
The Journal of Systems & Software 200 (2023) 111653

M
M
U

(
t
n
e

t

a
(
m
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Enhancing Ethereum smart-contracts static analysis by computing a
precise Control-FlowGraph of Ethereum bytecode✩

ichele Pasqua ∗, Andrea Benini, Filippo Contro, Marco Crosara, Mila Dalla Preda,
ariano Ceccato ∗

niversity of Verona, Strada le Grazie 15, Verona 37134, Verona, Italy

a r t i c l e i n f o

Article history:
Received 17 January 2022
Received in revised form 15 December 2022
Accepted 20 February 2023
Available online 2 March 2023

Keywords:
Reverse engineering
Static analysis
Smart-contract
Ethereum

a b s t r a c t

The immutable nature of Ethereum transactions, and consequently Ethereum smart-contracts, has
stimulated the proliferation of many approaches aiming at detecting defects and security issues before
the deployment of smart-contracts on the blockchain. Indeed, the actions performed by smart-contracts
instantiated on the blockchain, possibly involving substantial financial value, cannot be undone.

Unfortunately, smart-contracts source code is not always available, hence approaches based on
static analysis have very often to face the problem of inspecting the compiled Ethereum Virtual
Machine (EVM) bytecode, retrieved directly from the blockchain. However, due to the intrinsic
complexity of EVM bytecode (especially in jumps address resolution), the state-of-the-art static
analysis-based solutions have poor accuracy in the automated detection of Ethereum smart-contracts
programming defects and vulnerabilities.

This paper presents a novel approach based on symbolic execution of the EVM operands stack
that allows to resolve jumps address in the EVM bytecode and to construct a precise Control-Flow
Graph (CFG) of compiled smart-contracts. Many static analysis techniques are based on a CFG-based
representation of the smart-contract to validate, and would therefore benefit from our approach.

We have implemented the CFG reconstruction algorithm in a tool called EtherSolve. Then, we have
validated the tool on a large dataset of real-world Ethereum smart-contracts, showing that EtherSolve
extracts more precise CFGs, w.r.t. state-of-the-art available approaches. Finally, we have extended
EtherSolve with two detectors for two of the most prominent Ethereum smart-contracts vulnerabilities
(Reentrancy and Tx.origin). Experimental results show that exploiting the proposed CFG reconstruction
static analysis, leads to more accurate vulnerabilities detection, w.r.t. state-of-the-art security tools.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Smart-contracts extend blockchain-based cryptocurrencies
e.g., Ethereum), allowing to store programs transparently on
he blockchain, that are eventually executed by the distributed
etwork of miners. In other words, a smart-contract is a self-
xecuting program that runs on a blockchain.
The peculiarity of a smart-contract is that the program and all

he actions it performs (e.g., money transactions) are immutable:

✩ Editor: Christoph Treude.
∗ Corresponding authors.

E-mail addresses: michele.pasqua@univr.it (M. Pasqua),
ndrea.benini@studenti.univr.it (A. Benini), filippo.contro_01@studenti.univr.it
F. Contro), marco.crosara@studenti.univr.it (M. Crosara),
ila.dallapreda@univr.it (M. Dalla Preda), mariano.ceccato@univr.it

M. Ceccato).
ttps://doi.org/10.1016/j.jss.2023.111653
164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access art
once written on the blockchain, they cannot be modified nor
deleted, even in case of programming defects identified after de-
ployment. Programming defects and vulnerabilities might result
in frauds or in financial values that are frozen indefinitely (Prisco,
2020). Moreover, smart-contracts security is becoming a crucial
point due to the advent of the so called Decentralized Financial
(De-Fi): a range of semi-familiar financial products re-skinned for
the cryptocurrency age (Chambers, 2020). DeFi sees a great in-
volvement of new smart-contracts, reaching 3.1 million contract
calls in a single day (Coindesk, 2020) with $88.5 billion total value
locked (Pulse, 2021), and these numbers are still growing.

For these reasons, code review, possibly supported by auto-
mated analysis tools, is crucial, in order to detect programming
defects and vulnerabilities before smart-contracts deployment
or before erroneous transactions committed (and permanently
stored) in the blockchain. This is especially critical for closed-

source smart-contracts, whose source code cannot be inspected

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111653
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111653&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:michele.pasqua@univr.it
mailto:andrea.benini@studenti.univr.it
mailto:filippo.contro_01@studenti.univr.it
mailto:marco.crosara@studenti.univr.it
mailto:mila.dallapreda@univr.it
mailto:mariano.ceccato@univr.it
https://doi.org/10.1016/j.jss.2023.111653
http://creativecommons.org/licenses/by/4.0/

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

b
p

t
s
n
l
a
t
m
b
l
d

t
t
e
p
S
o
t
s

e
p
t
o
a
a
p
s
s
a
p
y
s
n
f
t
i

t
u
p
t
p
F
s

y end-users, and the only available representation is the com-
iled EVM bytecode on the blockchain (Li et al., 2020).
The precision of the static analysis is one of the key points

o promptly deploy and run correct smart-contracts. However,
tate-of-the-art tools for detecting programming defects and vul-
erabilities in Ethereum smart-contracts experience substantial
imitations: analysis results contain lots of false positives (false
larms) and false negatives (overlooked issues) (Ghaleb and Pat-
abiraman, 2020). A possible explanation for such poor perfor-
ance could be the intrinsic difficulty of analyzing the EVM
ytecode. In fact, despite the bytecode is easy to parse (fixed
ength opcodes) its semantics and control-flow graph (CFG) are
ifficult to reconstruct due to the following EVM design choices.

• Jumps destination is not an opcode parameter. A jump op-
code assumes the destination address to be available on the
stack, dynamically computed by previous code.
• There is no opcode for returning from functions: the ‘‘re-

turn’’ is implemented by pushing the return address on the
stack, and then performing a jump.
• Functions are removed by the compiler. Intra-contract func-

tion calls are replaced by jumps. Inter-contract function
calls are resolved by a ‘‘dispatcher’’ placed at the smart-
contract entry-point, that decides what address to jump to,
depending on the call actual parameters.
• The smart-contract constructor is executed only when the

contract is deployed on the blockchain, and then discarded.
Thus, its bytecode is not available in the blockchain.

The most effective static analysis algorithms rely heavily on
he particular representation of the code, that is usually based on
he control-flow graph. Indeed, CFG precision is a key point of
very analysis, and when research tools base their analysis on a
artial or imprecise CFG, the final tool results are also imprecise.
ince it is still quite difficult to precisely compute a precise CFG,
ften, tools use alternative program representations (e.g., trace
ree Mueller, 2020 or three address code Brent et al., 2018),
acrificing analysis accuracy.
In this paper we go in the opposite direction: we aim at

xtracting a precise CFG from the EVM bytecode. To this end, we
ropose a static analysis approach, called symbolic stack execution,
hat resolves jumps destination based on the symbolic execution
f the operands stack. After the jumps destination is resolved, an
ccurate CFG can be built. The approach has been implemented
nd open sourced as EtherSolve,1 a fully automated tool to com-
ute a precise CFG starting from EVM bytecode. This result repre-
ents a beneficial starting point for any subsequent sophisticated
tatic analysis meant to identify programming defects or vulner-
bilities in Ethereum smart-contracts. To quantify the improved
recision of this CFG, we have extended EtherSolve adding anal-
ses aiming at detecting two of the most prominent Ethereum
mart-contracts vulnerabilities (Dika and Nowostawski, 2018),
amely Reentrancy and Tx.origin. These detectors turn out to per-
orm better than state-of-the-art security EVM bytecode scanning
ools, with results comparable to analysis tools that can also
nspect smart-contracts source code.

The present paper is a deeply revised and extended version of
he companion conference paper (Contro et al., 2021). In partic-
lar, we better explained the problem and improved the overall
resentation of the proposed methodology. Furthermore, we ex-
ended EtherSolve with a mechanism to identify functions entry-
oint and a specific analysis detecting Tx.origin vulnerabilities.
inally, we extended the experimental validation, adding an as-
essment of the accuracy of EtherSolve in identifying functions

1 The open source tool is available at https://github.com/SeUniVr/EtherSolve.
 d

2

entry-point and a comparison of vulnerabilities detection efficacy
(Reentrancy and Tx.origin) with the state-of-the-art source code
level analysis tools.

The paper is structured as follows. After covering the back-
ground of smart-contracts in Section 2, the static analysis recon-
structing the CFG of Ethereum smart-contracts is described in
Section 3. In Section 4, the static analysis is extended in order to
detect Reentrancy and Tx.origin vulnerabilities. Section 5 presents
our empirical validation and comparison with state-of-the-art
tools. Then, Section 6 discusses the related work and Section 7
closes the paper.

2. Background

2.1. Ethereum

Ethereum is an open-source platform for decentralized appli-
cations, based on the blockchain technology. On the Ethereum
network, it is possible to write simple programs, called smart-
contracts (Dannen, 2017; Antonopoulos et al., 2018), that
(semi-)automatically manage the underlying network cryptocur-
rency, called Ether (ETH). The actions that can be performed in
Ethereum are transactions, i.e., transfer of funds or data between
different ETH accounts. Every new transaction is irreversible
and it is permanently added in a new block that updates the
blockchain (Dannen, 2017; Antonopoulos et al., 2018).

In the Ethereum network each principle has an account iden-
tified by an address (a sequence of 20 bytes). There are two
types of accounts: Externally Owned Accounts (EOA) and contract
accounts (Buterin, 2015). The former is a simple address that does
not point to any code: it can only emit and receive transactions
(similarly to Bitcoin wallets Antonopoulos, 2017). The latter is the
identifier of a smart-contract deployed in the network, which is
run whenever a transaction is sent to its address (Antonopoulos
et al., 2018).

Ethereum uses a proof-of-work (POW) system as a consensus
mechanism (Zheng et al., 2020; Baliga, 2017). Participants of the
network, called miners, use their time, computational power and
crypto currency assets to compete. The miner that succeeds is
allowed to add blocks to the Ethereum blockchain and gets a
reward (Buterin, 2015). Rewards are paid by the users who invoke
the execution of a smart-contract or simply want to transfer funds
to other accounts. In fact, every operation in the network has a
cost expressed in the unit of Gas and the price per unit is ex-
pressed in Wei, a fraction of an Ether. In the near future, a switch
to a proof-of-stake (POS) consensus mechanism will be performed,
yielding to Ethereum 2.0. In a POS setting, miners are replaced
by stackers, that validate transactions based on the amount of
cryptocurrency they have staked, instead of the computational
power they are able to employ.

2.2. The solidity language

Smart-contracts for Ethereum can be written with differ-
ent high-level programming languages, but Solidity (Ethereum,
2020a) is indubitably the most wide-spread (Etherscan.io, 2020).
Solidity is a Turing-complete object-oriented language and smart-
contracts are basically objects with functions and fields.

The example in Listing 1 reports a smart-contract written
in Solidity to implement a bank. The field balances stores the
internal state of the smart-contract. It is a key–value map that
associates every address to an integer value representing the
funds owned by the address account. The functions deposit and

eposit100 allow the user to deposit currency into its virtual

https://github.com/SeUniVr/EtherSolve

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

a
l
T
a
p
s
m
t
a

2

b
E
M

g
i
t
(
b
d
m
e
(
m
t
s
T
b

(
c
n
b
t
t

c
1
e
f
t
(
l
(
t

(
t
i
t
E

pragma solidity ^0.6.0;
contract SimpleBank {

mapping(address => uint256) private balances;
function deposit(uint256 amount) public payable {

require(msg.value == amount);
balances[msg.sender] += amount;

}
function deposit100() public payable {

require(msg.value == 100);
balances[msg.sender] += 100;

}
function withdraw(uint256 amount) public {

require(amount <= balances[msg.sender]);
balances[msg.sender] -= amount;
msg.sender.transfer(amount);

}
}

Listing 1. Solidity code example

ccount. The former allows to deposit an arbitrary amount, the
atter is a special case which allows to transfer exactly 100 Wei.
he withdraw function allows the user to get back a certain
mount of Ether previously deposited. Solidity provides different
rimitives to interact with the blockchain environment, for in-
tance: transfer, that sends Ether to a certain address; revert, that
akes the transaction fail and rolls-back to the state preceding

he transaction; require, that enforces a certain boolean condition
nd in case the condition is not met a revert is performed.

.3. Compiling solidity into EVM bytecode

In order to actually run a smart-contract on the Ethereum
lockchain, the Solidity source code needs to be compiled into
VM bytecode, in order to be executed by the Ethereum Virtual
achine (Ethervm.io, 2020).
Given a smart-contract, the Solidity official compiler solc

enerates the creation code and the runtime code. The former
s the constructor of the smart-contract, that performs the ini-
ial operations and deploys the runtime code on the blockchain
the constructor code is then discarded and not stored in the
lockchain Ethereum, 2020b). The latter is the actual bytecode
eployed on the blockchain and it is divided in three main seg-
ents. The first segment contains the opcodes that the EVM
xecutes; the second segment is optional and contains static data
e.g., strings or constant arrays); the last segment contains the
etadata. In particular, the metadata segment contains compila-

ion information, such as the compiler version and the (hashed)
ources used, in order to verify its source code (Ethereum, 2020a).
he metadata segment is hashed and appended to the contract
ytecode.
In addition, solc also produces the Application Binary Interface

ABI), a file containing the list of the functions in the smart-
ontracts that can be called by a user, together with the type and
umber of parameters. Functions are not identified by their name
ut by the hash of their signature. The ABI file is not deployed on
he blockchain, it is distributed separately to all parties that aim
o interact with the smart-contract.

Concerning the EVM execution, the main memory of a smart-
ontract consists in a stack, namely a volatile LIFO queue with
024 blocks of 32 bytes (Ethereum, 2020a; Ethervm.io, 2020). The
xecution relies heavily on it, as arithmetic and logic operations
ollow the reverse polish notation, where the data are loaded into
he stack before the operation (Tabora, 2020). For instance, the
hexadecimal) bytecode string 6005600301 translates to opcodes
ist PUSH1 0x05 PUSH1 0x03 ADD, and the EVM execution will:
i) push a byte to the stack containing the value 0x05; (ii) push
he value 0x03; and (iii) execute the addition operation, which
3

� ⊵
Runtime Code:
6080604052600436106100345760003560e01c8063140
e9ac714610039 ... 600020600082825401925050819
055505056fe
Metadata:
a2646970667358221220e62b6e0d256ecbc0a1b39b99b
f0a2b509ed60dd83c71541b2d00fed1bde5a9e464736f
6c634300060b0033� �

Listing 2. Bytecode example.

� ⊵
PUSH1 0x80 PUSH1 0x40 MSTORE PUSH1 0x4
CALLDATASIZE LT PUSH2 0x34 JUMPI PUSH1 0x0
CALLDATALOAD PUSH1 0xE0 SHR DUP1
PUSH4 0x140E9AC7 EQ PUSH2 0x39 JUMPI
...
PUSH1 0x0 KECCAK256 PUSH1 0x0 DUP3 DUP3
SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE
POP POP JUMP INVALID� �

Listing 3. Opcodes example.

consumes two elements from the stack and produces their sum
as result, leaving the final stack with the value 0x08 only.

The EVM bytecode is composed by EVM opcodes that can
be grouped in categories, including arithmetic and logic oper-
ations, control flow operations, stack operations, environmental
and block information, memory and storage operations and sys-
tem operations. The complete list of opcodes with their semantics
is defined in the Ethereum yellow paper (Wood, 2014), and there
can be little variations among different EVM versions. Listing 2
shows a portion of a Solidity smart-contract compiled into EVM
bytecode, while Listing 3 shows the translation of the bytes into
EVM opcodes. Bytecode can be easily parsed into opcodes, which
are the minimum instructions that the EVM can execute and are
identified with bytes.

Every opcode pushes or pops a certain number of elements
from/to the stack, and it can access memory, get information
about the execution environment or interact with other block-
chain smart-contracts. The only opcodes with a parameter are
those in the PUSH family: the value that the EVM pushes into
the stack is taken directly from the bytes following the opcode.
There are different variants of PUSH, depending on the number of
bytes that needs to be pushed to the stack, varying from PUSH1
(1 byte is pushed) to PUSH32 (32 bytes are pushed) (Wood, 2014;
Ethervm.io, 2020).

A portion of the code can be used as read-only data; in fact
with the CODECOPY opcode the execution can copy a portion
of the code to the memory and then treat it as data (Brent
et al., 2018). Thus, parsing this segment of memory as code might
generate spurious results, including invalid opcodes and wrong
jumps destination.

The control-flow of the smart-contract is also managed by
means of the stack. In fact, in order to jump among different
portions of the code both the JUMP and the JUMPI opcodes
unconditional and conditional jumps, respectively) have to read
he jump destination from the stack. Jumps destination is not
ndicated with a label, but with the offset w.r.t. the next instruc-
ion in the code (Brent et al., 2018). Unlike x86 Assembly, in the
VM there is not the concept of function: everything is managed

through jumps (there are no opcodes for function calls nor for
call returns). The only return available is for function calls coming
from external smart-contracts.

These design choices make the EVM bytecode quite difficult
to analyze statically. In particular, since jumps destination is

computed at run-time, the CFG cannot be reconstructed without

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

a
p

i
t
f
t
c
o
i
m
c
m
t
v
m

c
a
a
a
f
s
e

3

r
c
c
s
b
p
i

3

i

B

B

3

b
r
t

sort of stack simulation, whose accuracy directly affects the
recision of extracted CFG.
When a transaction starts the execution of a smart-contract,

t can send both funds and information as call data. In order to
ransfer the control to the code corresponding to the intended
unction, the compiler adds a dispatcher at the beginning of
he contract code. When a caller is willing to execute a certain
ontract function, it sends a transaction that contains the hash
f the function signature, so that the dispatcher can compare
t with all the hashes of the smart-contract functions and then
ove the execution to the begin of the corresponding function
ode. Instead, if no call data are supplied or none of the hashes
atches, the dispatcher moves the execution to the beginning of

he fallback function. This function has not parameters nor return
alues (Ethereum, 2020a), and it is called automatically when a
oney transfer is performed (on the destination contract).
Every function call in the Solidity contract is translated by the

ompiler into a sequence of PUSH opcodes, followed by a JUMP
nd a JUMPDEST. This sequence loads into the stack the return
ddress of the calling context, the (optional) actual parameters
nd the address of the function to call. Then JUMP executes the
unction body, that eventually consumes the parameters from the
tack, leaving the return address which, once executed, moves the
xecution to JUMPDEST, resulting in an actual return statement.

. Control-flow graph reconstruction

As already introduced, the main goal of our approach is to
econstruct a precise Control-Flow Graph (CFG) of Solidity smart-
ontracts, starting from the EVM bytecode only (no ABI nor source
ode is needed). The CFG is a directed graph representing the
mart-contract flow of execution: nodes are the contract basic
locks (sequence of opcodes with no jumps), while edges connect
otential successive basic blocks. In this section we will describe
n details how we retrieve a CFG from EVM bytecode.

.1. Approach overview

The CFG reconstruction algorithm is composed of the follow-
ng incremental steps.

ytecode Parsing The binary representation of the bytecode is
split in the actual smart-contract code and in the metadata.
Then, the code part is further parsed to identify opcodes.

asic Blocks Identification Opcodes are grouped in basic blocks
and the explicit jump destinations between basic blocks
are computed.

Symbolic Stack Execution Symbolic execution is applied to the
execution stack, in order to resolve non-trivial jump desti-
nations.

Static Data Separation The static data segment is separated from
the actual executable code.

CFG Decoration The obtained CFG is decorated to highlight the
dispatcher and to identify the entry-point of the fallback
function.

Entry-points Detection Functions entry-point is detected inspe-
cting the dispatcher blocks.

In the following, we describe these steps in detail, referring to the
deposit100 function of the SimpleBank smart-contract of Listing
1.
4

Fig. 1. Example of control-flow graph.

.2. Bytecode parsing

The analysis starts with the binary representation of the EVM
ytecode. The metadata section is identified by finding the cor-
esponding header reported in the official Solidity documenta-
ion (Ethereum, 2020a). In case of metadata with experimental
features, the header is different and not documented. Indeed, as
stated in the Solidity documentation (Ethereum, 2020a), some
features (such as the pragmas ABIEncoderV2 and SMTChecker)
are not enabled by default. Still, they can be enabled by us-
ing the experimental pragma modifier. We inferred the header
structure of non documented experimental cases by manually
inspecting the bytecode of some contracts. The version of the
Solidity compiler used to generate the bytecode is extracted from
the metadata.

The metadata are then dropped and the remaining bytes are
considered as the actual smart-contract code to be further parsed.
An example of how the bytecode is parsed into opcodes is shown
in Listing 2 and Listing 3, where every two characters of the byte-
code are translated into the corresponding opcodes (e.g., 0x6080
becomes PUSH1 0x80). Each opcode is unequivocally identified by
its offset address, i.e., the position of the opcode in the bytecode.

3.3. Basic blocks identification and pushed jumps

A basic block is a sequence of opcodes which are executed con-
secutively between a jump target and a jump instruction, without
any other instruction that alters the flow of control. Thus, opcodes
that alter the control flow of the program divide the code into
basic blocks. Opcodes JUMP, JUMPI, STOP, REVERT, RETURN,
INVALID, SELFDESTRUCT mark the end of a basic block, whereas
JUMPDEST marks the beginning of a new basic block. Every basic
block is uniquely identified by its offset, i.e., the position of its first
opcode in the bytecode. In Fig. 1 we can see the basic blocks of
the code in Listing 3 extracted following this procedure. Indeed,
each basic block either starts with a JUMPDEST or ends with an
opcode which alters the control flow.

Once the code is divided into basic blocks, we proceed with
the computation of the CFG edges. This operation is not always
trivial as the jump destination is not an opcode parameter, but
rather it is available on top of the stack at execution time. We

identified two types of jumps: pushed jumps and orphan jumps. A

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

p
i
p
b
e
a

j
c
i

J

J

J

O

w
e
p
C
n

3

r
j
t
e
i
s
t

a
c
s
c
e
S

s
c
p
s
a

S
b
t
o
o
e

b
s
b
A
p
c
e
i
t
p
o
a

i

Fig. 2. Symbolic stack execution.

ushed jump is immediately preceded by a PUSH opcode, so that
ts target is easy to resolve, just by looking at the value in the
receding PUSH opcode. Instead, orphan jumps are not preceded
y a PUSH and their target is not immediate to compute. In the
xample CFG of Fig. 1 the block (starting at offset) 53 ends with
n orphan jump, whereas the remaining jumps are pushed jumps.
We start by computing the edges resulting from pushed

umps, then the edges resulting from orphan jumps will be
omputed in a subsequent phase. To this end, each basic block
s analyzed according to its last opcode as follows.

UMP preceded by a PUSH The argument of the push is the des-
tination offset of the jump and the corresponding edge is
added to the CFG.

UMPI preceded by a PUSH The false branch goes to the next
block (in offset order), while the true branch is the argu-
ment of the push interpreted as destination offset for the
JUMPI. The two corresponding edges are then added to the
CFG.

UMP not immediately preceded by a PUSH The resolution of
the jump is not trivial and it needs to be resolved through
symbolic stack execution, described in Section 3.4.

thers Opcodes like STOP, REVERT, RETURN, INVALID and SELF-
DESTRUCT have no successors, as the control flow is inter-
rupted.

At the end of this phase we have extracted a partial CFG
here the edges related to orphan jumps are still unresolved. For
xample, the extraction of the CFG of the code in Listing 1 at this
oint is depicted by the basic blocks and continuous edges of the
FG in Fig. 1, while the outgoing edge from the basic block 53 has
ot been resolved yet.

.4. Symbolic stack execution and orphan jumps

The most challenging step in the CFG reconstruction is the
esolution of the destination addresses for orphan jumps. These
umps are very common: for instance, the Solidity compiler uses
hem to return from function calls. Indeed, between the function
ntry-point and the function exit-point (i.e., the return), the stack
s heavily used by the function body to implement all the de-
ired features (arithmetic operations, calls to other functions or
ransfer of funds).

The analysis consists in executing the stack symbolically: the
lgorithm walks the partially built CFG executing only the op-
odes that interact with jump addresses, updating the state of the
tack accordingly, in such a way that orphan jump destinations
an be found on the symbolic stack. Indeed, the symbolic stack
xecution considers only the opcodes in the PUSH, DUP and
WAP families, together with the AND and POP opcodes. For
5

Table 1
Look-up table for the executeOpcode function of Algorithm 1.
Hex Opcode Popped Pushed Effect on the symbolic stack

0 × 16 AND 2 1 S.pop() 2 times,
S.push(unknown) 1 time

0 × 50 POP 1 0 S ′ = S.pop()

0 × 60 PUSH1
.
.
. PUSHn 0 1 S ′ = S.push(opcode.argument),

|opcode.argument| = n bytes
0 × 7f PUSH32

0 × 80 DUP1
.
.
. DUPn n n+ 1 S ′ = S.push(S[n− 1])
0 × 0f DUP16

0 × 90 SWAP1
.
.
. SWAPn n+ 1 n+ 1 S ′[0] = S[n], S ′[n] = S[0]
0 × 9f SWAP16

0x* Other k l S.pop() k times,
S.push(unknown) l times

every other opcode the symbolic stack pops and pushes unknown
elements, as they do not deal with the jump addresses.

In the example depicted in Fig. 2 there is a simple piece of code
that has been executed symbolically to highlight the procedure.
In particular, the ADD is not modeled in full details (we do not
need to): it simply consumes two elements of the stack and then
generates a single unknown value to be pushed. The jump address
is loaded before arithmetic operations, but it persists until the
actual JUMP, so it can be resolved.

The symbolic stack execution handles the opcodes according
to the rules represented in the look-up Table 1, where S denotes
a stack that can contain numeric or the unknown values. We
indicate the top of the stack with the position 0. The third and
fourth columns of the table represent, respectively, the number of
pop and push operations executed on the stack, according to the
language documentation (Wood, 2014). The last column describes
the effect of an opcode on the symbolic stack, where S ′ is the
ymbolic stack after the modification. The last row of the table
onsiders a generic opcode not involving jump addresses, that
erforms an arbitrary number of push and pop operations on the
tack. Note that, l can be only 0 or 1 since, at the moment, there
re no operations that push more than one element in the stack.
The algorithm walks through the CFG using a Depth-First

earch (DFS) keeping a snapshot of the stack state for each basic
lock. The following constraints have been introduced in order
o avoid infinite loops: an edge cannot be analyzed more than
nce with the same symbolic stack state; and there is a limit
n the number of elements to compare when checking for stack
quivalence.
Another important aspect to note is the fact that a function can

e called from different points of the code, resulting in different
ymbolic stacks and different paths of the CFG. Indeed, blocks can
e traversed during the symbolic execution by multiple paths.
path is said to be infeasible when a real execution, given a

articular state, would never take it. An example is a path that
ontains branches that are guarded by contrasting conditions,
.g., x > 0 in the first branch and x ≤ 0 in the second branch. Even
f the two branches are not dead code, they cannot be taken by
he same execution when x is an input. In order to avoid infeasible
aths, when the DFS visit encounters a block ending with JUMP,
nly its destination block (obtained from the symbolic stack) is
dded to the DFS queue.
The detailed algorithm for resolving orphan jumps is shown

n Algorithm 1. It starts at Line 2 by initializing the variable V ,

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3

t
a
a
s
Q

L

L

L

o
c
i
l

t
J
i
r
r
t

i

d
t
F
c

Algorithm 1: Resolve Orphan Jumps.
1: function resolveOrphanJumps(basicBlocks)
2: V ← set() ▷ visited
3: CB← basicBlocks.first ▷ current block
4: S ← symbolicExecutionStack() ▷ stack
5: Q ← stack() ▷ DFS queue
6: Q .push(⟨CB, S⟩) ▷ DFS first element
7: while Q ̸= ∅ do
8: ⟨CB, S⟩ ← Q .pop()
9: for op ∈ CB.opcodes do
0: S.executeOpcode(op) ▷ look-up Table 1
1: end for
2: if CB.opcodes.last = JUMP then
3: NO← S.peek ▷ next offset from stack
4: NB← basicBlocks[NO] ▷ next block
5: CB.addSuccessor(NB)
6: end if
7: if CB.opcodes.last ̸= JUMP then
8: for suc ∈ CB.successors do
9: edge← ⟨CB.offset, suc.offset, S⟩
0: if edge /∈ V then
1: V .add(edge)
2: Q .push(⟨suc, S⟩)
3: end if
4: end for
5: else if CB.opcodes.last = JUMP then
6: edge← ⟨CB.offset, NO, S⟩
7: if edge /∈ V then
8: V .add(edge)
9: Q .push(⟨NB, S⟩)
0: end if
1: end if
2: end while
3: end function

that stores the edges that have already been analyzed using stack
equivalence as described before (lines 20 and 27). An edge is
also labeled with the symbolic stack that has been used for its
symbolic execution (lines 19 and 26). Then, the queue Q used for
he DFS is initialized at Line 5: it contains pairs with a block and
symbolic stack. The first pair ⟨CB, S⟩ contains the first block and
n empty stack. Then, the algorithm proceeds with the symbolic
tack execution by iteratively repeating the following steps until
is empty.

ines 9-11 symbolically execute the opcodes of the basic block
and update the state of the symbolic stack according to the
look-up Table 1.

ines 12-16 resolve orphan jumps destination with the newly
updated symbolic stack. The target block is added as a
successor of the basic block under analysis.

ines 17-31 handle the update of the queue Q . If the edge from
the analyzed basic block to the target one has not been
already analyzed using the same stack, then the successor
blocks are added to Q . If the last opcode is a JUMP then
only its target block is added to Q .

An example of the symbolic stack execution for the resolution
f orphan jumps is shown in Fig. 3 and refers to a portion of the
ontract shown in Listing 3 (the corresponding CFG is depicted
n Fig. 1). The symbolic execution starts at the offset 36, which
oads into the stack the value 0x29 after the value 0x27. Then, our
approach symbolically executes the JUMP opcode that, according
o Table 1, consumes a value. Next, the symbolic execution of
UMPDEST leaves the stack unchanged and then the value 0x01
s loaded. The execution proceeds until the opcode at offset 129 is
eached, which leaves an unknown value on the stack, that is then
emoved by the POP. Finally, the opcode at offset 131 contains
he orphan jump, which can be resolved with the value pushed
6

Fig. 3. Orphan jump resolution.

into the stack back at offset 34. At this point, the symbolic stack
execution can detect that the successor basic block is the one at
offset 39.

Eventually, we have resolved the target of all branches in the
CFG, so the dashed edge in Fig. 1 is added at the end of this phase.

3.5. Static Data Separation

The proposed approach proceeds with the removal of static
data (if present). The first basic block containing the instruction
0xFE, which is the designated opcode for an invalid instruction, is
identified. In fact, the Solidity compiler uses this opcode to mark
the end of the executable code section and the beginning of the
static data section. All the subsequent opcodes are removed from
the graph, and considered as static data and not as code. Then, the
algorithm proceeds by removing from the graph any basic block
that is not connected to the main graph, if any.

The static data are usually strings contained in the source
code or child contracts which are instantiated by the main one
through the opcodes CREATE and CALL. Even if, in principle, we
cannot be sure that the removed data is actually data and not
code, our experimental validation indicates that this assumption
is reasonable.

3.6. Control-flow graph decoration

In order to provide to the CFG additional information poten-
tially useful to an analyst or for a static analysis (e.g., for vulner-
abilities detection), our approach tries to highlight some relevant
code portions, such as the dispatcher, the fallback function and
the last basic block of the contract.

The dispatcher is the entry-point of the smart-contract, so it
is at the beginning of the bytecode. The dispatcher directs the
execution to the intended Solidity function and it manages pa-
rameters and return values. The fact that the dispatcher manages
return values is the key used for its detection. In fact, the only
basic blocks that contain instructions such as RETURN and STOP
are part of the dispatcher. These opcodes cannot be present in
other locations as they would manage return values outside the
dispatcher. So, the algorithm considers as dispatcher every block
with an address lower than the address of these opcodes. In the
example of Fig. 1, the dispatcher blocks are highlighted in gray.

This approach is effective in identifying both the linear dis-
patchers, used in the older versions of the Solidity compiler, and
the tree dispatchers, introduced in the latest versions of Solidity
n order to improve performances.

The detection of the fallback function entry-point is more
ifficult, because the dispatcher structure has been changing con-
inuously across different versions of the Solidity compiler. In
ig. 4 we report a portion of the CFG retrieved from a simple
ontract with declared fallback function. In the picture, white

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653
Fig. 4. Example of CFG with complex dispatcher (outgoing edges to not reported
nodes omitted).

nodes are code nodes, while gray nodes are dispatcher nodes
(we reported only some code and dispatcher nodes for simplicity,
outgoing edges to not reported nodes have been omitted). As you
can see from the picture, the dispatcher is quite complex and it is
not trivial to identify automatically that the node at offset 0x97
is the first block of the fallback function.

The first check of the dispatcher is the presence of call data
and, if missing, it moves the execution to the fallback function.
Hence, the currently implemented technique starts from the en-
try block searching for the highest successor offset. The successor
with the highest offset is considered as fallback only if it does not
end with a REVERT. Indeed, that would mean that the fallback
function has not been declared or has been declared with only the
REVERT statement. However, this approach does not work with
some versions of solc, due to different compilation patterns.

The last step of the CFG decoration is the addition of an artifi-
cial unique exit-point, for all the basic blocks with no successor.
This could be useful for many static analyses techniques. This
particular basic block in the example in Fig. 1 is the number 132.

3.7. Functions entry-point identification

In this final step we try to extract the hashes of the functions
in the dispatcher blocks. As mentioned before, in order to pass the
control to a desired function, the dispatcher matches the call data
with the hash of the functions signatures. Hence, the algorithm
navigates the dispatcher blocks looking for the opcodes dealing
with such hash comparisons, obtaining a set of likely function
hashes. The fallback function has no associated hash, and it is
called in case no hash matches the call data.

In the example in Fig. 1, the function with hash 909dd8f6 is
identified by the block starting at offset 12 (the fallback function
is not present).

4. Smart-contract vulnerabilities

To demonstrate the usefulness of a precise CFG representation
of Ethereum smart-contracts, we defined two static analyses for
detecting smart-contracts vulnerabilities on top of EtherSolve,
7

1 pragma solidity ^0.5.0;
2 contract ReentrantContract {
3 mapping (address => uint) private balances;
4 · · ·

5 function withdraw (uint amount) public {
6 require(amount <= balances[msg.sender]);
7 if (msg.sender.call.value(amount)())
8 balances[msg.sender] -= amount;
9 }

10 }

Listing 4. A Solidity smart-contract vulnerable to Reentrancy.

1 pragma solidity ^0.5.0;
2 contract MaliciousContract {
3 ReentrantContract reentrantContract;
4 · · ·

5 function attack () public {
6 reentrantContract.withdraw(100);
7 }
8 function () payable {
9 reentrantContract.withdraw(100);

10 }
11 }

Listing 5. A Solidity smart-contract exploiting the Reentrancy
vulnerability of Listing 4.

and compared their efficacy w.r.t. state-of-the-art detection tools.
In particular, EtherSolve has been pipelined with two subsequent
static analyses meant to detect cases of Reentrancy and Tx.origin
vulnerabilities. Note that, we selected two security-related vul-
nerabilities, but any generic CFG-based analysis would benefit
from our approach (e.g., data-flow analyses or under/over-flow
detection mechanisms).

In this section, we first describe Reentrancy and Tx.origin
vulnerabilities and then we explain the approach used to check
such bugs in the EVM bytecode, based on the CFG extracted by
EtherSolve. In the next section we will validate the efficacy of the
proposed detectors on a dataset of real-world smart-contracts.

4.1. Reentrancy

One of the most prominent and dangerous vulnerabilities in
Solidity (and, hence, in Ethereum smart-contracts) consists in the
mishandling of possibly reentrant code. It has been made famous
due to the catastrophic DAO incident (Prisco, 2020), that caused
the loss of a large amount of money and serious consequences to
the whole Ethereum network. This vulnerability consists in reen-
tering a paying function multiple times while the contract is in
an inconsistent state, thus causing possible leak of funds (Ghaleb
and Pattabiraman, 2020). In the general case, the ‘‘reentrance’’
exploits the fact that the vulnerable contract calls primitives, such
as money transfer, that the malicious contract can redefine, in
such a way to reenter the vulnerable contract. If a money transfer
occurs at each iteration of this loop, the process can be repeated
and used to drain all resources from the attacked contract. Indeed,
Reentrancy is consequence of an abuse of dynamicity in Solidity:
the semantics of money transfer is dynamic and can be redefined.

A simpler, yet quite common, programming error that may
lead to Reentrancy attacks consists in updating the contract state
after (instead of before) executing a fund send primitive (i.e., a
call). An example of a Reentrancy vulnerable contract following
this pattern is shown in Listing 4, where the call statement at
line 7 precedes the update of the variable balances at line 8.
In Listing 5 we have a (malicious) contract that exploits the

reentrancy vulnerability of the ReentrantContract. In particular,

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

a
w

c
w
v
t

i
o

1 function sendTo (address payable dest, uint amount)
public {

2 require(tx.origin == owner);
3 dest.transfer(amount);
4 }

Listing 6. A Solidity smart-contract method vulnerable to Tx.origin.

1 pragma solidity ^0.5.0;
2 contract MaliciousContract {
3 VulnerableContract vContract;
4 address attackerAddr;
5 · · ·
6 function () payable {
7 vContract.sendTo(attackerAddr , msg.sender.balance);
8 }
9 }

Listing 7. A Solidity smart-contract exploiting the Tx.origin
vulnerability of Listing 6.

the attack is launched calling the withdraw method on the vulner-
ble contract (line 6). When the call primitive is executed in the
ithdraw method, performing the money transfer, the fallback

function of the contract MaliciousContract is fired. The latter
ontains a recursive call to the vulnerable contract, again on the
ithdraw method (this is the reentrant code). Since the balances
ariable in the vulnerable contract is updated after the money
ransfer, the second withdraw can be legitimately called, and a
second money transfer is performed. The process is repeated until
all money is drained from the vulnerable contract.

Reentrancy detector. Reentrancy vulnerabilities be exploited when
a contract state update is performed after calling a, possibly un-
safe, paying function. The proposed approach consists in travers-
ing the CFG in order to detect potential flows of execution where
a SSTORE opcode (which updates the contract state) is executed
after a CALL opcode. This pattern is considered unsafe if the
contract address where funds are transferred to by the CALL
cannot be statically determined by the symbolic stack execution.
Indeed, in this case the funds destination could be controlled by
an attacker who can mount an attack to exploit a Reentrancy
vulnerability (e.g., with an particularly crafted fallback function).
Note that, Solidity statements to send funds are translated with
the CALL opcode, that has the callee address hard-coded into the
bytecode.

In particular, the detector traverses the contract CFG in order
to detect blocks that refer to a CALL opcode, namely blocks that
may call a paying function. For each such block, the detector
checks if the block is unsafe. To do so, a symbolic stack execution
on the block is fired, retrieving the pushed element on the stack
when the CALL is executed. If the element is an unknown address
the block is unsafe. Finally, for each unsafe blocks the detector
checks if a SSTORE opcode can be reached. In case a SSTORE is
reachable the detector signals a reentrancy vulnerability.

4.2. Tx.origin

Another quite dangerous vulnerability is related to the misuse
of the tx.origin command, that returns the address of the (first)
EOA in the callers path ended up in the current contract instance.
Indeed, during a contract execution, a chain of calls may hap-
pen: an EOA calls a contract method that, in turn calls another
contract, and so on. In this case, tx.origin returns the address of
the EOA performing the first transaction. Instead, the command
msg.sender returns the address of the closest parent caller, that
could be either a EOA or a contract.
8

Among the first instructions of a contract method, very often
we can find an authorization check: the contract verifies that
the caller is authorized to perform the subsequent operations.
Indeed, a contract can execute operations on behalf of the caller,
comprising funds transfer. The latter check should be performed
using the msg.sender instead of the tx.origin, since the actual
contract caller may be different from the initial EOA starting the
first transaction.

We have a Tx.origin vulnerability in a smart-contract when
into a method of the contract the command tx.origin is used
incorrectly (i.e., in place of the command msg.sender), as we can
see in the example described in Listing 6. In the example, we can
see that tx.origin is used in the method sendTo to perform the
caller authentication (line 2). To exploit the vulnerability of the
method sendTo, another contract may use the code described in
Listing 7. In this case, the fallback function (line 6) of the (ma-
licious) contract MaliciousContract is able to call the vulnerable
method sendTo (line 7) and to perform operations on behalf of
the user that have called the contract. In particular, when the
victim calls the malicious contract, the latter transfers all money
of the victim to a specific address (of the attacker that have
crafted the malicious contract). The execution of this contract
calls chain is performed without errors on the blockchain.

The vulnerability arises because when an EOA calls a contract,
all the recursive calls performed by that contract have the ad-
dress of the EOA as tx.origin, potentially transferring the EOA
credentials, as we have seen the example.

Tx.origin detector. Concerning Tx.origin vulnerabilities, they can
be exploited when we perform an authorization check on the con-
tract caller using tx.origin instead of msg.sender, namely when
we have a line like require(tx.origin==msg.sender) in the vulner-
able contract. The proposed approach consists in traversing the
CFG in order to detect the blocks resulting from the translation of
that kind of line of code in the corresponding EVM bytecode. In
particular, the block is identified by the opcode ORIGN, namely
the translation of tx.origin, and it ends with a JUMPI, namely
a conditional jump based on the equality concluding the block.
Considering that the authorization check is usually performed at
the beginning of the function, we can assume that the block is
completely demanded to the translation of the require line. To
dentify this kind of blocks, EtherSolve scans the contract CFG in
rder to find the following common patterns:� ⊵

ORIGIN PUSH20 AND EQ PUSH2 JUMPI
ORIGIN PUSH20 AND EQ ISZERO ISZERO PUSH2 JUMPI� �
Unfortunately, patterns may miss potential vulnerability in-

stances. Indeed, some particular compiler versions may translate
the require line to slightly different bytecode. To mitigate the
problem, EtherSolve performs, in addition to the pattern match-
ing check, a simple taint analysis on the block containing the
opcode ORIGIN. In particular, EtherSolve performs a symbolic
execution in order to propagate in the stack the value inserted
by the ORIGIN and to verify whether the value inserted influences
the JUMPI at the end of the block or not.

5. Experimental validation

In this section we present the results of our empirical vali-
dation of the CFGs computed by EtherSolve. The following five
research questions guide the definition of our experimental vali-
dation.

RQ1 What is the success rate of EtherSolve in analyzing real-
world smart-contracts compiled with different versions of

the Solidity compiler?

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

R

R

R

R

E
n
s
t
S
f
s
p
a
c
t
s
r
n
v
q
b
l
e
t
k
o

5

e
u
o
T
f

t

Fig. 5. Demographics of the Etherscan dataset smart-contracts: lines of code (left) and number of functions (right).
Q2 What is the accuracy of EtherSolve in identifying functions
entry-point?

Q3 How precise is the smart-contracts CFG reconstruction per-
formed by EtherSolve? How does it compare to state-of-
the-art tools?

Q4 How does the Reentrancy detector built on top of Ether-
Solve compare to state-of-the-art source code level anal-
ysis tools?

Q5 What is the efficacy of the Tx.origin detector built on top of
EtherSolve? How does it compare to state-of-the-art source
code level analysis tools?

The first research question investigates the extent to which
therSolve can process instances of existing smart-contracts with
o errors. We are interested in verifying this on a wide range of
mart-contracts, directly taken from the Ethereum blockchain. In
he second research question we assess the accuracy of Ether-
olve in finding functions entry-point, by comparing entry-points
ound with EtherSolve with the actual entry-points present in
mart-contracts source code. The third research question com-
ares our approach with the state-of-the-art EVM bytecode static
nalysis tools, w.r.t. success rate and CFG reconstruction pre-
ision. The fourth research question compares the results of
he Reentrancy vulnerability detection based on EtherSolve with
tate-of-the-art vulnerability detection tools. Finally, the fifth
esearch question compares the results of the Tx.origin vul-
erability detection based on EtherSolve with state-of-the-art
ulnerability detection tools. Note that, the last two research
uestions are quite challenging since EtherSolve works at the
ytecode level while the considered tools work at source code
evel. Indeed, having the possibility to inspect the source code
nhances considerably the analysis performance. We considered
ools working at source code level since, to the best of our
nowledge, there are no tools that detect vulnerabilities based
n bytecode only.2

.1. The smart-contracts datasets

Our empirical validation has been conducted using two datas-
ts of smart-contracts. The first one, dubbed Etherscan dataset, is
sed to answer RQ1, RQ2 and RQ3, and it is obtained from the list
f verified contracts published by Etherscan3 (Etherscan, 2020).
hey are publicly available open-source smart-contracts with in-
ormation about compilation, deployment and transactions. From

2 Some tools work at bytecode level but use the information contained in
he contract ABI. We do not consider such tools as bytecode-only.
3 Contracts have been download on June 10, 2020.
9

this list we have randomly extracted 1000 contracts, by using
the standard random function of Python 3 (that samples from
a uniform distribution) Using the APIs provided by Etherscan,
both the EVM bytecode and the relevant information have been
downloaded, obtaining for each smart-contract its name, address,
hash, deployment date, bytecode length and compiler version.
Note that, we do not use the Etherscan information during the
analysis, we use it only to validate the information retrieved
by EtherSolve. For instance, the compiler version is automati-
cally retrieved by EtherSolve from the contract metadata, so the
compiler version obtained from Etherscan is only used to check
whether the version extracted from the metadata is correct or
not. We enforced the uniqueness of smart-contracts bytecode, in
order to avoid duplicates in the dataset. Indeed, it is common
practice to reuse existing smart-contracts, especially libraries and
interfaces, and deploy them multiple times in the blockchain, at
different accounts. For this reason, we computed the hash of the
bytecode of each smart-contract, which has been used to delete
the duplicates.

Fig. 5 shows some demographics of the dataset, computed on
the source code available on Etherscan. It reports the histograms
of the length of contracts solidity source code (left-hand side) and
the number of public functions in their ABI (right-hand side). On
average, contracts contain 1374 lines of code, with the largest one
with 11,743 lines. They, on average, contain 19 named functions
(i.e., excluding the fallback function, when defined), with the
largest contract having 108 functions.

The average bytecode length of the smart contracts in the
dataset is 7351 bytes, with a maximum length of 24,570 bytes
(65 contracts exceeded the length of 20 KB). The average number
of transactions of the smart contracts in the dataset is 337, with
27 contracts having 0 transactions. Note that, the Etherscan APIs
allow to download at most 1000 transactions, hence for some
contracts the count has been truncated (13 smart contracts in
the dataset have more than 1000 transactions). The most dif-
fused EVM version in the dataset is Petersburg (340 contracts),
followed by Istanbul (210 contracts), Byzantium (114 contracts)
and Costantinople (4 contracts). For some contracts compiled with
old versions of solc (v0.4.26 and before) EtherScan does not
provide the precise target EVM version, it just signals that the
Default version is used. Unfortunately, such solc versions are
not documented and, hence, it is not possible to deduce which is
the corresponding default target EVM version. This happens for
331 contracts in the dataset. The average balance of the smart
contracts in the dataset is 9.6×1017 Wei. As shown in Fig. 6(left),
the compiler version is quite variable (with a majority of old
versions). This datum is crucial in order to assess that EtherSolve
does not assume a specific Solidity version (the compiler often
underwent dramatic changes).

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

c
a
t
W
v

5

i
c
r
s
c
o
t
b
o
w
u
v
a

E
b
b
t
a
m
d
e

Fig. 6. Compiler versions used in the dataset contracts (left) and Success Rate for the different tools (right).
The second set of smart-contracts, dubbed SolidiFI dataset,
onsists in 50 Ethereum smart-contracts collected by Ghaleb
nd Pattabiraman (2020). They used the dataset to test their
ool SolidiFI, that injects various vulnerabilities into Solidity code.
e will use these smart-contracts, together with their injected

ersions, in order to answer RQ4 and RQ5.

.2. RQ1: Success Rate

In this research question we evaluate the number of contacts
n the Etherscan dataset that EtherSolve is able to analyze without
rashing, i.e., the Success Rate. The Success Rate is defined as the
atio of the smart-contracts analyzed without critical errors to the
ize of the dataset. EtherSolve managed to analyze all the smart-
ontracts in the dataset except three, obtaining a Success Rate
f 0.997 (99.7%). The reason for these (very few) failures is that
hese three smart-contracts do not match the most common EVM
ytecode patterns generated by the Solidity compiler. Indeed, one
f them was written in Vyper rather than Solidity, another one
as empty (with length of 0 bytes) and the last one presented an
nusual begin section, that the tool failed to parse. The compiler
ersion of Solidity is correctly identified by EtherSolve for all the
nalyzed contracts.
We have also performed a naive performance assessment of

therSolve, w.r.t. analysis time. We measured the time spent
y EtherSolve to parse the EVM bytecode, generate the basic
locks, solve orphan jumps and decorate the CFG. The average
ime is about 3 s per smart-contract. For 930 smart-contracts, the
nalysis took less than 1 s each, while 7 smart-contracts required
ore than 1 min of computation (with a maximum of 10 min),
ue to their big dimension and the consequent large number of
dges.

Answer to RQ1

The Success Rate of EtherSolve when analyzing real-world smart-
contracts compiled with different versions of the Solidity compiler is
very high, since it was able to analyze without errors the 99.7% of
the samples in the considered smart-contracts dataset.

5.3. RQ2 : Functions entry-point identification

We evaluate the accuracy of EtherSolve in detecting functions
entry-point by means of well-known performance metrics such
as Precision, Recall and F-measure (Powers and Ailab, 2011). These
metrics are computed comparing the functions recognized in the
EVM bytecode by EtherSolve w.r.t. the functions defined in the
original Solidity source code, that are listed in the ABI of each
10
smart-contract. The smart-contracts are taken from the Etherscan
dataset. Given the set HEtherSolve of function hashes identified by
EtherSolve and the set HABI of hashes of the functions declared
in the smart-contract ABI, we define: the true positives TP =
{h | h ∈ HEtherSolve ∧ h ∈ HABI}, namely the functions declared in
the ABI that EtherSolve is able to correctly identify; the false
positives FP = {h | h ∈ HEtherSolve ∧ h /∈ HABI}, namely the func-
tions incorrectly detected by EtherSolve, since not present in the
ABI; and the false negatives FN = {h | h /∈ HEtherSolve ∧ h ∈ HABI},
namely the functions incorrectly not detected by EtherSolve,
since present in the ABI. Performance metrics are computed based
on the correlation between true positives and false positives/neg-
atives.

Precision : P =
|TP |

|TP | + |FP |
Recall : R =

|TP |
|TP | + |FN |

F-measure : F1 = 2 ·
P · R
P+ R

On a practical point of view, we have computed the met-
rics as follows. Once the functions entry-point and hashes has
been identified by EtherSolve, we have downloaded the smart-
contracts ABI (this can be done, because the smart-contracts
in the dataset are open-source). We then proceeded with the
comparison, computing Precision and Recall for each contract.
When EtherSolve retrieves no function, or the ABI contains no
function, we consider Precision and Recall to be 0. This analysis,
however, included only 996 contracts due to internal errors of the
tool during the function identification phase.

In the left of Fig. 7 we report the distribution of Precision w.r.t.
our dataset, where we aggregate the contracts with the same
value for Precision. The average Precision is 98.5%, and for 948
contracts the precision is 100%, meaning that the EtherSolve is
able to identify all the functions for the majority of the contracts.
In fact, 30 contracts have a value below 90% and only 6 contracts
have a score of 0%.

In the middle of Fig. 7 we report the distribution of Recall w.r.t.
our dataset, where we aggregate the contracts with the same
value for Recall. The Recall is slightly lower than Precision, with
an average score of 98.1% and with 811 contracts scoring 100%.
This is due to the fact that the fallback detector is not perfect
and sometimes fails. Nevertheless, only 32 contracts have a score
below 90% and only 6 have a score of 0%.

We should note that the smart-contracts considered in the
experiments have 19.2 functions on average, meaning that even
a single miss in the detection would have a significant impact
on Precision and Recall. Finally, in the right of Fig. 7 we com-
pute F-measure, as a summary indicator. Overall, the results of
EtherSolve are very good, with an average F-measure of 98.2%
and with 803 contracts scoring 100%. Indeed, 31 contracts have a
score below 90% and only 6 have a score of 0%.

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653
Fig. 7. Distribution of Precision, Recall and F-measure on the smart-contracts dataset (logarithmic scale).
Answer to RQ2

The accuracy of EtherSolve in identifying functions entry-point is
very high, since it is able to correctly find the majority of functions
declared in the smart-contracts dataset, with a very high number
of true positives and very few false negatives. Indeed, EtherSolve
obtained very good results for the adopted performance indicators,
such as Precision (P = 0.985 on average), Recall (R = 0.981 on
average) and F-measure (F1 = 0.982 on average).

5.4. RQ3: Precision of the CFG reconstruction

To asses the precision of the CFG generated by EtherSolve, we
compare our tool with the state-of-the-art analysis tools. We have
selected for the comparison the tools respecting the following
constraints: (i) perform a static analysis at the EVM bytecode level
(no information from source code or ABI file); (ii) emit the CFG as
output, or an alternative representation easily to compare with a
CFG. These criteria led us to consider the following tools.

EthIR EthIR extends the Oyente framework and performs a high-
level analysis of EVM bytecode. Oyente builds a CFG, to
detect different kinds of vulnerabilities (Albert et al., 2018;
costa-group, 2020). Due to the facts that Oyente is very
old (and discontinued) and that EthIR is built on top of
Oyente, we consider EthIR only for the CFGs comparison.
Indeed, since EthIR is an improved version of Oyente, we
can assume that the CFGs retrieved by EthIR are at least
precise as those retrieved by Oyente.

Octopus Octopus is an analysis framework for EVM bytecode. It
produces a CFG to support reverse engineering and under-
stand the internal behavior of smart-contracts (Ventuzelo,
2020).

Mythril Mythril is a security analysis tool for EVM bytecode
that detects security problems in smart-contracts. It does
not build a CFG, but rather it generates a trace tree given
by symbolic execution and Satisfiability Modulo Theories
(SMT) solving (Mueller, 2020; ConsenSys, 2020).

Vandal Vandal is a static analysis framework for smart-contracts
that decompiles the EVM bytecode to an intermediate rep-
resentation that includes the code control flow (Brent et al.,
2018; Usyd-blockchain, 2020).

Gigahorse Gigahorse is a decompiler that transforms EVM byte-
code into a high-level 3-address code representation. The
tool does not require the Solidity source code (Grech et al.,
2019, 2018, 2020).
11
We discarded other analysis tools for the following reasons:
Securify (Tsankov et al., 2018), Ethersplay (Crytic, 2020b), Manti-
core (Trail of Bits, 2020) and Slither (Crytic, 2020d) because they
analyze Solidity source code instead of EVM bytecode; evm_cfg_
builder (Crytic, 2020c) because we did not find an easy way to
make it emit the CFG; Jeb (Software, 2020) andMythX (Consensys,
2020) because they are paid tools; Porosity because it requires
the ABI as input and it is discontinued; Panoramix (Eveem.org,
2020) because it decompiles the code without building a CFG
and it is discontinued. Finally, we did not consider the official
Solidity compiler solc, that optionally outputs a CFG, since it
exploits information contained in the source code in order to
reconstruct the CFG, while EtherSolve is purely based on the
bytecode. When a smart-contract is compiled to bytecode, some
information useful to reconstruct the CFG is irremediably lost.
Hence, it would be unfair to compare the CFGs obtained by solc
with those computed by EtherSolve.

To confront EtherSolve with the state-of-the-art EVM bytecode
static analysis tools we first compared the approaches in terms
of Success Rate. We ran the tools on the smart-contracts taken
from the Etherscan dataset and counted the successful executions
(without crash) and the non-empty CFGs given in output. We also
set a reasonable timeout of 10 min per contract, for all tools.

As shown in Fig. 6(right) and Table 2, EtherSolve and Mythril
were able to analyze almost all the smart-contracts (997 out of
1000), immediately followed by Vandal with 978 smart-contracts
and by Gigahorse with 951 smart-contracts. Octopus and EthIR,
instead, reached an error state on many smart-contracts, com-
puting a CFG only for 504 and 212 smart-contracts, respectively.
Furthermore, we inspected the CFGs emitted by the tools, starting
with an automatic numerical comparison of nodes and edges.
Then, we proceeded with a manual inspection of anomalous
cases.

For each smart-contract in the dataset we adopt a common
representation for the outputs of the different tools. The chosen
representation is a JSON file that contains a list of nodes (which
represent the basic blocks), identified by their offset, and a list
of edges, identified by a pair of offsets. For each smart-contract
we count the number of nodes, the number of edges and the
differences in the numbers of nodes and edges among the CFGs
generated by different tools. To understand if there are portions of
the EVM bytecode which are actually data (static data, child con-
tracts or compiler metadata) but that the candidate tool wrongly
interprets as code, we calculate the number of nodes in the CFG
generated by a candidate tool that have a higher offset than the
highest offset node obtained by EtherSolve.

While success rate represents a quantitative result to com-
pare tools, the other columns will only be used for qualitative
comments, rather than direct comparison. In fact, the average
number of nodes and edges depend on which contracts could be

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

p
c
r
W
1

w
r
e
b
a
w
p
a

t
b
t
a
t

5

h

v
i
e

Table 2
Comparison with state-of-the-art tools.

Success Rate Average
nodes

Average
edges

Avg. blocks
in static data

EtherSolve 0.997 (99.7%) 301.6 361.8 0
Mythril 0.997 (99.7%) 4.0 3.1 8.5
Vandal 0.978 (97.8%) 302.6 493.6 6.7
Gigahorse 0.951 (95.1%) 245.4 288.7 1.2
Octopus 0.504 (50.4%) 241.4 220.7 11.8
EthIR 0.212 (21.2%) 139.4 150.3 51.6

successfully analyzed. For instance, a tool able to analyze only
large contracts would have an average value inflated.

It is worth observing that the different tools cannot be com-
ared w.r.t. analysis time, since the candidate tools have been exe-
uted in a Docker (Docker.com, 2020) container (for compatibility
easons), instantiating a new process for each smart-contract.
hereas, EtherSolve has been executed directly with a batch of
000 contracts.
In the manual analysis we focused on the smart-contracts for

hich the automatic analysis reported uncommon or anomalous
esults. These are relatively few contracts with sensitive differ-
nces in the number of nodes/edges between the CFG extracted
y EtherSolve and by the compared tool. To support the manual
nalysis we implemented a script that generates a diff graph,
here the two CFGs are combined and the nodes/edges that are
resent only in the first or in the second graph are highlighted in
different color.
Table 2 contains a summary of the automatic analysis, with

he smart-contracts successfully analyzed, the average number of
oth nodes and edges and the average number of basic blocks in
he static data segment. The results of both automatic and manual
nalysis are discussed in the following paragraphs, one for each
ool.

.4.1. EthIR
In most cases, EthIR finds more blocks than EtherSolve, that

ave a high offset.
Considerations: Nodes that are found by EthIR only have a

ery high offset, so they are probably static data or metadata
nterpreted as code (Table 2). Instead, when nodes match then
dges match as well.
Manual analysis: Because of its very low Success Rate (21%),

we deemed not so interesting to continue with a manual analysis
of this tool results.

5.4.2. Octopus
Similarly to EthIR, also Octopus finds more blocks with a high

offset than EtherSolve.
Considerations: Similarly to the previous tool, also for Octopus

we speculate that the additional nodes found are probably data
or metadata and not code (Table 2). In the majority of cases,
however, Octopus finds very few edges, sometimes even 0 edges.

Manual analysis: During the manual analysis, we discovered
that Octopus misses some patterns for the metadata separation,
so metadata are parsed as if it were code. Moreover, in many
cases, Octopus does not detect edges that should be present
according to source code.

As an example, in Fig. 8 we have an excerpt of the diff graph
for the smart-contract ZipmexTokenP (address: 0xaa602de533475
79f86b996d2add74bb6f79462b2). In this case, Octopus exhibits a
lack of edges, found by EtherSolve, that should be present ac-
cording to the Solidity source code. They are often return-edges,
i.e., edges that go from the last block of a function to the block
that follows the call. In the EVM, these types of edges originate

from orphan jumps, meaning that Octopus cannot always resolve

12
Fig. 8. An excerpt of the diff graph for the ZipmexTokenP smart-contract used
for manual inspection. In red we highlight nodes/edges found by EtherSolve but
not by Octopus; in blue we highlight nodes/edges found by Octopus but not by
EtherSolve; in black we highlight nodes/edges found by both tools. Basic blocks
are identified by the offset of their first instruction. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

them. In some other contracts, Octopus evaluates the bytecode
as creation code, thus it analyzes only the second part, starting
with 60806040 (the most common begin sequence of a contract
bytecode). However, this part of the code is a child contract
and not the main one, so the computed graphs are completely
different.

5.4.3. Mythril
This tool does not extract a CFG, but a trace tree from dy-

namic/symbolic analysis, in order to detect vulnerabilities. The
output of this execution trace is not directly comparable with the
CFG computed by EtherSolve. Nonetheless, an indirect compari-
son can be performed by checking if the EtherSolve CFG misses
nodes/edges that are found by the Mythril dynamic analysis. This
case would correspond to imprecision in the CFG elaborated by
EtherSolve.

Manual analysis: In the 4% of the contracts, Mythril finds a
bunch of edges which are not detected by EtherSolve. In some
cases, Mythril adds some artificial basic blocks containing "0:
STOP"which are placeholders that do not come from the analyzed
code, but they indicate the end of the execution trace. Sometimes,
basic blocks are not split when there is a JUMPDEST in the
middle, so there is a little discrepancy in the edges, but the CFG
is definitely compatible. In some other cases, Mythril finds new
basic blocks and edges that are not part of the main contract,
but that are opcodes of a child contract created by the main one.
The child contract code is computed at runtime, so the EtherSolve
static analysis simply considers those bytes as part of the static
data segment.

5.4.4. Vandal
The CFGs generated by Vandal have always one node more

than EtherSolve, which is the ending node with the INVALID
opcode. In the 36% of the analyzed contracts the edges match,
but in the remaining cases there are differences that we analyzed
manually. In some contracts the basic blocks do not match be-
cause Vandal does not support two opcodes that have been added
in the most recent versions of the EVM (Swende, 2020). Indeed,
the SELFBALANCE opcode is considered as invalid by Vandal,

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

o
o

c
a

w
a
n
w

btaining a basic block break with no outgoing edges. In many
ther cases, Vandal detects a huge amount of edges.
Considerations: Probably, when Vandal is not able to correctly

ompute the destination address of a jump, it conservatively
ssumes all basic blocks as possible successors.
Manual analysis: This hypothesis is supported by the diff graph,

hich shows too many outgoing edges for basic blocks that occur
t the end of functions, probably because the return address could
ot be computed accurately. Indeed, as we can see in Fig. 9, where
e have an excerpt of the diff graph for the smart-contract BCN20

(address: 0x1964f2f3ce45ac518b18ef4aa4265f8aadcef4ae), Vandal
finds too many outgoing edges from basic blocks which are the
end of functions (e.g., 770, 468 and 1402).

However, the number of call sites (that should correspond
to the number of return edges) is much smaller, according to
the Solidity source code of these contracts. All in all, as shown
in Table 2, the average number of edges found by Vandal is
significantly higher than EtherSolve, whereas the basic blocks are
reconstructed in a similar way.

5.4.5. Gigahorse
Gigahorse tries to identify the private functions inside the

code, and the computed CFG reflects this objective. Because of
this strategy, the conversion into the intermediate representation
is tricky. Often, Gigahorse CFGs contain artificial blocks with the
special "CALLPRIVATE" statement, introduced by Gigahorse to
mark private function calls. Nevertheless, the data collected by
the automatic comparison for Gigahorse and EtherSolve is very
similar, so we proceeded with the manual inspection.

Manual analysis: For some contracts, EtherSolve computes a
set of basic blocks that are unreachable from the contract entry-
point, that might represent dead code. However, these unreach-
able blocks are not present in the Gigahorse CFGs. A dual case
happens on some other contracts, where EtherSolve identifies
a set of blocks that are not reachable from the contract entry-
point whereas, according to the Gigahorse CFG, these blocks are
reachable.

Considerations: Our speculation is that such basic blocks
(which have a high offset) belong to a child contract or to an
internal library, not a proper part of the main contract (e.g., called
via STATICCALL), and thus they are skipped by EtherSolve (that
only analyzes intra-contract calls).

Answer to RQ3

The precision of the CFG reconstruction performed by EtherSolve
is very high, since the CFGs reconstructed by EtherSolve have a
comparable, and sometimes higher, precision w.r.t. the CFGs recon-
structed by the state-of-the-art EVM bytecode static analysis tools.
Furthermore, EtherSolve is the approach with the highest Success Rate
(99.7%), on par with Mythrill, among the state-of-the-art analysis
tools.

5.5. RQ4: Reentrancy vulnerabilities detection

In order to validate the efficacy of the vulnerability detector
built on top of EtherSolve, we compared it with specialized tools
aiming at discovery Reentrancy vulnerabilities. The comparison
is performed on the SolidiFI dataset, that consists in 50 Ethereum
smart-contracts whose source code has been injected, using the
tool SolidiFI (Ghaleb and Pattabiraman, 2020), with Reentrancy
vulnerabilities. In total, 1343 bugs have been injected, coming
from 42 code snippets. This benchmark has been used by Ghaleb
13
Fig. 9. An excerpt of the diff graph for the BCN20 smart-contract used for
manual inspection. In red we highlight nodes/edges found by EtherSolve but
not by Vandal; in blue we highlight nodes/edges found by Vandal but not by
EtherSolve; in black we highlight nodes/edges found by both tools. Basic blocks
are identified by the offset of their first instruction. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

and Pattabiraman (2020) to compare the most prominent vul-
nerability detection tools. While their comparison was performed
at source code level, EtherSolve targets the EVM bytecode, so
these injected contracts have been compiled before applying our
analysis. Even if the original dataset consisted of 50 files, each
source file could contain more than one contract and injected
vulnerabilities could multiply in the compiled contracts, because
of the use of inheritance that caused vulnerable code to be cloned
from abstract contracts to concrete ones. Additionally, abstract
contracts do not produce bytecode as they are not executable.
Hence, to simplify the analysis, we opted to analyze only one
compiled contract per source file (the largest compiled contract),
assuming that the remaining contracts were only supporting li-
braries or abstract contracts, whose CFGs were disconnected from
the main one.

Another problematic aspect, acknowledged by Ghaleb and Pat-
tabiraman, is that the dataset already contained vulnerabilities
before the SolidiFI injection, but they were not documented.
To gather comparable results, we considered only vulnerabilities
added by the SolidiFI injection, by running EtherSolve before and
after injection, and by keeping only those new vulnerabilities that
are detected by the second analysis and not by the first one. We
have taken an analogous approach for the other tools: we ran
each tool on the original dataset (without injections) and on the
injected contracts, then we have considered as Reentrancy bugs
those present in the injected contracts but not in the original
contracts.

Concerning tools selection for the comparison, we have con-
sidered: Mythril (Mueller, 2020), Securify (Tsankov et al., 2018),
Slither (Crytic, 2020d), Vandal (Brent et al., 2018) and SmartCheck
(Tikhomirov et al., 2018). They are the state-of-the-art static
analysis tools that are able to detect Reentrancy vulnerabilities.
We had to exclude from the comparison Oyente (Luu et al., 2016)
and Manticore (Trail of Bits, 2020) since we did not manage to
make the tools working (they are very old and discontinued).
Recall that, the considered approaches inspect the Solidity source
code of smart-contracts, not the EVM bytecode, as happens for
EtherSolve.

Fig. 10 shows the results of the comparison, subdivided in
six plots, one for each tool under comparison. In each plot we
have the number of bugs injected per contract (numbered from
1 to 50) and the number of bugs found by a analysis tool per
contract. In other words, for each tool we plot the distribution
of bugs found in the smart-contracts, compared with the baseline

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

d
d
F
p
o
d
l

y
S
f
f
p
S
S
a
e

w
o
s
S
R
w
s
s

Fig. 10. Reentrancy analysis results for the different tools (smart-contracts on the x-coordinate).
istribution of injected bugs. The efficacy of a tool increases as the
istance between its plot and the baseline distribution decreases.
urthermore, the points above the baseline distribution indicate
otential false positives (since the tool find more bugs than the
nes that have been injected), while the points below the baseline
istribution indicate potential false negatives (since the tool find
ess bugs than the ones that have been injected).

The results highlight that EtherSolve is the second-best anal-
sis tool, immediately after Slither. Indeed, the plot for Ether-
olve follows very closely the baseline distribution, except for
ew contracts where EtherSolve misses some bugs (i.e., we have
alse negatives). Slither, instead, performs very well since its
lot coincide exactly with the baseline distribution, meaning that
lither do not have false positives nor false negatives. Conversely,
martCheck have the worst plot, indeed it is not able to find
ny of the injected bugs (this has been highlighted also by the
xperimental evaluation of Ghaleb and Pattabiraman (2020)).
Even if EtherSolve exhibits slightly lower results w.r.t. Slither,

e have to recall that it is the only tool using EVM bytecode
nly, thus having less information. Inspecting the smart-contracts
ource code is of great help in improving bug detection results.
o, EtherSolve results are even more valuable: it is able to detect
eentrancy vulnerabilities even in closed-source smart-contracts,
ith very high efficacy. Its results are comparable, and very often
uperior, to analysis tools that can also exploit smart-contracts
ource code.

Answer to RQ4

The efficacy of the Reentrancy vulnerability detector built on top of
EtherSolve is very high when compared with state-of-the-art tools,
because it is the second-best, in terms of detected Reentrancy bugs,
among the state-of-the-art analysis tool, even if it is the only one that
does not exploit smart-contracts source code.
14
5.6. RQ5: Tx.origin vulnerabilities detection

Similarly to the previous section, in order to validate the
efficacy of the vulnerability detector built on top of EtherSolve we
compared it with specialized tools aiming at discovery Tx.origin
vulnerabilities, again using the SolidiFI dataset. For this research
question, the 50 Ethereum smart-contracts has been injected
with Tx.origin vulnerabilities. In total, 1336 bugs have been in-
jected, coming from 40 code snippets. Also in this case, we had
to compile the injected contracts before applying the analysis,
and we used one compiled contract per source file (the largest
one). Furthermore, we considered only vulnerabilities added by
the SolidiFI injection, by running EtherSolve before and after
injection, and by keeping only those new vulnerabilities that are
detected by the second analysis and not by the first one. The same
applies for the other tools.

Concerning tools selection for the comparison, we have con-
sidered: Mythril (Mueller, 2020), Slither (Crytic, 2020d), Smart-
Check (Tikhomirov et al., 2018) and Vandal (Brent et al., 2018).
They are the state-of-the-art static analysis tools that are able to
detect Tx.origin vulnerabilities. Note that, tools such as Oyente
(Luu et al., 2016), Manticore (Trail of Bits, 2020) and Securify
(Tsankov et al., 2018) are not designed to find Tx.origin vul-
nerabilities. Also in this case, the considered approaches inspect
the Solidity source code of the smart-contracts, not the EVM
bytecode, as happens for EtherSolve.

Fig. 11 shows the results of the comparison, subdivided in five
plots, one for each tool under comparison. Analogously to the pre-
vious section, for each tool we plot the distribution of bugs found
in the smart-contracts, compared with the baseline distribution
of injected bugs. The efficacy of a tool increases as the distance
between its plot and the baseline distribution decreases. Again,
points above the baseline distribution are considered false posi-
tives, while points below the baseline distribution are considered
false negatives.

Also in this case, the results highlight that EtherSolve is the

second-best analysis tool, again immediately after Slither. Indeed,

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

t
b
b
w
m
t
a
a
s

w
E
T
w

t
o
c
t
o
a

Fig. 11. Tx.origin analysis results for the different tools (smart-contracts on the x-coordinate).
he plot for EtherSolve follows very closely the baseline distri-
ution, except for few contracts where EtherSolve misses some
ugs (i.e., we have false negatives). Slither, instead, performs very
ell, since its plot coincide exactly with the baseline distribution,
eaning that Slither do not have false positives nor false nega-

ives. The worst results are obtained by SmartCheck, that is not
ble to detect the majority of the injected bugs. Vandal results
re quite good in general, except for some contracts for which it
ignals either lots of false positives or lots of false negatives.
Even if EtherSolve exhibits slightly lower results w.r.t. Slither,

e recall that it is the only tool using EVM bytecode only. So,
therSolve results are even more valuable: it is able to detect
x.origin vulnerabilities even in closed-source smart-contracts,
ith very high efficacy.

Answer to RQ5

The efficacy of the Tx.origin vulnerability detector built on top of
EtherSolve is very high, since the number of false positives and
false negatives is very low. Indeed, it is the second-best, in terms
of detected Tx.origin bugs, among the state-of-the-art analysis tool,
even if it is the only one that does not exploit smart-contracts source
code.

5.7. Discussion

The results obtained in the experimental validation suggest
hat EtherSolve reconstructs very precise CFGs: it is able to work
n a wide range of Solidity versions and in almost all cases it
omputes an exhaustive graph. The key point of our approach is
he simplicity of the symbolic stack execution, which is limited to
nly a tiny set of opcodes, but capable of resolving the destination
ddress of orphan jumps. However, there are particular cases of

very complex smart-contracts with peculiar structures for which
EtherSolve is not able to identify certain edges. For instance, the
new try-catch feature introduced in the Solidity 0.6.x versions, is
15
translated in a particular bytecode structure. EtherSolve is able
to deal with such bytecode, but its particular structure deceives
the tool, inducing it to take wrong execution paths, causing little
internal exceptions.

Among the compared tools, only Gigahorse showed a CFG
precision similar to EtherSolve. However, they seems to be com-
plementary, because each one could precisely represent cases
that the other one could not.

The results of the vulnerability detectors suggest that Ether-
Solve is a powerful tool, and that can be easily extended to
support accurate subsequent static analyses based on a precise
CFG. Indeed, the experimental evaluation highlights that Ether-
Solve analysis results, in terms of false positives and false neg-
atives, are second only to Slither results, for both Reentrancy
and Tx.origin vulnerabilities. This is a very valuable, since Slither
works at source code level while EtherSolve works at bytecode
level, hence with way less information about the smart-contracts
under analysis.

EtherSolve is affected by some limitations. One of them is
in the way we analyze loops. In fact, to prevent the analysis
to iterate forever, we pose a limit to the number of iterations
by enforcing a maximum size to the symbolic stack that we
propagate. This might in principle cause the final result to be
imprecise. However, in our experience, in those cases when the
size limit is reached, a larger limit would not help in delivering a
better result, so a larger limit would not improve the precision of
the tool. A possible improvement that may mitigate the issue con-
sists in developing an analysis to detect when a loop recursively
increases the symbolic stack size, and cut-off such paths.

6. Related work

Comparison with the conference paper. The present paper is a
deeply revised and extended version of the companion confer-
ence paper (Contro et al., 2021). In particular, we better explained

the problem (Section I of Contro et al. (2021)) and we better

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

d
(
n
i
t
e
o
o
i
c
E
a
s
a
e
t

R
o
a
o
t
C
E
a
t
o
d
i
o

d
r
t
i
V
e
t
r
m

o

escribed the background material (Section II of Contro et al.
2021)). We also added the description of the Tx.origin vul-
erability (with examples) in the Background. Furthermore, we
mproved the overall presentation of the proposed static analysis
hat reconstructs the smart-contracts CFG (Section III of Contro
t al. (2021)). We revised the experimental validation (Section IV
f Contro et al. (2021)), performing a more detailed assessment
f the Reentrancy detector built on top of EtherSolve, comparing
ts Reentrancy detection efficacy with the state-of-the-art source
ode level analysis tools. As novel contributions, we extended
therSolve with a mechanism to identify functions entry-point
nd a specific analysis detecting Tx.origin vulnerabilities. Con-
equently, we extended the experimental validation, adding an
ssessment of the accuracy of EtherSolve in identifying functions
ntry-point and a comparison of Tx.origin detection efficacy with
he state-of-the-art source code level analysis tools.

elated approaches. In the last years, many tools have been devel-
ped in order to analyze Ethereum smart-contracts, with different
pproaches and objectives. A quite recent and detailed survey
f them has been written by Praitheeshan et al. (2019). Some
ools analyze directly the EVM bytecode, often trying to build a
FG. Among these tools we can find Oyente (Luu et al., 2016),
thIR (Albert et al., 2018) and Octopus (Ventuzelo, 2020). Their
pproaches are very similar, as they try to execute symbolically
he code to create logic predicates which, once resolved with the-
rem prover such as the Z3 (Z3Prover, 2020), can determine the
estinations of orphan jumps. However, these tools aim at detect-
ng vulnerabilities, and the extracted CFG is only an intermediate
utput.
A slightly different approach is the one proposed by Van-

al (Brent et al., 2018), which translates the EVM bytecode into
egistry based operations, identifies the basic blocks and then
ries to resolve jumps address through a fixed point analysis. Even
n this case the CFG is only an intermediate output, as the target of
andal is a vulnerability analysis based on the Souffle suite (Jordan
t al., 2016). Our tool instead focuses on the CFG building, keeping
he symbolic stack execution as simple as possible, in order to
esolve the highest number of orphan jumps and resulting in a
ore precise CFG reconstruction.
A related tool which extracts CFGs from bytecode is Jeb (Soft-

ware, 2020), a professional decompiler with the ability to analyze
Ethereum smart-contracts. However, it is closed-source with a
subscription fee. Another decompiler is Porosity (Comaeio, 2020),
one of the first tool developed to analyze EVM bytecode, but
it needs the contract ABI to work properly. Furthermore, it is
discontinued since January 2018. A relevant decompiler is Giga-
horse (Grech et al., 2019, 2018, 2020), a recent tool which builds a
CFG and tries to find internal functions with heuristics, obtaining
an approximation of the original Solidity source code. Another
decompiler is Panoramix (Eveem.org, 2020) which, however, does
not generate a CFG.

The majority of tools that perform vulnerability analysis of
Ethereum smart-contracts do not expose a CFG, or even they
do not extract it. Other tools, instead, do the analysis on the
Solidity source code, or use the EVM bytecode together with addi-
tional information that are not always available for closed-source
contracts.

A completely different approach is the one implemented by
Mytril (ConsenSys, 2020), which uses symbolic execution, SMT
solving and taint analysis to detect a variety of security vul-
nerabilities. It does not build a CFG, but a trace tree, i.e., a
representation of all the execution paths encountered during
the analysis. Its objective is to detect as many vulnerabilities as
possible. Crytic (Crytic.io, 2020) is an application that collects
many tools for smart-contract analysis, such as Manticore (Trail

f Bits, 2020), Ethersplay (Crytic, 2020b), Echidna (Crytic, 2020a),

16
Slither (Crytic, 2020d) and more, but they do not use a CFG or
they do not analyze the bytecode only. In fact their objective is
the vulnerabilities detection inside the Solidity source code.

Finally, there are other tools such as Securify (Tsankov et al.,
2018), which analyzes Solidity source code, Maian (Nikolić et al.,
2018), which performs dynamic analysis on a private blockchain,
and Gasper (Chen et al., 2017), which analyzes the gas cost of
contracts. Furthermore, in Albert et al. (2021) the authors define a
symbolic execution-based gas analysis built on top of the notion
of stack-sensitive CFG (S-CGF). The latter provides a sound ap-
proximation of a CFG, based on a sound static analysis (based on
abstract interpretation in Albert et al. (2021)), as described in the
cited technical report (Albert et al., 2020). Hence, even if with S-
CFGs the authors aim at solving the same problem as our tool, the
methodologies are different: with S-CFGs they compute a sound
approximation of the CFGs, based on a sound static analysis;
while EtherSolve computes precise (but not necessarily sound)
CFGs, by means of symbolic execution. Hence, the paper (Albert
et al., 2021) does not use symbolic execution to compute CFGs (as
EtherSolve) but only to perform the gas analysis (on top of a pre-
viously computed S-CFG). In Grossman et al. (2017) the authors
define correctness criteria (ECF) for callbacks, in a general setting,
and by means of such criteria they encode Reentrancy-like bugs
for Solidity. Then, the authors provide a monitoring technique
to dynamically spot ECF, based on an stack-based intermediate
language. Such contribution is not related to EtherSolve, that aims
to reconstruct precise CFGs from EVM bytecode and that uses
Reentrancy as a simple application scenario.

7. Conclusion

Automatically analyze Ethereum smart-contracts is crucial in
order to detect potential defects and vulnerabilities. Neverthe-
less, most of the existing analysis tools for the EVM bytecode
come with shortcomings and limitations. Indeed, the precise ex-
traction of the CFG from the EVM bytecode is very challenging
(e.g., resolving the target of jumps), due to engineering decisions
concerning the underlying infrastructure. For this reason, most
of the state-of-the-art analysis tools compute imprecise CFG or
use alternative code representations, resulting in poor analysis
performance.

We propose a novel approach to extract a precise CFG from the
EVM bytecode. We believe that our solution could be the starting
point for new static analysis tools that aim at detecting defects
and vulnerabilities in Ethereum smart-contracts, built on top of
an accurate CFG. To validate our approach we have implemented
a tool, EtherSolve, and compared it on the state-of-the-art anal-
ysis tools using a CFG-based code representation. Furthermore,
we have added to EtherSolve the capability to detect two of the
most prominent Ethereum smart-contracts vulnerabilities (Reen-
trancy and Tx.origin) and compared its analysis precision with the
state-of-the-art Ethereum analyzers, obtaining excellent results.

CRediT authorship contribution statement

Michele Pasqua: Writing – original draft, Formal analysis,
Investigation, Validation. Andrea Benini: Software, Investiga-
tion. Filippo Contro: Software, Investigation. Marco Crosara:
Software, Investigation. Mila Dalla Preda: Conceptualization, Re-
sources. Mariano Ceccato: Writing – review & editing, Supervi-
sion, Investigation, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

D

R

A

A

A

A

A

B
B

B

C

C

C

C

C

C

C

c

C

C

C

C

C

D

D

D

E

E

E

ata availability

Data will be made available on request.

eferences

lbert, E., Correas, J., Gordillo, P., Román-Díez, G., Rubio, A., 2020. Analyzing
smart contracts: From EVM to a sound control-flow graph. CoRR abs/2004.
14437. URL: https://arxiv.org/abs/2004.14437, arXiv:2004.14437.

lbert, E., Correas, J., Gordillo, P., Román-Díez, G., Rubio, A., 2021. Don’t run
on fumes – Parametric gas bounds for smart contracts. J. Syst. Softw.
176, 110923. http://dx.doi.org/10.1016/j.jss.2021.110923, URL: https://www.
sciencedirect.com/science/article/pii/S0164121221000200.

lbert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I., 2018. EthIR: A framework
for high-level analysis of ethereum bytecode. In: Lahiri, S.K., Wang, C. (Eds.),
Automated Technology for Verification and Analysis. Springer International
Publishing, Cham, pp. 513–520.

ntonopoulos, A.M., 2017. Mastering Bitcoin: Programming the Open Blockchain,
second ed. O’Reilly Media, Inc..

ntonopoulos, A., Wood, G., Wood, G., 2018. Mastering Ethereum: Building
Smart Contracts and DApps. O’Reilly Media, Incorporated, URL: https://books.
google.it/books?id=SedSMQAACAAJ.

aliga, A., 2017. Understanding blockchain consensus models.
rent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R.,

Scholz, B., 2018. Vandal: A scalable security analysis framework for smart
contracts. arXiv:1809.03981.

uterin, V., 2015. A next-generation smart contract and decentralized application
platform.

hambers, C., 2020. Forbes - Ethereum starts its DeFi moon shot.
URL: https://www.forbes.com/sites/investor/2020/07/23/ethereum-starts-its-
defi-moon-shot/#7d34b7ff6ae3. [Accessed: 2020-07-28].

hen, T., Li, X., Luo, X., Zhang, X., 2017. Under-optimized smart contracts
devour your money. In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering. SANER, pp. 442–446. http://dx.doi.
org/10.1109/SANER.2017.7884650.

oindesk, 2020. Soaring DeFi usage drives ethereum contract calls to
new record. URL: https://www.coindesk.com/soaring-defi-usage-drives-
ethereum-contract-calls-to-new-record. [Accessed: 2020-07-28].

omaeio, 2020. Github - Porosity. URL: https://github.com/comaeio/porosity.
[Accessed: 2020-07-20].

onsenSys, 2020. Github - Mythril. URL: https://github.com/ConsenSys/mythril.
[accessed: 2020-07-07].

onsensys, 2020. MythX: Smart contract security service for ethereum. URL:
https://mythx.io/. [Accessed: 2020-07-28].

ontro, F., Crosara, M., Ceccato, M., Dalla Preda, M., 2021. EtherSolve: Com-
puting an accurate control-flow graph from ethereum bytecode. In: 29th
IEEE/ACM International Conference on Program Comprehension, ICPC 2021,
Madrid, Spain, May 20-21, 2021. IEEE, pp. 127–137. http://dx.doi.org/10.
1109/ICPC52881.2021.00021.

osta-group, 2020. Github - EthIR. URL: https://github.com/costa-group/EthIR#
ethir. [accessed: 2020-07-07].

rytic, 2020a. Echidna: A fast smart contract fuzzer. URL: https://github.com/
crytic/echidna. [Accessed: 2020-07-28].

rytic, 2020b. Ethersplay. URL: https://github.com/crytic/ethersplay. [Accessed:
2020-07-28].

rytic, 2020c. EVM CFG builder. URL: https://github.com/crytic/evm_cfg_builder.
[Accessed: 2020-07-28].

rytic, 2020d. Slither, the Solidity source analyzer. URL: https://github.com/
crytic/slither. [Accessed: 2020-07-28].

rytic.io, 2020. Crytic: continuous assurance for smart contracts. URL: https:
//crytic.io/. [Accessed: 2020-07-20].

annen, C., 2017. Introducing Ethereum and Solidity: Foundations of Cryp-
tocurrency and Blockchain Programming for Beginners, first ed. A Press,
USA.

ika, A., Nowostawski, M., 2018. Security vulnerabilities in ethereum smart
contracts. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). pp. 955–962. http://dx.doi.org/10.1109/Cybermatics_2018.2018.
00182.

ocker.com, 2020. Docker. URL: https://www.docker.com/. [Accessed: 2020-07-
28].

thereum, 2020a. Solidity documentation. URL: https://solidity.readthedocs.io/.
[accessed: 2020-07-02].

thereum, 2020b. Solidity documentation - Creating contracts. URL: https://
docs.soliditylang.org/en/v0.8.0/contracts.html#creating-contracts. [accessed:
2020-12-29].

therscan, 2020. List of verified contract addresses with an OpenSource license.
URL: https://etherscan.io/exportData?type=open-source-contract-codes. [Ac-
cessed: 2020-07-27].
17
Etherscan.io, 2020. Etherscan. URL: https://etherscan.io/. [accessed: 2020-07-02].
Ethervm.io, 2020. Ethervm. URL: https://ethervm.io/. [accessed: 2020-07-02].
Eveem.org, 2020. Panoramix. URL: https://github.com/eveem-org/panoramix.

[accessed: 2020-12-08].
Ghaleb, A., Pattabiraman, K., 2020. How effective are smart contract analysis

tools? Evaluating smart contract static analysis tools using bug injection. In:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. In: ISSTA 2020, Association for Computing Machinery,
New York, NY, USA, pp. 415–427, URL: https://doi.org/10.1145/3395363.
3397385.

Grech, N., Brent, L., Scholz, B., Smaragdakis, Y., 2019. Gigahorse: Thorough,
declarative decompilation of smart contracts. In: Proceedings of the 41st
International Conference on Software Engineering. ICSE ’19, IEEE Press, pp.
1176–1186, URL: https://doi.org/10.1109/ICSE.2019.00120.

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y., 2018.
MadMax: Surviving out-of-gas conditions in ethereum smart contracts. Proc.
ACM Program. Lang. 2 (OOPSLA), URL: https://doi.org/10.1145/3276486.

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y., 2020.
MadMax: Analyzing the out-of-gas world of smart contracts. Commun. ACM
63 (10), 87–95, URL: https://doi.org/10.1145/3416262.

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-
giv, M., Zohar, Y., 2017. Online detection of effectively callback free objects
with applications to smart contracts. Proc. ACM Program. Lang. 2 (POPL),
http://dx.doi.org/10.1145/3158136.

Jordan, H., Scholz, B., Subotić, P., 2016. Soufflé: On synthesis of program
analyzers. In: Chaudhuri, S., Farzan, A. (Eds.), Computer Aided Verification.
Springer International Publishing, Cham, pp. 422–430.

Li, X., Chen, T., Luo, X., Zhang, T., Yu, L., Xu, Z., 2020. STAN: Towards describing
bytecodes of smart contract. In: 20th IEEE International Conference on
Software Quality, Reliability and Security, QRS 2020, Macau, China, December
11-14, 2020. IEEE, pp. 273–284, URL: https://doi.org/10.1109/QRS51102.2020.
00045.

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A., 2016. Making smart
contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’16, Association for Computing
Machinery, New York, NY, USA, pp. 254–269, URL: https://doi.org/10.1145/
2976749.2978309.

Mueller, B., 2020. Smashing ethereum smart contracts for fun and
real profit. URL: https://github.com/muellerberndt/smashing-smart-
contracts/blob/master/smashing-smart-contracts-1of1.pdf. [accessed:
2020-12-08].

Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A., 2018. Finding the greedy,
prodigal, and suicidal contracts at scale. In: Proc. of the 34th Annual
Computer Security Applications Conference. ACSAC ’18, ACM, New York, NY,
USA, pp. 653–663, URL: https://doi.org/10.1145/3274694.3274743.

Powers, D., Ailab, 2011. Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2,
2229–3981. http://dx.doi.org/10.9735/2229-3981.

Praitheeshan, P., Pan, L., Yu, J., Liu, J., Doss, R., 2019. Security analysis methods on
ethereum smart contract vulnerabilities: A survey. arXiv:arXiv:1908.08605.

Prisco, G., 2020. The DAO raises more than $117 million in world’s largest
crowdfunding to date. URL: https://bitcoinmagazine.com/articles/the-
dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-
1463422191. [Accessed: 2020-07-28].

Pulse, D., 2021. Defi total value locked. URL: https://defipulse.com/. [Accessed:
2021-10-04].

Software, E., 2020. Jeb - Ethereum contract decompiler. URL: https://www.
pnfsoftware.com/jeb/evm. [Accessed: 2020-07-27].

Swende, M.H., 2020. EIP 1884: Repricing for trie-size-dependent opcodes. URL:
https://eips.ethereum.org/EIPS/eip-1884. [Accessed: 2020-07-28].

Tabora, V., 2020. The Ethereum Virtual Machine (EVM) runtime envi-
ronment. URL: https://medium.com/0xcode/the-ethereum-virtual-machine-
evm-runtime-environment-d7969544d3dd. [Accessed: 2020-07-15].

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y., 2018. SmartCheck: Static analysis of Ethereum smart con-
tracts. In: Proceedings of the 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain. WETSEB ’18, Association for
Computing Machinery, New York, NY, USA, pp. 9–16, URL: https://doi.org/
10.1145/3194113.3194115.

Trail of Bits, 2020. Manticore. URL: https://github.com/trailofbits/manticore.
[Accessed: 2020-07-28].

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M., 2018.
Securify: Practical security analysis of smart contracts. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’18, Association for Computing Machinery, New York, NY, USA, pp.
67–82.

Usyd-blockchain, 2020. Github - Vandal. URL: https://github.com/usyd-

blockchain/vandal. [accessed: 2020-07-07].

http://arxiv.org/abs/2004.14437
http://arxiv.org/abs/2004.14437
http://arxiv.org/abs/2004.14437
https://arxiv.org/abs/2004.14437
http://arxiv.org/abs/2004.14437
http://dx.doi.org/10.1016/j.jss.2021.110923
https://www.sciencedirect.com/science/article/pii/S0164121221000200
https://www.sciencedirect.com/science/article/pii/S0164121221000200
https://www.sciencedirect.com/science/article/pii/S0164121221000200
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb4
https://books.google.it/books?id=SedSMQAACAAJ
https://books.google.it/books?id=SedSMQAACAAJ
https://books.google.it/books?id=SedSMQAACAAJ
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb6
http://arxiv.org/abs/1809.03981
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb8
https://www.forbes.com/sites/investor/2020/07/23/ethereum-starts-its-defi-moon-shot/#7d34b7ff6ae3
https://www.forbes.com/sites/investor/2020/07/23/ethereum-starts-its-defi-moon-shot/#7d34b7ff6ae3
https://www.forbes.com/sites/investor/2020/07/23/ethereum-starts-its-defi-moon-shot/#7d34b7ff6ae3
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/SANER.2017.7884650
https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://github.com/comaeio/porosity
https://github.com/ConsenSys/mythril
https://mythx.io/
http://dx.doi.org/10.1109/ICPC52881.2021.00021
http://dx.doi.org/10.1109/ICPC52881.2021.00021
http://dx.doi.org/10.1109/ICPC52881.2021.00021
https://github.com/costa-group/EthIR#ethir
https://github.com/costa-group/EthIR#ethir
https://github.com/costa-group/EthIR#ethir
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://github.com/crytic/ethersplay
https://github.com/crytic/evm_cfg_builder
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/crytic/slither
https://crytic.io/
https://crytic.io/
https://crytic.io/
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb22
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00182
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00182
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00182
https://www.docker.com/
https://solidity.readthedocs.io/
https://docs.soliditylang.org/en/v0.8.0/contracts.html#creating-contracts
https://docs.soliditylang.org/en/v0.8.0/contracts.html#creating-contracts
https://docs.soliditylang.org/en/v0.8.0/contracts.html#creating-contracts
https://etherscan.io/exportData?type=open-source-contract-codes
https://etherscan.io/
https://ethervm.io/
https://github.com/eveem-org/panoramix
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3416262
http://dx.doi.org/10.1145/3158136
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb36
https://doi.org/10.1109/QRS51102.2020.00045
https://doi.org/10.1109/QRS51102.2020.00045
https://doi.org/10.1109/QRS51102.2020.00045
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://doi.org/10.1145/3274694.3274743
http://dx.doi.org/10.9735/2229-3981
http://arxiv.org/abs/arXiv:1908.08605
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
https://defipulse.com/
https://www.pnfsoftware.com/jeb/evm
https://www.pnfsoftware.com/jeb/evm
https://www.pnfsoftware.com/jeb/evm
https://eips.ethereum.org/EIPS/eip-1884
https://medium.com/0xcode/the-ethereum-virtual-machine-evm-runtime-environment-d7969544d3dd
https://medium.com/0xcode/the-ethereum-virtual-machine-evm-runtime-environment-d7969544d3dd
https://medium.com/0xcode/the-ethereum-virtual-machine-evm-runtime-environment-d7969544d3dd
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
https://github.com/trailofbits/manticore
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00048-1/sb50
https://github.com/usyd-blockchain/vandal
https://github.com/usyd-blockchain/vandal
https://github.com/usyd-blockchain/vandal

M. Pasqua, A. Benini, F. Contro et al. The Journal of Systems & Software 200 (2023) 111653

V

W
Z

Z

M

c
E
y
d
N
t
a
t

F
f
h
t
b
l
h

entuzelo, P., 2020. Github - Octopus. URL: https://github.com/pventuzelo/
octopus. [accessed: 2020-07-07].

ood, G., 2014. Ethereum: A secure decentralised generalised transaction ledger.
3Prover, 2020. Github - z3. URL: https://github.com/Z3Prover/z3. [Accessed:

2020-07-07].
heng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., Imran, M., 2020. An

overview on smart contracts: Challenges, advances and platforms. Future
Gener. Comput. Syst. 105, 475–491, URL: http://dx.doi.org/10.1016/j.future.
2019.12.019.

ichele Pasqua received the B.Sc. and M.Sc. degrees in Computer Science and
Engineering from the University of Verona (Italy) in 2013 and 2015, respectively,
and the Ph.D. in Computer Science from the University of Verona (Italy) in 2019.
He was a Postdoctoral Researcher at the University of Verona (Italy) from 2019
to 2020, working on security aspects of IoT systems. He was a Postdoctoral
Researcher at the University of Udine (Italy), from 2020 to 2021, working on new
decentralized programming paradigms for the IoT. He is currently an Assistant
Professor at the University of Verona (Italy), working in the department of
Computer Science. His research interests focus on the security of computational
systems, programs verification (based on abstract interpretation), mathematical
foundations of computer science, programming languages design, cybersecurity
and software testing.

Andrea Benini is an IT Engineer, working as a web developer in an IT consulting
ompany since my graduation in 2021. He studied Computer Science and
ngineering at University of Verona, specializing in cyber-security. During these
ears he has been interested in blockchain and he was able to contribute to the
evelopment of some projects such as Hotmoka, Commercio.network, Ethersolve.
etwork systems, along with cryptography,are the things that fascinate him
he most and what stimulates him are the technological innovations that
re constantly developing around this area. He loves programming and using
echnology to improve his life and the lives of others.

ilippo Contro is a software engineer at Bit Mobility, where he is mainly
ocused on the development of a software layer for shared mobility. He got
is master degree in Computer Science in 2020 at university of Verona with the
hesis: ‘‘EtherSolve: computing an accurate control-flow graph from Ethereum
ytecode’’. He is interested in software analysis and software engineering. He
oves to think about structures and design principles to develop better code, to
elp both developers and improve code quality.
18
Marco Crosara is currently working as a programmer in an IT consulting
company after having obtained the master’s degree in Computer Engineering
at the University of Verona, in March 2021. He loves programming and creating
software that solves the problems that are submitted to him. He is motivated
by the satisfaction of creating innovative software solutions that are useful to
him and others. His great passion is blockchain technology,which has been his
main area of research for the last few years of his student’s career, supporting
standard studies up to the thesis day after day. Among his best skills, there is
certainly a great inventiveness and the ability to see a problem from new points
of view without ever forgetting the final goal.

Mila Dalla Preda is an Assistant Professor at the Dipartimento di Informatica,
University of Verona. She had the Computer Science Laurea degree from the
University of Verona in 2003 and doctoral degree in Computer Science in
2007. She has been active in various research projects and groups devoted
to the design and development of automatic tools based on formal methods
and abstract interpretation theory for program analysis, automatic program
certification, system testing, and security analysis of software. She has been
the principal investigator of the Italian FIRB project FACE: Formal Avenue for
Change Malware (2013–2018). She was one of the organizers of the Dagstuhl
Seminar ‘‘Software Protection Decision Support and Evaluation Methodologies’’
from August 11th to August 16th 2019. She served in the program committee of
major international conferences including Compiler Construction CC, Symposium
on Foundations & Practice of Security FPS, Principles of Programming Languages
POPL, International Symposium on Code Generation and Optimization CGO,
Programming Language Design and Implementation PLDI. She has over 40
publications related to software security, program analysis, malware detection,
and abstract interpretation.

Mariano Ceccato is Associate Professor in the Computer Science department in
University of Verona, Italy. Until 2019, he was tenured researcher in the Security
& Trust and in the Software Engineering research units in Fondazione Bruno
Kessler, Trento, where was principal investigator of several publicly funded
research projects. He received the PhD in Computer Science from the University
of Trento in 2006 with the thesis ‘‘Migrating Object Oriented code to Aspect
Oriented Programming’’. He is author or coauthor of more than 70 research
papers published in international journals and conferences/workshops. He was
recently visiting research scientist in the Software Verification and Validation
Laboratory Centre for ICT Security, Reliability, and Trust (SnT), University of
Luxembourg. His research interests include security testing, penetration testing,
code hardening and empirical studies.

https://github.com/pventuzelo/octopus
https://github.com/pventuzelo/octopus
https://github.com/pventuzelo/octopus
https://github.com/Z3Prover/z3
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1016/j.future.2019.12.019

	Enhancing Ethereum smart-contracts static analysis by computing a precise Control-Flow Graph of Ethereum bytecode
	Introduction
	Background
	Ethereum
	The Solidity Language
	Compiling Solidity into EVM Bytecode

	Control-Flow Graph Reconstruction
	Approach Overview
	Bytecode Parsing
	Basic Blocks Identification and Pushed Jumps
	Symbolic Stack Execution and Orphan Jumps
	Static Data Separation
	Control-Flow Graph Decoration
	Functions Entry-point Identification

	Smart-Contract Vulnerabilities
	Reentrancy
	Tx.origin

	Experimental Validation
	The Smart-Contracts Datasets
	RQ1: Success Rate
	RQ2 : Functions Entry-point Identification
	RQ3: Precision of the CFG Reconstruction
	EthIR
	Octopus
	Mythril
	Vandal
	Gigahorse

	RQ4: Reentrancy Vulnerabilities Detection
	RQ5: Tx.origin Vulnerabilities Detection
	Discussion

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

