately, such solc versions
are not documented and, hence, it is not possible to deduce
which is the corresponding default target EVM version. This
happens for 331 contracts in the dataset. The average balance
of the smart contracts in the dataset is 9.6 × 1017 Wei. As
shown in Fig. 6(left), the compiler version is quite variable
(with a majority of old versions). This datum is crucial in
order to assess that EtherSolve does not assume a specific
Solidity version (the compiler often underwent dramatic
changes).

The second set of smart-contracts, dubbed SolidiFI
dataset, consists in 50 Ethereum smart-contracts collected
by Ghaleb and Pattabiraman [31]. They used the dataset to
test their tool SolidiFI, that injects various vulnerabilities
into Solidity code. We will use these smart-contracts, to-
gether with their injected versions, in order to answer RQ4and RQ5.
5.2. RQ1: Success RateIn this research question we evaluate the number of
contacts in the Etherscan dataset that EtherSolve is able to
analyze without crashing, i.e., the Success Rate. The Success
Rate is defined as the ratio of the smart-contracts analyzed
without critical errors to the size of the dataset. EtherSolve
managed to analyze all the smart-contracts in the dataset
except three, obtaining a Success Rate of 0.997 (99.7%). The
reason for these (very few) failures is that these three smart-
contracts do not match the most common EVM bytecode
patterns generated by the Solidity compiler. Indeed, one
of them was written in Vyper rather than Solidity, another
one was empty (with length of 0 bytes) and the last one
presented an unusual begin section, that the tool failed to
parse. The compiler version of Solidity is correctly identified
by EtherSolve for all the analyzed contracts.

We have also performed a naive performance assessment
of EtherSolve, w.r.t. analysis time. We measured the time
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Fig. 5. Demographics of the Etherscan dataset smart-contracts: lines of code (left) and number of functions (right).
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Fig. 6. Compiler versions used in the dataset contracts (left) and Success Rate for the different tools (right).

spent by EtherSolve to parse the EVM bytecode, generate
the basic blocks, solve orphan jumps and decorate the CFG.
The average time is about 3 seconds per smart-contract. For
930 smart-contracts, the analysis took less than 1 second
each, while 7 smart-contracts requiredmore than 1minute of
computation (with a maximum of 10 minutes), due to their
big dimension and the consequent large number of edges.

Answer to RQ1

The Succes Rate of EtherSolve when analyzing real-world
smart-contracts compiled with different versions of the Solid-
ity compiler is very high, since it was able to analyze without
errors the 99.7% of the samples in the considered smart-
contracts dataset.

5.3. RQ2: Functions Entry-point IdentificationWe evaluate the accuracy of EtherSolve in detecting
functions entry-point by means of well-known performance
metrics such as Precision, Recall and F-measure [42].
These metrics are computed comparing the functions rec-
ognized in the EVM bytecode by EtherSolve w.r.t. the
functions defined in the original Solidity source code, that
are listed in the ABI of each smart-contract. The smart-
contracts are taken from the Etherscan dataset. Given the
set EtherSolve of function hashes identified by EtherSolve
and the set ABI of hashes of the functions declared in
the smart-contract ABI, we define: the true positives TP =
{

ℎ ∣ ℎ ∈ EtherSolve ∧ ℎ ∈ ABI
}, namely the functions de-

clared in theABI that EtherSolve is able to correctly identify;
the false positives FP =

{

ℎ ∣ ℎ ∈ EtherSolve ∧ ℎ ∉ ABI
},

namely the functions incorrectly detected by EtherSolve,

since not present in the ABI; and the false negatives FN =
{

ℎ ∣ ℎ ∉ EtherSolve ∧ ℎ ∈ ABI
}, namely the functions in-

correctly not detected by EtherSolve, since present in the
ABI. Performance metrics are computed based on the corre-
lation between true positives and false positives/negatives.

Precision: P =
|TP |

|TP | + |FP |
Recall: R =

|TP |
|TP | + |FN |

F-measure: F1 = 2 ⋅ P ⋅ R
P + R

On a practical point of view, we have computed the met-
rics as follows. Once the functions entry-point and hashes
has been identified by EtherSolve, we have downloaded the
smart-contracts ABI (this can be done, because the smart-
contracts in the dataset are open-source). We then proceeded
with the comparison, computing Precision and Recall for
each contract. When EtherSolve retrieves no function, or
the ABI contains no function, we consider Precision and
Recall to be 0. This analysis, however, included only 996
contracts due to internal errors of the tool during the function
identification phase.

In the left of Fig. 7 we report the distribution of Precision
w.r.t. our dataset, where we aggregate the contracts with the
same value for Precision. The average Precision is 98.5%,
and for 948 contracts the precision is 100%, meaning that
the EtherSolve is able to identify all the functions for the
majority of the contracts. In fact, 30 contracts have a value
below 90% and only 6 contracts have a score of 0%.

In the middle of Fig. 7 we report the distribution of
Recall w.r.t. our dataset, where we aggregate the contracts
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Fig. 7. Distribution of Precision, Recall and F-measure on the smart-contracts dataset (logarithmic scale).

with the same value for Recall. The Recall is slightly lower
than Precision, with an average score of 98.1% and with
811 contracts scoring 100%. This is due to the fact that
the fallback detector is not perfect and sometimes fails.
Nevertheless, only 32 contracts have a score below 90% and
only 6 have a score of 0%.

We should note that the smart-contracts considered in the
experiments have 19.2 functions on average, meaning that
even a single miss in the detection would have a significant
impact on Precision and Recall. Finally, in the right of Fig. 7
we compute F-measure, as a summary indicator. Overall,
the results of EtherSolve are very good, with an average
F-measure of 98.2% and with 803 contracts scoring 100%.
Indeed, 31 contracts have a score below 90% and only 6 have
a score of 0%.

Answer to RQ2

The accuracy of EtherSolve in identifying functions entry-
point is very high, since it is able to correctly find the majority
of functions declared in the smart-contracts dataset, with
a very high number of true positives and very few false
negatives. Indeed, EtherSolve obtained very good results for
the adopted performance indicators, such as Precision (P =
0.985 on average), Recall (R = 0.981 on average) and F-
measure (F1 = 0.982 on average).

5.4. RQ3: Precision of the CFG Reconstruction
To asses the precision of the CFG generated by Ether-

Solve, we compare our tool with the state-of-the-art analysis
tools. We have selected for the comparison the tools respect-
ing the following constraints: (i) perform a static analysis at
the EVM bytecode level (no information from source code
or ABI file); (ii) emit the CFG as output, or an alternative
representation easily to compare with a CFG. These criteria
led us to consider the following tools.
EthIR EthIR extends the Oyente framework and performs

a high-level analysis of EVM bytecode. Oyente builds
a CFG, to detect different kinds of vulnerabilities [3,
36]. Due to the facts that Oyente is very old (and
discontinued) and that EthIR is built on top of Oyente,
we consider EthIR only for the CFGs comparison.
Indeed, since EthIR is an improved version of Oyente,

we can assume that the CFGs retrieved by EthIR are
at least precise as those retrieved by Oyente.

Octopus Octopus is an analysis framework for EVM byte-
code. It produces a CFG to support reverse engineer-
ing and understand the internal behavior of smart-
contracts [52].

Mythril Mythril is a security analysis tool for EVM byte-
code that detects security problems in smart-contracts.
It does not build a CFG, but rather it generates a trace
tree given by symbolic execution and Satisfiability
Modulo Theories (SMT) solving [40, 14].

Vandal Vandal is a static analysis framework for smart-
contracts that decompiles the EVM bytecode to an in-
termediate representation that includes the code con-
trol flow [8, 51].

Gigahorse Gigahorse is a decompiler that transforms EVM
bytecode into a high-level 3-address code represen-
tation. The tool does not require the Solidity source
code [32, 33, 34].

We discarded other analysis tools for the following rea-
sons: Securify [50], Ethersplay [18], Manticore [7] and
Slither [20] because they analyze Solidity source code in-
stead of EVM bytecode; evm_cfg_builder [19] because we
did not find an easy way to make it emit the CFG; Jeb [46]
and MythX [15] because they are paid tools; Porosity be-
cause it requires the ABI as input and it is discontinued;
Panoramix [30] because it decompiles the code without
building a CFG and it is discontinued. Finally, we did not
consider the official Solidity compiler solc, that optionally
outputs a CFG, since it exploits information contained in
the source code in order to reconstruct the CFG, while
EtherSolve is purely based on the bytecode. When a smart-
contract is compiled to bytecode, some information useful
to reconstruct the CFG is irremediably lost. Hence, it would
be unfair to compare the CFGs obtained by solc with those
computed by EtherSolve.

To confront EtherSolve with the state-of-the-art EVM
bytecode static analysis tools we first compared the ap-
proaches in terms of Success Rate. We ran the tools on
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the smart-contracts taken from the Etherscan dataset and
counted the successful executions (without crash) and the
non-empty CFGs given in output. We also set a reasonable
timeout of 10 minutes per contract, for all tools.

As shown in Fig. 6(right) and Table 2, EtherSolve and
Mythril were able to analyze almost all the smart-contracts
(997 out of 1,000), immediately followed byVandal with 978
smart-contracts and by Gigahorse with 951 smart-contracts.
Octopus and EthIR, instead, reached an error state on many
smart-contracts, computing a CFG only for 504 and 212
smart-contracts, respectively. Furthermore, we inspected the
CFGs emitted by the tools, starting with an automatic nu-
merical comparison of nodes and edges. Then, we proceeded
with a manual inspection of anomalous cases.

For each smart-contract in the dataset we adopt a com-
mon representation for the outputs of the different tools. The
chosen representation is a JSON file that contains a list of
nodes (which represent the basic blocks), identified by their
offset, and a list of edges, identified by a pair of offsets.
For each smart-contract we count the number of nodes, the
number of edges and the differences in the numbers of nodes
and edges among the CFGs generated by different tools. To
understand if there are portions of the EVM bytecode which
are actually data (static data, child contracts or compiler
metadata) but that the candidate tool wrongly interprets as
code, we calculate the number of nodes in the CFG generated
by a candidate tool that have a higher offset than the highest
offset node obtained by EtherSolve.

While success rate represents a quantitative result to
compare tools, the other columns will only be used for
qualitative comments, rather than direct comparison. In fact,
the average number of nodes and edges depend on which
contracts could be successfully analyzed. For instance, a tool
able to analyze only large contracts would have an average
value inflated.

It is worth observing that the different tools cannot be
compared w.r.t. analysis time, since the candidate tools have
been executed in a Docker [24] container (for compatibility
reasons), instantiating a new process for each smart-contract.
Whereas, EtherSolve has been executed directly with a batch
of 1,000 contracts.

In the manual analysis we focused on the smart-contracts
for which the automatic analysis reported uncommon or
anomalous results. These are relatively few contracts with
sensitive differences in the number of nodes/edges between
the CFG extracted by EtherSolve and by the compared tool.
To support the manual analysis we implemented a script that
generates a diff graph, where the two CFGs are combined
and the nodes/edges that are present only in the first or in the
second graph are highlighted in a different color.

Table 2 contains a summary of the automatic analysis,
with the smart-contracts successfully analyzed, the average
number of both nodes and edges and the average number of
basic blocks in the static data segment. The results of both
automatic andmanual analysis are discussed in the following
paragraphs, one for each tool.

Table 2
Comparison with state-of-the-art tools.

Success Rate Average
nodes

Average
edges

Avg. blocks
in static data

EtherSolve 0.997 (99.7%) 301.6 361.8 0
Mythril 0.997 (99.7%) 4.0 3.1 8.5
Vandal 0.978 (97.8%) 302.6 493.6 6.7
Gigahorse 0.951 (95.1%) 245.4 288.7 1.2
Octopus 0.504 (50.4%) 241.4 220.7 11.8
EthIR 0.212 (21.2%) 139.4 150.3 51.6

5.4.1. EthIR
In most cases, EthIR finds more blocks than EtherSolve,

that have a high offset.
Considerations: Nodes that are found by EthIR only

have a very high offset, so they are probably static data or
metadata interpreted as code (Table 2). Instead, when nodes
match then edges match as well.

Manual analysis: Because of its very low Success Rate
(21%), we deemed not so interesting to continue with a
manual analysis of this tool results.
5.4.2. Octopus

Similarly to EthIR, also Octopus finds more blocks with
a high offset than EtherSolve.

Considerations: Similarly to the previous tool, also for
Octopus we speculate that the additional nodes found are
probably data or metadata and not code (Table 2). In the
majority of cases, however, Octopus finds very few edges,
sometimes even 0 edges.

Manual analysis: During the manual analysis, we dis-
covered that Octopus misses some patterns for the meta-
data separation, so metadata are parsed as if it were code.
Moreover, in many cases, Octopus does not detect edges that
should be present according to source code.

As an example, in Fig. 8 we have an excerpt of the
diff graph for the smart-contract ZipmexTokenP (address:
0xaa602de53347579f86b996d2add74bb6f79462b2). In this
case, Octopus exhibits a lack of edges, found by EtherSolve,
that should be present according to the Solidity source code.
They are often return-edges, i.e., edges that go from the last
block of a function to the block that follows the call. In the
EVM, these types of edges originate from orphan jumps,
meaning that Octopus cannot always resolve them.

In some other contracts, Octopus evaluates the bytecode
as creation code, thus it analyzes only the second part,
starting with 60806040 (the most common begin sequence
of a contract bytecode). However, this part of the code is a
child contract and not the main one, so the computed graphs
are completely different.
5.4.3. Mythril

This tool does not extract a CFG, but a trace tree from dy-
namic/symbolic analysis, in order to detect vulnerabilities.
The output of this execution trace is not directly comparable
with the CFG computed by EtherSolve. Nonetheless, an
indirect comparison can be performed by checking if the
EtherSolve CFG misses nodes/edges that are found by the
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Fig. 8. An excerpt of the diff graph for the ZipmexTokenP

smart-contract used for manual inspection. In red we highlight
nodes/edges found by EtherSolve but not by Octopus; in blue we
highlight nodes/edges found by Octopus but not by EtherSolve; in
black we highlight nodes/edges found by both tools. Basic blocks
are identified by the offset of their first instruction.

Mythril dynamic analysis. This case would correspond to
imprecision in the CFG elaborated by EtherSolve.

Manual analysis: In the 4% of the contracts, Mythril
finds a bunch of edges which are not detected by EtherSolve.
In some cases, Mythril adds some artificial basic blocks
containing "0: STOP" which are placeholders that do not
come from the analyzed code, but they indicate the end of
the execution trace. Sometimes, basic blocks are not split
when there is a JUMPDEST in the middle, so there is a
little discrepancy in the edges, but the CFG is definitely
compatible. In some other cases, Mythril finds new basic
blocks and edges that are not part of the main contract, but
that are opcodes of a child contract created by the main
one. The child contract code is computed at runtime, so the
EtherSolve static analysis simply considers those bytes as
part of the static data segment.
5.4.4. Vandal

The CFGs generated by Vandal have always one node
more than EtherSolve, which is the ending node with the
INVALID opcode. In the 36% of the analyzed contracts the
edges match, but in the remaining cases there are differences
that we analyzed manually. In some contracts the basic
blocks do not match because Vandal does not support two
opcodes that have been added in the most recent versions
of the EVM [47]. Indeed, the SELFBALANCE opcode is
considered as invalid by Vandal, obtaining a basic block
break with no outgoing edges. In many other cases, Vandal
detects a huge amount of edges.

Considerations: Probably, when Vandal is not able to
correctly compute the destination address of a jump, it con-
servatively assumes all basic blocks as possible successors.

Manual analysis: This hypothesis is supported by the
diff graph, which shows too many outgoing edges for basic
blocks that occur at the end of functions, probably because

the return address could not be computed accurately. In-
deed, as we can see in Fig. 9, where we have an excerpt
of the diff graph for the smart-contract BCN20 (address:
0x1964f2f3ce45ac518b18ef4aa4265f8aadcef4ae), Vandal
finds too many outgoing edges from basic blocks which are
the end of functions (e.g., 770, 468 and 1402).

However, the number of call sites (that should corre-
spond to the number of return edges) is much smaller,
according to the Solidity source code of these contracts. All
in all, as shown in Table 2, the average number of edges
found by Vandal is significantly higher than EtherSolve,
whereas the basic blocks are reconstructed in a similar way.
5.4.5. Gigahorse

Gigahorse tries to identify the private functions inside
the code, and the computed CFG reflects this objective.
Because of this strategy, the conversion into the intermediate
representation is tricky. Often, Gigahorse CFGs contain
artificial blocks with the special "CALLPRIVATE" statement,
introduced by Gigahorse to mark private function calls. Nev-
ertheless, the data collected by the automatic comparison for
Gigahorse and EtherSolve is very similar, so we proceeded
with the manual inspection.

Manual analysis: For some contracts, EtherSolve com-
putes a set of basic blocks that are unreachable from the con-
tract entry-point, that might represent dead code. However,
these unreachable blocks are not present in the Gigahorse
CFGs. A dual case happens on some other contracts, where
EtherSolve identifies a set of blocks that are not reachable
from the contract entry-point whereas, according to the
Gigahorse CFG, these blocks are reachable.

Considerations:Our speculation is that such basic blocks
(which have a high offset) belong to a child contract or to
an internal library, not a proper part of the main contract
(e.g., called via STATICCALL), and thus they are skipped
by EtherSolve (that only analyzes intra-contract calls).

Answer to RQ3

The precision of the CFG reconstruction performed by Ether-
Solve is very high, since the CFGs reconstructed by Ether-
Solve have a comparable, and sometimes higher, precision
w.r.t. the CFGs reconstructed by the state-of-the-art EVM
bytecode static analysis tools. Furthermore, EtherSolve is the
approach with the highest Success Rate (99.7%), on par with
Mythrill, among the state-of-the-art analysis tools.

5.5. RQ4: Reentrancy Vulnerabilities DetectionIn order to validate the efficacy of the vulnerability
detector built on top of EtherSolve, we compared it with
specialized tools aiming at discovery Reentrancy vulnerabil-
ities. The comparison is performed on the SolidiFI dataset,
that consists in 50 Ethereum smart-contracts whose source
code has been injected, using the tool SolidiFI [31], with
Reentrancy vulnerabilities. In total, 1343 bugs have been
injected, coming from 42 code snippets. This benchmark
has been used by Ghaleb and Pattabiraman [31] to compare
the most prominent vulnerability detection tools.While their
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Fig. 9. An excerpt of the diff graph for the BCN20 smart-contract
used for manual inspection. In red we highlight nodes/edges found
by EtherSolve but not by Vandal; in blue we highlight nodes/edges
found by Vandal but not by EtherSolve; in black we highlight
nodes/edges found by both tools. Basic blocks are identified by the
offset of their first instruction.

comparison was performed at source code level, EtherSolve
targets the EVM bytecode, so these injected contracts have
been compiled before applying our analysis. Even if the
original dataset consisted of 50 files, each source file could
contain more than one contract and injected vulnerabilities
could multiply in the compiled contracts, because of the use
of inheritance that caused vulnerable code to be cloned from
abstract contracts to concrete ones. Additionally, abstract
contracts do not produce bytecode as they are not executable.
Hence, to simplify the analysis, we opted to analyze only
one compiled contract per source file (the largest compiled
contract), assuming that the remaining contracts were only
supporting libraries or abstract contracts, whose CFGs were
disconnected from the main one.

Another problematic aspect, acknowledged by Ghaleb
and Pattabiraman, is that the dataset already contained vul-
nerabilities before the SolidiFI injection, but they were not
documented. To gather comparable results, we considered
only vulnerabilities added by the SolidiFI injection, by run-
ning EtherSolve before and after injection, and by keeping
only those new vulnerabilities that are detected by the second
analysis and not by the first one. We have taken an analogous
approach for the other tools: we ran each tool on the original
dataset (without injections) and on the injected contracts,
then we have considered as Reentrancy bugs those present
in the injected contracts but not in the original contracts.

Concerning tools selection for the comparison, we have
considered: Mythril [40], Securify [50], Slither [20], Van-
dal [8] and SmartCheck [49]. They are the state-of-the-
art static analysis tools that are able to detect Reentrancy
vulnerabilities. We had to exclude from the comparison
Oyente [39] and Manticore [7] since we did not manage to
make the tools working (they are very old and discontinued).
Recall that, the considered approaches inspect the Solidity
source code of smart-contracts, not the EVM bytecode, as
happens for EtherSolve.

Fig. 10 shows the results of the comparison, subdivided
in six plots, one for each tool under comparison. In each
plot we have the number of bugs injected per contract

(numbered from 1 to 50) and the number of bugs found by
a analysis tool per contract. In other words, for each tool we
plot the distribution of bugs found in the smart-contracts,
compared with the baseline distribution of injected bugs.
The efficacy of a tool increases as the distance between its
plot and the baseline distribution decreases. Furthermore,
the points above the baseline distribution indicate potential
false positives (since the tool find more bugs than the ones
that have been injected), while the points below the baseline
distribution indicate potential false negatives (since the tool
find less bugs than the ones that have been injected).

The results highlight that EtherSolve is the second-best
analysis tool, immediately after Slither. Indeed, the plot for
EtherSolve follows very closely the baseline distribution,
except for few contracts where EtherSolve misses some bugs
(i.e., we have false negatives). Slither, instead, performs
very well since its plot coincide exactly with the baseline
distribution, meaning that Slither do not have false positives
nor false negatives. Conversely, SmartCheck have the worst
plot, indeed it is not able to find any of the injected bugs (this
has been highlighted also by the experimental evaluation of
Ghaleb and Pattabiraman [31]).

Even if EtherSolve exhibits slightly lower results w.r.t.
Slither, we have to recall that it is the only tool using EVM
bytecode only, thus having less information. Inspecting the
smart-contracts source code is of great help in improving
bug detection results. So, EtherSolve results are even more
valuable: it is able to detect Reentrancy vulnerabilities even
in closed-source smart-contracts, with very high efficacy. Its
results are comparable, and very often superior, to analysis
tools that can also exploit smart-contracts source code.

Answer to RQ4

The efficacy of the Reentrancy vulnerability detector built on
top of EtherSolve is very high when compared with state-of-
the-art tools, because it is the second-best, in terms of de-
tected Reentrancy bugs, among the state-of-the-art analysis
tool, even if it is the only one that does not exploit smart-
contracts source code.

5.6. RQ5: Tx.origin Vulnerabilities Detection
Similarly to the previous section, in order to validate

the efficacy of the vulnerability detector built on top of
EtherSolve we compared it with specialized tools aiming at
discovery Tx.origin vulnerabilities, again using the SolidiFI
dataset. For this research question, the 50 Ethereum smart-
contracts has been injected with Tx.origin vulnerabilities.
In total, 1336 bugs have been injected, coming from 40
code snippets. Also in this case, we had to compile the
injected contracts before applying the analysis, and we used
one compiled contract per source file (the largest one).
Furthermore, we considered only vulnerabilities added by
the SolidiFI injection, by running EtherSolve before and
after injection, and by keeping only those new vulnerabilities
that are detected by the second analysis and not by the first
one. The same applies for the other tools.
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Fig. 10. Reentrancy analysis results for the different tools (smart-contracts on the x-coordinate).

Concerning tools selection for the comparison, we have
considered:Mythril [40], Slither [20], SmartCheck [49] and
Vandal [8]. They are the state-of-the-art static analysis tools
that are able to detect Tx.origin vulnerabilities. Note that,
tools such as Oyente [39], Manticore [7] and Securify [50]
are not designed to find Tx.origin vulnerabilities. Also in
this case, the considered approaches inspect the Solidity
source code of the smart-contracts, not the EVM bytecode,
as happens for EtherSolve.

Fig. 11 shows the results of the comparison, subdivided
in five plots, one for each tool under comparison. Analo-
gously to the previous section, for each tool we plot the
distribution of bugs found in the smart-contracts, compared
with the baseline distribution of injected bugs. The efficacy
of a tool increases as the distance between its plot and
the baseline distribution decreases. Again, points above the
baseline distribution are considered false positives, while
points below the baseline distribution are considered false
negatives.

Also in this case, the results highlight that EtherSolve
is the second-best analysis tool, again immediately after
Slither. Indeed, the plot for EtherSolve follows very closely
the baseline distribution, except for few contracts where
EtherSolve misses some bugs (i.e., we have false negatives).
Slither, instead, performs very well, since its plot coincide
exactly with the baseline distribution, meaning that Slither
do not have false positives nor false negatives. The worst
results are obtained by SmartCheck, that is not able to detect
the majority of the injected bugs. Vandal results are quite

good in general, except for some contracts for which it
signals either lots of false positives or lots of false negatives.

Even if EtherSolve exhibits slightly lower results w.r.t.
Slither, we recall that it is the only tool using EVM bytecode
only. So, EtherSolve results are even more valuable: it is
able to detect Tx.origin vulnerabilities even in closed-source
smart-contracts, with very high efficacy.

Answer to RQ5

The efficacy of the Tx.origin vulnerability detector built on
top of EtherSolve is very high, since the number of false
positives and false negatives is very low. Indeed, it is the
second-best, in terms of detected Tx.origin bugs, among the
state-of-the-art analysis tool, even if it is the only one that
does not exploit smart-contracts source code.

5.7. Discussion
The results obtained in the experimental validation sug-

gest that EtherSolve reconstructs very precise CFGs: it is
able to work on a wide range of Solidity versions and in
almost all cases it computes an exhaustive graph. The key
point of our approach is the simplicity of the symbolic stack
execution, which is limited to only a tiny set of opcodes,
but capable of resolving the destination address of orphan
jumps. However, there are particular cases of very complex
smart-contracts with peculiar structures for which Ether-
Solve is not able to identify certain edges. For instance,
the new try-catch feature introduced in the Solidity 0.6.x
versions, is translated in a particular bytecode structure.
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Fig. 11. Tx.origin analysis results for the different tools (smart-contracts on the x-coordinate).

EtherSolve is able to deal with such bytecode, but its par-
ticular structure deceives the tool, inducing it to take wrong
execution paths, causing little internal exceptions.

Among the compared tools, only Gigahorse showed a
CFG precision similar to EtherSolve. However, they seems
to be complementary, because each one could precisely
represent cases that the other one could not.

The results of the vulnerability detectors suggest that
EtherSolve is a powerful tool, and that can be easily extended
to support accurate subsequent static analyses based on a
precise CFG. Indeed, the experimental evaluation highlights
that EtherSolve analysis results, in terms of false positives
and false negatives, are second only to Slither results, for
both Reentrancy and Tx.origin vulnerabilities. This is a very
valuable, since Slither works at source code level while
EtherSolve works at bytecode level, hence with way less
information about the smart-contracts under analysis.

EtherSolve is affected by some limitations. One of them
is in the way we analyze loops. In fact, to prevent the analysis
to iterate forever, we pose a limit to the number of iterations
by enforcing a maximum size to the symbolic stack that we
propagate. This might in principle cause the final result to be
imprecise. However, in our experience, in those cases when
the size limit is reached, a larger limit would not help in
delivering a better result, so a larger limit would not improve
the precision of the tool. A possible improvement that may
mitigate the issue consists in developing an analysis to detect
when a loop recursively increases the symbolic stack size,
and cut-off such paths.

6. Related Work
Comparison with the conference paper. The present pa-
per is a deeply revised and extended version of the compan-
ion conference paper [16]. In particular, we better explained
the problem (Section I of [16]) and we better described the
background material (Section II of [16]). We also added the
description of the Tx.origin vulnerability (with examples)
in the Background. Furthermore, we improved the overall
presentation of the proposed static analysis that reconstructs
the smart-contracts CFG (Section III of [16]).We revised the
experimental validation (Section IV of [16]), performing a
more detailed assessment of the Reentrancy detector built
on top of EtherSolve, comparing its Reentrancy detection
efficacy with the state-of-the-art source code level analysis
tools. As novel contributions, we extended EtherSolve with
a mechanism to identify functions entry-point and a specific
analysis detecting Tx.origin vulnerabilities. Consequently,
we extended the experimental validation, adding an assess-
ment of the accuracy of EtherSolve in identifying functions
entry-point and a comparison of Tx.origin detection efficacy
with the state-of-the-art source code level analysis tools.
Related approaches. In the last years, many tools have
been developed in order to analyze Ethereum smart-contracts,
with different approaches and objectives. A quite recent and
detailed survey of them has been written by Praitheeshan
et al. [43]. Some tools analyze directly the EVM bytecode,
often trying to build a CFG. Among these tools we can find
Oyente [39], EthIR [3] and Octopus [52]. Their approaches
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are very similar, as they try to execute symbolically the
code to create logic predicates which, once resolved with
theorem prover such as the Z3 [54], can determine the
destinations of orphan jumps. However, these tools aim at
detecting vulnerabilities, and the extracted CFG is only an
intermediate output.

A slightly different approach is the one proposed by
Vandal [8], which translates the EVM bytecode into registry
based operations, identifies the basic blocks and then tries to
resolve jumps address through a fixed point analysis. Even in
this case the CFG is only an intermediate output, as the target
of Vandal is a vulnerability analysis based on the Souffle
suite [37]. Our tool instead focuses on the CFG building,
keeping the symbolic stack execution as simple as possible,
in order to resolve the highest number of orphan jumps and
resulting in a more precise CFG reconstruction.

A related tool which extracts CFGs from bytecode is
Jeb [46], a professional decompiler with the ability to ana-
lyze Ethereum smart-contracts. However, it is closed-source
with a subscription fee. Another decompiler is Porosity [13],
one of the first tool developed to analyze EVM bytecode, but
it needs the contract ABI to work properly. Furthermore, it
is discontinued since January 2018. A relevant decompiler is
Gigahorse [32, 33, 34], a recent tool which builds a CFG and
tries to find internal functions with heuristics, obtaining an
approximation of the original Solidity source code. Another
decompiler is Panoramix [30] which, however, does not
generate a CFG.

The majority of tools that perform vulnerability analysis
of Ethereum smart-contracts do not expose a CFG, or even
they do not extract it. Other tools, instead, do the analysis on
the Solidity source code, or use the EVM bytecode together
with additional information that are not always available for
closed-source contracts.

A completely different approach is the one implemented
byMytril [14], which uses symbolic execution, SMT solving
and taint analysis to detect a variety of security vulnera-
bilities. It does not build a CFG, but a trace tree, i.e., a
representation of all the execution paths encountered during
the analysis. Its objective is to detect as many vulnerabilities
as possible. Crytic [21] is an application that collects many
tools for smart-contract analysis, such as Manticore [7],
Ethersplay [18], Echidna [17], Slither [20] and more, but
they do not use a CFG or they do not analyze the bytecode
only. In fact their objective is the vulnerabilities detection
inside the Solidity source code.

Finally, there are other tools such as Securify [50], which
analyzes Solidity source code, Maian [41], which performs
dynamic analysis on a private blockchain, and Gasper [11],
which analyzes the gas cost of contracts. Furthermore, in [2]
the authors define a symbolic execution-based gas analysis
built on top of the notion of stack-sensitive CFG (S-CGF).
The latter provides a sound approximation of a CFG, based
on a sound static analysis (based on abstract interpretation
in [2]), as described in the cited technical report [1]. Hence,
even if with S-CFGs the authors aim at solving the same
problem as our tool, the methodologies are different: with

S-CFGs they compute a sound approximation of the CFGs,
based on a sound static analysis; while EtherSolve computes
precise (but not necessarily sound) CFGs, by means of sym-
bolic execution. Hence, the paper [2] does not use symbolic
execution to compute CFGs (as EtherSolve) but only to
perform the gas analysis (on top of a previously computed
S-CFG). In [35] the authors define correctness criteria (ECF)
for callbacks, in a general setting, and by means of such
criteria they encode Reentrancy-like bugs for Solidity. Then,
the authors provide a monitoring technique to dynamically
spot ECF, based on an stack-based intermediate language.
Such contribution is not related to EtherSolve, that aims to
reconstruct precise CFGs from EVM bytecode and that uses
Reentrancy as a simple application scenario.

7. Conclusion
Automatically analyze Ethereum smart-contracts is cru-

cial in order to detect potential defects and vulnerabilities.
Nevertheless, most of the existing analysis tools for the
EVM bytecode come with shortcomings and limitations.
Indeed, the precise extraction of the CFG from the EVM
bytecode is very challenging (e.g., resolving the target of
jumps), due to engineering decisions concerning the under-
lying infrastructure. For this reason, most of the state-of-the-
art analysis tools compute imprecise CFG or use alternative
code representations, resulting in poor analysis performance.

We propose a novel approach to extract a precise CFG
from the EVM bytecode. We believe that our solution could
be the starting point for new static analysis tools that aim
at detecting defects and vulnerabilities in Ethereum smart-
contracts, built on top of an accurate CFG. To validate our
approach we have implemented a tool, EtherSolve, and com-
pared it on the state-of-the-art analysis tools using a CFG-
based code representation. Furthermore, we have added to
EtherSolve the capability to detect two of themost prominent
Ethereum smart-contracts vulnerabilities (Reentrancy and
Tx.origin) and compared its analysis precisionwith the state-
of-the-art Ethereum analyzers, obtaining excellent results.
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