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ABSTRACT
Hyperproperties are used to define correctness requirements that

involve relations betweenmultiple program executions. This allows,

for instance, to model security and concurrency requirements, which
cannot be expressed by means of trace properties.

In this paper, we propose a novel systematic approach for auto-

mated testing of hyperproperties. Our contribution is both founda-

tional and practical. On the foundational side, we define a hyper-
testing framework, which includes a novel hypercoverage adequacy

criterion designed to guide the synthesis of test cases for hyper-

properties. On the practical side, we instantiate such framework by

implementing HyperFuzz and HyperEvo, two test generators target-

ing the Non-Interference security requirement, that rely respectively

on fuzzing and search algorithms.

Experimental results show that the proposed hypercoverage ad-

equacy criterion correlates with the capability of a hypertest to

expose hyperproperty violations and that both HyperFuzz and Hy-
perEvo achieve high hypercoverage and high vulnerability exposure

with no false alarms (by construction). While they both outperform

the state-of-the-art dynamic taint analysis tool Phosphor, HyperEvo
is more effective than HyperFuzz on some benchmark programs.
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1 INTRODUCTION
In addition to functional correctness, software systems are required

to respect critical non-functional properties, such as safety (e.g., a

program should not threaten human life) and security (e.g., confi-

dential information should not be leaked publicly). Most existing

software Verification & Validation (V&V) approaches focus on func-

tional correctness properties that belong to the family of so called

trace properties. These correspond to program requirements that

can be checked by observing single program executions.

Consider, as an example, a smartphone app and suppose to check

whether the app crashes or not. If the app can indeed crash, then

by observing its execution when inputs are smartly selected or

generated, we can eventually notice the crash. There are, however,

important program requirements that go beyond the family of trace

properties. For instance, security requirements may need to com-

pare more than one execution at a time, in order to spot a defect.

Consider a smartphone app dealing with users’ confidential infor-

mation that must not be leaked to public channels (e.g., unsecured

connections). In order to precisely spot an information leakage, ob-

serving individual executions in isolation is not sufficient: we need

to compare pairs of executions. Indeed, checking single executions

may lead to false alarms, even in the case of dynamic techniques

that are usually supposed to be precise. For instance, dynamic taint
analysis may yield false alarms when running a single execution

and propagating taint tags that reach, but do not have any effect

on, public outputs. To precisely check information leaks, we have

to execute the app at least twice, with different confidential infor-

mation values, to assess whether these executions may generate

public outputs that also differ, hence leaking information (i.e., in

a secure program, when only confidential information changes,

public information must remain the same).

Other requirements that cannot be expressed as trace proper-

ties include functional and safety properties of concurrent systems,
where multiple parallel executions must satisfy atomicity of some

operations or freedom from deadlock. Other examples comprise:

security of cryptographic protocols [35]; planning in multi-agents

systems [5]; robustness of robotic control mechanisms [37]; code

obfuscation [25] and certified compilation techniques [34].

Collectively, those complex requirements that involve more than

one execution trace have been named hyperproperties [11]. Formally,

while trace properties are defined in terms of sets of executions

that satisfy a given correctness requirement, hyperproperties are

defined in terms of sets of sets of program executions, with a specific

hyperproperty being the set of all sets of executions (i.e., program

semantics) that satisfy the associated requirement. In other words,

a hyperproperty stipulates a property over the program semantics
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and not a property over individual program executions (as trace

properties). This added level of complexity allows to specify rela-
tions between multiple, different executions of a program, that are

not expressible with simple trace properties. Not surprisingly, the

gained expressiveness requires more complex V&V techniques.

Current state-of-the-art V&V approaches mainly deal with trace

properties, thus a lot of crucial program correctness requirements

are not properly considered. Some progress in such direction has

been achieved by using static analysis techniques (e.g., based on

abstract interpretation [2, 23]), but these solutions do not scale

to large and complex software systems. Moreover, such analyses

return a sound, conservative superset of the possible violations,

which often includes a large proportion of false positives. Hence,

the alternative of exposing hyperproperty violations by means of

dynamic analysis techniques (e.g., automated test case generation)

is extremely appealing [21].

In this paper, we aim at answering the following question:

“How can we define a systematic framework for the dynamic
verification of hyperproperties and for the automated generation of

execution traces that violate them? ”

We first tackle the problem from a theoretical point of view,

by developing a foundational theory for the systematic definition

of testing strategies suitable for hyperproperties verification: the

hypertesting framework, which includes a novel hypercoverage ad-
equacy criterion as cornerstone. Second, we propose two input

generation approaches specifically targeting hyperproperties: one

based on fuzzing, dubbed Hyper-Fuzzing, and another based on

evolutionary search algorithms, dubbed Evolutionary Hypertest-
ing. These two approaches are respectively implemented in two

tools, HyperFuzz and HyperEvo, which instantiate the proposed hy-

pertesting framework to test a specific security hyperproperty, Non-
Interference (i.e., absence of leakage of confidential information). We

validated the two tools on a state-of-the-art benchmark for security

containing vulnerable and non-vulnerable Java programs. Results

show that our approach is very accurate in detecting hyperproperty

violations, outperforming the state-of-the-art taint analysis tool

Phosphor [4] (that can be used to approximate Non-Interference).

Summary of Contributions. The paper contributes with the fol-

lowing theoretical and practical results:

• a theoretical framework for the systematic testing of hyper-

properties, comprising novel coverage criterion and structural
search metaheuristics specific for hyperproperties;
• two test input generation approaches for hyperproperties, one
based on fuzzing and another based on search algorithms,
together with novel crossover andmutation operators specific
for hyperproprties; and

• two automated tools, HyperFuzz and HyperEvo, customized to

test a given security hyperproperty (Non-Interference).

Synopsis. In Section 2 we present the proposed hypertesting

framework. Then, in Section 3, we describe the hypertesting pro-

cedure, declined in two variants: fuzzing-based and search-based.

The empirical evaluation of the approach is reported in Section 4,

together with the collected results. In Section 5 we compare our

approach with the related work. Finally, in Section 6 we draw con-

clusions and discuss future research directions.

2 HYPERTESTING FRAMEWORK
Given a set of values V and a set of variables X, a variables assign-
ment (often called memory, store or state) is a function m ∈ M ≜
X −→ V∪ {⊥} mapping variables to values (here ⊥ denotes an unde-

fined value). In the following, we model program executions 𝑒 ∈ E
as finite sequences ofmemories, namelyE ≜

⋃
𝑛∈N M𝑛

. Given a pro-

gram 𝑃 , we denote with inputVars(𝑃) ⊆ X (resp. outputVars(𝑃) ⊆
X) the set of its input (resp. output) variables. In this setting, an

input (resp. output) for 𝑃 is a variables assignment m that is de-

fined for all input (resp. output) variables of 𝑃 , namely such that

dom(m) = inputVars(𝑃) (resp. dom(m) = outputVars(𝑃)), where
dom(m) is the set of all variables x for which m(x) ≠ ⊥ (the domain

of m). Given an execution 𝑒 ∈ E of 𝑃 , we denote with 𝑒𝑖 ∈ M (resp.

𝑒𝑜 ∈ M) the input (resp. output) of 𝑒 . This means that program 𝑃

produces the program execution 𝑒 when running starting from the

(input) memory 𝑒𝑖 , yielding the (output) memory 𝑒𝑜 .

The Control Flow Graph (CFG) of a program is an abstract repre-

sentation of the program semantics (i.e., of all program executions),

embedding control and data flow information of program variables.

The nodes of such graph (usually called basic blocks) represent the
statements of the program, while arcs represent an execution flow

between statements. For instance, in Figure 1 (on the right) we have

the CFG of a simple program code snippet (on the left). As we can

see from the figure, each statement of the program is labeled with

a unique program point (the underlined reddish number on the

left of the statement) and sequential statements (i.e., sequences of

assignments that are not interleaved by conditionals) are grouped

in multi-statement blocks. The program state at each program point

is the one computed after the execution of the command pointed

by such program point. In a CFG special blocks are added: an entry
point (entry), indicating the beginning of the program (with typical

label
0
); and an exit point (exit), indicating the end of the program

(with typical label
e
). We assume, w.l.o.g., that each program has

unique entry and exit points.

Hyperproperties are in general complex, usually modeled by us-

ing very expressive logical systems [10]. In this paper we focus on a

particular subset of hyperproperties, the relational 𝑘-bounded [23],

that are sufficient to express lots of security and concurrency re-

quirements. Relational heremeans that the hyperproperty stipulates

a relation between the input and the output of a program, while

𝑘-bounded means that the executions needed to refute the hyper-

property can be limited to a fixed finite number 𝑘 . A 𝑘-bounded

hyperproperty, 𝑘-hyperproperty for short, is hence of the form:

∀𝑒1 ∈ E . . . ∀𝑒𝑘 ∈ E .P𝑖 (𝑒𝑖1, . . . , 𝑒
𝑖
𝑘
) ⇒ P𝑜 (𝑒𝑜1 , . . . , 𝑒

𝑜
𝑘
) (1)

such that P𝑖 ⊆ M𝑘
is a 𝑘-ary predicate on inputs and P𝑜 ⊆ M𝑘

is

a 𝑘-ary predicate on outputs
1
. Note that, being 𝑒1, . . . , 𝑒𝑘 ∈ E, we

have that, for instance, 𝑒1 is a program execution, modeled as a

sequence of program memories, where 𝑒𝑖
1
is the input (memory)

while 𝑒𝑜
1
is the output (memory). Given a program 𝑃 , the input

predicate P𝑖 and the output predicate P𝑜 of Equation (1) are defined

for 𝑃 as predicates on 𝑃 ’s variables at the entry and the exit point

of 𝑃 , respectively.

1
The notation P(m1, . . . ,m𝑘 ) , with P ⊆ M𝑘

, is a shorthand for (m1, . . . ,m𝑘 ) ∈ P.
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Snippet of code:

if (key == 0) {
log = key + 5;

} else {
if (log == 0) {
log = 5;

} else {
if (key > 6) {

log = key;
} else {

log = 0;
key = 1;

}
}

}

0 entry

1 key == 0

2 log = key + 5; 3 log == 0

4 log = 5; 5 key > 6

6 log = key; 7 log = 0;
8 key = 1;

e exit

T F

T F

T F

2 log = key + 5;

4 log = 5;

7 log = 0;
8 key = 1;

Irrelevant goal

Infeasible goal

Figure 1: A snippet of code and the corresponding CFG.

For instance, the classic notion of Non-Interference [12], that

requires the lack of (semantic) dependency on confidential infor-

mation by public/non-confidential resources, is defined as:

∀𝑒1 ∈ E∀𝑒2 ∈ E . =L (𝑒𝑖1, 𝑒
𝑖
2
) ⇒ =L (𝑒𝑜1 , 𝑒

𝑜
2
) (2)

where =L says that two memories agree on the values of L (i.e.,

public) variables
2
. The idea is that there exists a (possibly harmful)

information flow from a (possibly confidential) variable x to a (pos-

sibly public) variable y in a program 𝑃 whenever a change in x is

conveyed to y by the execution of 𝑃 . Equation (2) models the ab-

sence of (potentially harmful) information flows from confidential

to public variables.

In Figure 1 (on the left) we have a simple snippet of Java-like

code that does not satisfy Equation (2), when key is considered

confidential and log is considered public. Indeed, the predicate =L
checks the value of public, i.e., L, variables (log in this case) at the

beginning ot the program (before the first line) and at the end of

the program (after last line). It is easy to find two executions that

violate the hyperproperty. For instance, take two executions that

have the following inputs: one having key equal to 0 and another

having key equal to 1, with both executions having log equal to 6.

If we execute the program on those inputs, we obtain the value 5 for

log in one case and the value 1 in the other. Thus, Non-Interference

is violated, since L-equivalent input variables are mapped to non

L-equivalent output variables.
Syntactic dependencies, exploited by state-of-the-art approaches

to track information flows (e.g., taint analysis), provide an approx-
imation of Non-Interference, that models semantic dependencies.

This is very often (implicitly) done by existing V&V approaches:

the verification of a hyperproperty is approximated by consider-

ing a (simpler) trace properties [23]. Being an approximation, it

may of course lead to false positives (even in the case of dynamic

approaches, that are usually supposed to be precise). Imagine to

remove the program points
4
,
5
,
6
,
7
and

8
from the CFG of Figure 1,

and to replace the conditional at
3
with the assignment log == 5;.

The resulting program is secure since, independently from the ini-

tial value of key, the final value of log is always 5. Nevertheless,

we have a syntactic dependency between key and log, potentially

inducing a taint analysis to fire a (false) alarm.

2
A mapping between variables and security levels (L, meaning public, and H, meaning

confidential) is given for a program. Flows from H to L variables are not allowed.

To be refuted, a 𝑘-hyperproperty requires 𝑘 properly chosen

program executions, hence a testcase for a 𝑘-hyperproperty has nec-
essarily to model 𝑘 program executions. For this reason, we model

a test input for a 𝑘-hyperproperty as a tuple of (input) memories.

Definition 2.1 (Hypertest Input). Given a 𝑘-hyperproperty hp,
with input predicate P𝑖 , and a program 𝑃 , a hypertest input for hp
and 𝑃 is a tuple (m1, . . . ,m𝑘 ) such that:

• dom(m𝑖 ) = inputVars(𝑃), for all 𝑖 ∈ [1..𝑘]; and
• P𝑖 (m1, . . . ,m𝑘 ).

To assess whether a testcase is successful or not, we need a

notion of oracle. In the case of 𝑘-hyperproperties, the oracle has to

check the satisfaction of the output predicate.

Definition 2.2 (Hyperoracle). Given a 𝑘-hyperproperty hp, with
output predicate P𝑜 , a hyperoracle for hp is a function Ohp ∈ E𝑘 −→
{0, 1} defined as:

Ohp (𝑒1, . . . , 𝑒𝑘 ) = 1 iff P𝑜 (𝑒𝑜1 , . . . , 𝑒
𝑜
𝑘
)

We assume Ohp computable (and, hence, P𝑜 decidable), meaning

that we can always define a terminating program able to assess

whether a testcase is successful or not.

Definition 2.3 (Hypertest Suite). Given a 𝑘-hyperproperty hp and

a program 𝑃 , a hypertest suite for hp and 𝑃 is a pair (Ohp, 𝐼 ), with
𝐼 ⊆ M𝑘

, such that:

• Ohp is a computable hyperoracle for hp (Definition 2.2);

• 𝐼 is a finite non-empty set; and

• for all (m1, . . . ,m𝑘 ) ∈ 𝐼 , (m1, . . . ,m𝑘 ) is a hypertest input

for hp and 𝑃 (Definition 2.1).

2.1 Adequacy Criteria for Hyperproperties
Although a 𝑘-hyperproperty involves universal quantification over

program executions (conceptually infinite in number), to refute a

𝑘-hyperproperty it is enough to find a finite subset of executions
that can potentially violate it. For instance, if we consider Non-

Interference (a 𝑘-hyperproperty having 𝑘 = 2), pairs of executions

suffice. Nevertheless, not every pair of execution is helpful in finding

Non-Interference violations. Consider again the program of Figure 1.

The pairs of program points with assignment to the L variable log

which may potentially produce different L output values when H
variables change, are a subset of the cartesian product of all program

points where log is assigned, namely {2 , 4 , 6 , 7 }×{2 , 4 , 6 , 7 } (16 pairs
in total). The cartesian product is justified by the fact that for Non-

Interference pairs of executions suffice to refute it. Among them,

only four pairs of program points are actually worth checking: (2 , 6 ),
(2 , 7 ), (6 , 6 ) and (6 , 7 ). In fact, the pair (2 , 4 ) is useless, because log is
assigned the constant value 5 in all possible executions reaching the

program points
2
and

4
. For the same reason, the auto-pairs (2 , 2 ),

(4 , 4 ) and (7 , 7 ) are useless, because again the same constant value is

always assigned to log in all paired executions. As the same value

5 is assigned at
2
and

4
, we can deem these two program points as

equivalent for the purpose of Non-Interference confutation. Finally,

as Non-Interference has a symmetric input predicateP𝑖 , given a pair
(ℓ , ℓ′ ), we do not need to consider its inverse (ℓ′ , ℓ ). This leaves us
with four interesting pairs of program points that assign log to be

covered by (paired) executions in order to refute Non-Interference
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for the program in Figure 1. While covering even such smaller

subset of the pairs of program points that assign log for all possible

input values remains conceptually infeasible, we can use coverage
of these interesting assignment pairs as an adequacy criterion for

the generation of hypertest inputs.

For a given 𝑘-bounded hyperproperty hp, we define the interest-
ing tuples of executions as those in the set

Corehp ≜
{
(𝑒1, . . . , 𝑒𝑘 ) ∈ E𝑘

��� P𝑖 (𝑒𝑖1, . . . , 𝑒
𝑖
𝑘
) ∧ ¬P𝑜 (𝑒𝑜1 , . . . , 𝑒

𝑜
𝑘
)
}

that is, the set of all counterexample executions (i.e., hyperproperty

violations) for hp.
We can define a coverage criterion for a given 𝑘-hyperproperty

as follows. A variable definition is the program point of an assign-

ment where the variable is on the left-hand side. We denote with

defs(G,x) the set of all definitions of the variable x in the CFG G.
For instance, let Gni be the CFG of the program in Figure 1, we

have defs(Gni, key) = {8 } and defs(Gni, log) = {2 , 4 , 6 , 7 }.
Given a predicate P, we denote with vars(P) the scope of P, that

is, the set of variables on which P acts on. Given a variable x and

a program point
ℓ
in the CFG G, we denote with vals(x, ℓ ,G) the

set of all possible values x may take at
ℓ
in G. Again referring to

the program in Figure 1, we have that vals(log, 4 ,Gni) = {5} and
vals(log, 6 ,Gni) = {𝑛 ∈ Z \ {0} | 𝑛 > 6}.

Given a set of program points {ℓ1 , . . . , ℓ𝑛 } of a CFG G, we denote
with dataSlice(G, {ℓ1 , . . . , ℓ𝑛 }, 𝑑) its 𝑑-bounded data-slice [15] in G,
that is the set of all program points in G having a (transitive) data

dependency of depth at most 𝑑 on statements at program points

ℓ1 , . . . , ℓ𝑛 . A program point
ℓ′
is data dependent on program point

ℓ
when the instruction at

ℓ′
uses a variable x defined at

ℓ
and a path

exists in the CFG between
ℓ
and

ℓ′
containing no definition of x. A

bounded data-slice transitively computes data dependencies in the

backward direction, starting from the target program points, up-to

a given threshold 𝑑 .

Definition 2.4 (Value-Insensitive Hypercoverage Goal). Given a

𝑘-hyperproperty hp, with output predicate P𝑜 , and a program

𝑃 , a value-insensitive hypercoverage goal for hp and 𝑃 is a tuple

(x, ℓ1 , . . . , ℓ𝑘 ), where ℓ1 , . . . , ℓ𝑘 are not necessarily different, such

that:

• ℓ1 , . . . , ℓ𝑘 are program points in the CFG G𝑃 of 𝑃 ; and
• ℓ1 , . . . , ℓ𝑘 ∈ defs(G𝑃 ,x)∪dataSlice(G𝑃 , defs(G𝑃 ,x), 𝑑)∪{e },
such that x ∈ vars(P𝑜 ) and 𝑑 ≥ 1.

Consider again the program in Figure 1. Variable log is in the

scope of the Non-Interference output predicate =L, and the program

points
6
and

7
are definitions of log in Gni. Hence, (log, 6, 7) is a

value-insensitive hypercoverage goal.

Given a 𝑘-hyperproperty hp, with output predicate P𝑜 , and a pro-
gram 𝑃 , we define the value-insensitive hypercoverage criterion for

hp and 𝑃 , written VIHCC(hp, 𝑃), as the set of all value-insensitive
hypercoverage goals for hp and 𝑃 . The idea behind hypercoverage is
that coverage of all 𝑘-tuples of output variable definitions observed

in 𝑘 different executions ensures that no definition potentially lead-

ing to a violation of the output predicate is left untried. Nevertheless,

covering all 𝑘-tuples of output variable definitions with all possi-

ble values is unaffordable from a computational point of view, as

it represents a form of exhaustive testing (hence theoretically in-

tractable as computing all possible variable values at a program

point is undecidable). For these reason, we rely on a value-insensitive
hypercoverage criterion, providing an over-approximation of all

possible violations (but effectively computable). Indeed, the value-

insensitive hypercoverage criterion provides a necessary, but not

sufficient, condition to expose a 𝑘-hyperproperty violation
3
.

Proposition 2.5. If 𝑃 violates the 𝑘-hyperproperty hp, the 𝑘 ex-
ecutions (𝑒1, . . . , 𝑒𝑘 ) ∈ Corehp that witness the violation cover one
hypercoverage goal in VIHCC(hp, 𝑃).

Among the value-insensitive hypercoverage goals, there are re-
dundant elements, namely goals that may be ignored without affect-

ing the possibility of counterexample generation. Dropping such

elements will produce a narrower search space, hence improving

the testing performance. In other words, redundant goals represent

execution tuples that do not belong to Corehp, hence they do not

concur to the falsification of the hyperproperty. We can identify

two sources of redundancy: infeasible goals and irrelevant goals.

Infeasible goals. They represent program point tuples that cannot

be simultaneously covered by execution tuples in Corehp. Starting
from executions 𝑒1, . . . , 𝑒𝑘 such that P𝑖 (𝑒𝑖

1
, . . . , 𝑒𝑖

𝑘
), the program

points in infeasible goals are not exercised in any of the possible 𝑘

executions satisfying P𝑖 . In Figure 1, infeasible program point pairs

are linked by red dotted lines (e.g., the goal (log, 4 , 7 ) is infeasible).

Definition 2.6 (Infeasible Goal). Given a 𝑘-hyperproperty hp,
with input predicate P𝑖 , and a program 𝑃 , a goal (x, ℓ1 , . . . , ℓ𝑘 ) ∈
VIHCC(hp, 𝑃) is said infeasible when for all executions 𝑒1, . . . , 𝑒𝑘
of 𝑃 such that P𝑖 (𝑒𝑖

1
, . . . , 𝑒𝑖

𝑘
) holds, we have that ℓ1 , . . . , ℓ𝑘 are not

all reachable in 𝑒1, . . . , 𝑒𝑘 .

Irrelevant goals. They represent program point tuples having

definitions that do not refute the hyperproperty. This can be seen

as an output selection: executions 𝑒1, . . . , 𝑒𝑘 such thatP𝑜 (𝑒𝑜
1
, . . . , 𝑒𝑜

𝑘
)

can be ignored, since they do not provide a counterexample for

the hyperproperty. In Figure 1, irrelevant program point pairs are

linked by green dashed lines (e.g., the goal (log, 2 , 4 ) is irrelevant).

Definition 2.7 (Irrelevant Goal). Given a 𝑘-hyperproperty hp,
with output predicate P𝑜 , and a program 𝑃 with CFG G𝑃 , a goal
(x, ℓ1 , . . . , ℓ𝑘 ) ∈ VIHCC(hp, 𝑃) is said irrelevant when for all values

𝑣1 ∈ vals(x, ℓ1 ,G𝑃 ), . . . , 𝑣𝑘 ∈ vals(x, ℓ𝑘 ,G𝑃 ) we have P𝑜 (𝑣1, . . . , 𝑣𝑘 ).

Efficient Hypercoverage Goals Computation. Infeasible and irrele-

vant goals still involve semantic aspects of a program, hence, we

cannot precisely compute such elements. However, we can settle

for approximations of such sets that are efficiently computable.

In particular, we can approximate infeasible goals by computing

a forward slice [6] of the program, using ⟨0 , vars(P𝑖 )⟩, where 0
is

the entry point of the program, as slicing criterion. This means that

we cover only definitions affected by input variables or by decisions

that depend on input variables.

Similarly, we can approximate irrelevant goals by performing a

constant propagation [38] analysis of the program and excluding all

program points where output variables are constant. This means

that we cover only definitions that can potentially lead to different

values for the output variables. This is indeed a very coarse approx-

imation, since we need such variables to be constant only when 𝑘

3
Proof omitted due to lack of space.
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procedure ValueInsensitiveCriterion(cfg,P𝑖 ,P𝑜 , k, 𝑑)

1 inVars← VarsOf(P𝑖)
2 outVars← VarsOf(P𝑜)
3 goals← ∅
4 for x in outVars do
5 defs← DefinitionsOf(cfg,x)
6 deps← BoundedDataSlice(cfg, defs, 𝑑)
7 locs← defs ∪ deps ∪ {e}
8 for (ℓ1, . . . , ℓ𝑘 ) in Combinations(locs, k) do
9 goals← goals ∪ {(x, ℓ1, . . . , ℓ𝑘 ) }

end
end

10 fwSlice← ForwardSlicing(cfg, ⟨0, inVars⟩)
11 constVars← ConstantPropagation(cfg)
12 redundantGoals← ∅
13 for (x, ℓ1, . . . , ℓ𝑘 ) in goals do
14 if {ℓ1, . . . , ℓ𝑘 } ⊈ DefinitionsOf(fwSlice,x) or x ∈ constVars then
15 redundantGoals← redundantGoals ∪ {(x, ℓ1, . . . , ℓ𝑘 ) }

end
end

16 return goals \ redundantGoals

Algorithm 1: Computing hypercoverage goals.

paths satisfying the considered hypercoverage goal are traversed,

not in the execution of 𝑘 arbitrary paths. We plan to find a more

clever strategy to prune irrelevant goals as a future work.

Algorithm 1 computes the value-insensitive hypercoverage cri-

terion (lines 3 – 9). Then, irrelevant and infeasible goals, if any, are

removed. For the latter purpose, we compute a forward slice (line

10) and a constant propagation (line 11) of the program, in order

to detect which goals are redundant (lines 12 – 15). This is done by
either checking that the program points of a goal are not in the slice,

or the variable of a goal is constant (line 14). Finally, the redundant
goals found are removed from the value-insensitive hypercoverage

criterion (line 16).

Distance Metrics for Hyperproperties. To cover as much as possible

value-insensitive hypercoverage goals, we define a distance metric

for 𝑘-hyperproperties. The latter measures the distance between the

execution traces of a candidate 𝑘-tuple of hypertests and a target,

yet uncovered, hypercoverage goal. This distance is used to guide

test generation, as explained in the next section.

To define such distance metric for 𝑘-hyperproperties, we use

standard structural search metaheuristics, such as approach level
and branch distance [26], adapted to our setting. In particular, given

a memory m and a program point
ℓ
, belonging to an implicitly

referenced program 𝑃 , we denote with: AL(ℓ ,m), the minimum

number of control nodes between a statement executed by 𝑃 on m
and the statement at

ℓ
(i.e., approach level); and BD(ℓ ,m), the dis-

tance, computed according to any branch computation scheme [26],

between the variable values involved in a condition whose truth

value makes
ℓ
unreachable in the given execution and those achiev-

ing the opposite truth value, which would make
ℓ
reachable after

execution of the given condition. Such branch distance is 0 if the

statement at
ℓ
has been reached by executing 𝑃 on m. Here, the

considered condition is the boolean expression corresponding to the
closest (w.r.t. the statement at

ℓ
) control node in a path not leading

to the statement at
ℓ
. The single-run distance of the statement at

ℓ
w.r.t. the input (memory) m, denoted by SRD(ℓ ,m), is defined as

AL(ℓ ,m) + BD(ℓ ,m).

SRD(ℓ1 ,m1)

SRD(ℓ2 ,m1)

SRD(ℓ1 ,m2)

SRD(ℓ2 ,m2)

ℓ1

ℓ2

m1 m2

Figure 2: Graphical explanation of the Multi-Run Distance.

Approach level and branch distance are the basic components

of the multi-run distance needed for 𝑘-hyperproperties. Indeed, to

satisfy a hypercoverage goal we have to cover 𝑘 program points in

the 𝑘 executions associated with a hypertest, which consists of 𝑘

inputs. Hence, we need a distance metric considering 𝑘 execution

paths, not just one. In Figure 2, we consider the case of 𝑘 = 2.

In the picture, we aim at covering two program points,
ℓ1 and

ℓ2 , by performing two program executions, one yielding from m1

and another yielding from m2. As we can see, the goal (ℓ1 , ℓ2 ) is
not covered, since we do not encounter

ℓ1 and
ℓ2 along the paths

yielding from m1 and m2. To measure how much we are far from

the goal, we compute the single-run distances of each execution

from each program point and we take the minimum of the their

sum. Of course, one execution can cover only one program point,

hence the only interesting combinations are those with different

control points and different input memories, namely SRD(ℓ1 ,m1)
paired with SRD(ℓ2 ,m2) and SRD(ℓ1 ,m2) paired with SRD(ℓ2 ,m1).
In the example, we considered the case of 𝑘 = 2 for the sake of

simplicity, but the definition can be given for an arbitrary 𝑘 > 1.

Definition 2.8 (Multi-Run Distance). Given a hypercoverage goal

𝑔 = (x, ℓ1 , . . . , ℓ𝑘 ) and a hypertest input 𝑡 = (m1, . . . ,m𝑘 ), we define
the multi-run distance of 𝑔 w.r.t. 𝑡 , writtenMRD(𝑔, 𝑡), as

MRD(𝑔, 𝑡) ≜ min

{ ∑𝑘
𝑖=1 SRD(ℓ𝑖 ,m𝑗𝑖 ) +

Px (
ℓ1⟦x⟧m𝑗1 , . . . ,

ℓ𝑘 ⟦x⟧m𝑗𝑘 )

����� 𝑗1 ≠ . . . ≠ 𝑗𝑘

}
where

ℓ
⟦x⟧m is the value of x at program point

ℓ
obtained by

executing the program on m.

As a matter of example, when 𝑘 = 2, hence with 𝑔 = (x, ℓ1 , ℓ2 )
and 𝑡 = (m1,m2), such definition becomesMRD(𝑔, 𝑡) ≜

min

{
SRD(ℓ1 ,m1) + SRD(ℓ2 ,m2) + Px (

ℓ1⟦x⟧m1,
ℓ2⟦x⟧m2),

SRD(ℓ1 ,m2) + SRD(ℓ2 ,m1) + Px (
ℓ1⟦x⟧m2,

ℓ2⟦x⟧m1)

}
In Definition 2.8 we insert a penalty component Px (𝑣1, . . . , 𝑣𝑘 )

to give more importance to execution pairs that yield values for

x falsifying the output predicate P𝑜 . The penalty is defined as

Px (𝑣1, . . . , 𝑣𝑘 ) ≜ 𝜖 𝛿x (𝑣1, . . . , 𝑣𝑘 ), where 𝜖 is an arbitrary small

constant, while 𝛿x ∈ V𝑘 −→ {0, 1} is a function defined as:

𝛿x (𝑣1, . . . , 𝑣𝑘 ) = 1 iff P𝑜 (m1 [𝑣1/x], . . . ,m1 [𝑣𝑘 /x])

for some m1, . . . ,m𝑘 such that P𝑜 (m1, . . . ,m𝑘 ).
As a matter of example, in the case of 𝑘 = 2 and taking P𝑜

as the equality relation for the variable x, the penalty becomes

Px (𝑣1, 𝑣2) = 𝜖 𝛿x (𝑣1, 𝑣2), where: 𝛿x (𝑣1, 𝑣2) = 1, if 𝑣1 = 𝑣2; and

𝛿x (𝑣1, 𝑣2) = 0, otherwise.
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procedure HyperTesting(𝑃,P𝑖 ,P𝑜 , k,)

1 cfg← ComputeCFG(𝑃)

2 goals← ValueInsensitiveCriterion(cfg,P𝑖 ,P𝑜 , k, DEPTH)
3 (covered, hypertest) ← HyperTester(𝑃,P𝑖 , k, goals)
4 hypercoverage← |covered|/|goals|
5 violations← OracleCheck(P𝑜 , k, hypertest)
6 if violations ≠ ∅ then
7 return (UNSAFE, violations)

else
if hypercoverage ≥ THRESHOLD then

8 return (LIKELY_SAFE, hypercoverage)
else

9 return GIVE_UP
end

end

Algorithm 2: Hypertesting procedure.

3 HYPERTEST INPUT GENERATION
To effectively test a 𝑘-hyperproperty, by instantiating the frame-

work proposed in the previous section, we have to: (i) generate
hypertest inputs that satisfy the hyperproperty input predicate;

(ii) run the 𝑘 executions for each hypertest input; and (iii) check
the satisfaction of the hyperproperty output predicate. If check (iii)
fails, we have a hyperproperty violation, and the corresponding

hypertest input provides the counterexample.

To assess how much we have tested a program, we can exploit

the value-insensitive hypercoverage criterion. Indeed, if we cover a

large portion of hypercoverage goals but no violation is found, we

may say with confidence that the program is likely to satisfy the

hyperproperty. Such hypertesting procedure is summarized in Algo-

rithm 2, where HyperTester is a suitable strategy to craft hypertest

inputs. We provide two of such strategies in the following.

3.1 Fuzzing-based Hypertesting
A simple way to generate hypertest inputs is based on fuzzing,

where values for the input 𝑘-tuples of memories are randomly

generated. We expect this strategy to be sufficient to test simple

programs, but it may exhibit low detection performance when pro-

gram complexity increases and, hence, hypercoverage goals are

harder to cover. We call such approach Hyper-Fuzzing, described
in Algorithm 3. The procedure InputsWithConstraints generates a

random initial set of inputs, consisting of 𝑘 memories that satisfy

the input predicate P𝑖 . Given one (e.g., randomly generated) input

memory m1, the remaining 𝑘 − 1 ones needed to create a hyper-

test input can be obtained by running an SMT solver that solves

P𝑖 (m1, . . . ,m𝑘 ), with m2, . . . ,m𝑘 free variables.

The procedure RunInputs executes the generated hypertest in-

puts. It updates the covered hypercoverage goals and it adds the

corresponding covering hypertest inputs to the current archive of

successful inputs (that will be part of the final hypertest suite).

3.2 Hypertesting as an Optimization Problem
As there is no analytical solution to the problem of finding the hy-

pertest inputs that satisfy all hypercoverage goals, we may resort to

meta-heuristic search-based algorithm [26], by restating hypertest

input generation as an optimization problem. We will first consider

its single-objective and then its multi-objective formulation.

procedure HyperFuzz(𝑃,P𝑖 , k, goals)

1 inputs← InputsWithConstraints(P𝑖 , k)
2 (covered, hypertest) ← RunInputs(𝑃, k, goals,∅, inputs,∅)
3 while TestingBudgetNotExpired() do
4 inputs← InputsWithConstraints(P𝑖 , k)
5 (covered, hypertest) ← RunInputs(𝑃, k, goals, covered, inputs, hypertest)

end
6 return (covered, hypertest)

Algorithm 3: Fuzzing-based hyperproperty testing.

Definition 3.1 (Single-Objective Optimization). Given a set 𝐺 of

hypercoverage goals, find a set𝑇 of hypertest inputs that minimizes

the fitness function 𝑓𝐺 :

min 𝑓𝐺 (𝑇 ) ≜
∑
𝑔∈𝐺 NMRD(𝑔,𝑇 ) where

NMRD(𝑔,𝑇 ) ≜ min{MRD(𝑔,𝑡 ) | 𝑡 ∈𝑇 } / min{MRD(𝑔,𝑡 ) | 𝑡 ∈𝑇 }+1

The fitness function in Definition 3.1 considers all goals at the

same time, aggregating all corresponding distance metrics, yielding

a single-objective minimization task. Following [32], we rewrite

Definition 3.1 as a many-objective optimization problem.

Definition 3.2 (Many-Objective Optimization). Given a set𝐺 of

hypercoverage goals, find a set of non-dominated hypertest inputs

𝑡 that minimize the fitness vector ®𝑓𝐺 ≜ ⟨𝑓𝑔⟩𝑔∈𝐺 :

min
®𝑓𝐺 ≜ ⟨min 𝑓𝑔 (𝑡) ≜ NMRD(𝑔, 𝑡)⟩𝑔∈𝐺 where

NMRD(𝑔, 𝑡) ≜ MRD(𝑔,𝑡 ) /MRD(𝑔,𝑡 )+1

In many-objective optimization, candidate solutions are evalu-

ated in terms of Pareto dominance [13], that we can restate in the

context of hypertesting as follows.

Definition 3.3 (Dominance). A hypertest input 𝑡 dominates an-
other hypertest input 𝑡 , w.r.t. the fitness vector ⟨𝑓𝑔⟩𝑔∈𝐺 , if and only

if both the following hold:

• 𝑓𝑔 (𝑡) ≤ 𝑓𝑔 (𝑡), for all 𝑔 ∈ 𝐺 ; and
• 𝑓𝑔 (𝑡) < 𝑓𝑔 (𝑡), for some 𝑔 ∈ 𝐺 .

We write 𝑡 ≺𝐺 𝑡 to indicate that 𝑡 dominates 𝑡 , when the set 𝐺 of

hypercoverage goals is considered.

Among all possible hypertest inputs, the (Pareto) optimal ones
are those non-dominated by any other possible hypertest input.

Definition 3.4 (Preference). Given a hypercoverage goal 𝑔 ∈ 𝐺 ,
with 𝑔 = (x, ℓ1 , . . . , ℓ𝑘 ), a hypertest input 𝑡 = (m1, . . . ,m𝑘 ) is pre-
ferred over another hypertest input 𝑡 = (m̂1, . . . , m̂𝑘 ), w.r.t. the
fitness vector

®𝑓𝐺 , if and only if one of the following holds:

• 𝑓𝑔 (𝑡) < 𝑓𝑔 (𝑡); or
• 𝑓𝑔 (𝑡) = 𝑓𝑔 (𝑡) ∧min{SRD(ℓ𝑖 ,m𝑖 )}𝑘𝑖=1< min{SRD(ℓ𝑖 , m̂𝑖 )}𝑘𝑖=1

We write 𝑡 ⋖𝑔 𝑡 to indicate that 𝑡 is preferred over 𝑡 , when the

hypercoverage goal 𝑔 is considered.

The preference criterion states that one hypertest input is pre-

ferred for a goal if it has lower multi-run distance than the other.

When two hypertest inputs have the same multi-run distance, we

prefer those having the minimum single-run distance. The rationale

is that such hypertest input is closer to partially cover a hypercov-

erage goal (i.e., to cover one of the program point in the goal).
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Among all inputs, the best hypertest input for a hypercoverage
goal is the one preferred over all others for such target. The prefer-

ence criterion is used for selecting the best non-dominated testcases.

Note that, we do not select the best hypertest input covering a goal

as the onewith least complexity. The structural complexity of hyper-

test inputs is always the same, as we do not generate, for instance,

sequences of method invocations, just 𝑘-tuples of input memories.

3.3 Evolutionary-based Hypertesting
Solving the optimization problem presented in Definition 3.2 re-

sults in a clever inspection of the program to check, in order to find

potential hyperproperty violations. The more goals we cover and

the more counterexamples for the hyperproperty (if any) we expect

to find. It has been empirically showed [32] that multi-objective

optimization outperforms the single-objective one for test gener-

ation. Hence, to solve the problem in Definition 3.2 we adopt the

state-of-the-art many-objective search-based algorithmMOSA [32],

with some modifications introduced to adapt it to the hyperprop-

erty setting. These modifications yield what we call Evolutionary
Hypertesting, described in Algorithm 4.

The algorithm follows the general pattern introduced by MOSA,

and the components at lines 6 (preference sorting), 10 (crowding
distance assignment) and 13 (final sorting) can be easily derived

from the dominance (Definition 3.3) and preference (Definition 3.4)

relations introduced in Subsection 3.2. The most important modifi-

cations w.r.t. standard MOSA are the red-highlighted procedures

of Algorithm 4. InputsWithConstraints and RunInputs are the same

procedure described in Subsection 3.1, while GenerateOffspring

is in charge of generating new individuals (i.e., hypertest inputs),

hopefully better ones, to be added to the current population.

In GenerateOffspring, we first select two groups of optimal hy-

pertest inputs from the population (selection phase), by using the

dominance (Definition 3.3) and preference (Definition 3.4) relations.

Then, we apply crossover and mutation operators specifically de-

signed for hyperproperties.

In the crossover phase, pairs of individuals, taken from the two

selected groups, are swapped by the Pair-wise Memory Crossover,
that exchanges the values of a randomly chosen variable between

all memories in the two hypertest inputs.

Definition 3.5 (Pair-wise Memory Crossover). The Pair-wise Mem-
ory Crossover operator C for the hypertest input pair (𝑡, 𝑡), with
𝑡 = (m1, . . . ,m𝑘 ) and 𝑡 = (m̂1, . . . , m̂𝑘 ), is:

C(𝑡, 𝑡) ≜
{
(𝑡 ′, 𝑡 ′) if (𝑡 ′, 𝑡 ′) = swap(𝑡,x, 𝑡) ∧ P𝑖 (𝑡 ′) ∧ P𝑖 (𝑡 ′)
(𝑡, 𝑡) otherwise

for a variable x ∈ vars(𝑃) randomly selected.

Here, the swap ofx between the hypertest inputs 𝑡 = (m1, . . . ,m𝑘 )
and 𝑡 = (m̂1, . . . , m̂𝑘 ) is defined as swap(𝑡,x, 𝑡) ≜ (𝑡 ′, 𝑡 ′), where:
𝑡 ′ = (m1 [m̂1 (x)/x], . . . ,m𝑘 [m̂𝑘 (x)/x])
𝑡 ′ = (m̂1 [m1 (x)/x], . . . , m̂𝑘 [m𝑘 (x)/x])

Once the selected individuals have been scrambled, we perform

the mutation phase, by applying a random value mutation, with

probability 𝛼 . This perturbation implements the Single Memory
Mutation, which randomly selects a variable and assigns it with a

new value, randomly chosen from the variable type.

procedure HyperEvo(𝑃,P𝑖 , k, goals)

1 population← InputsWithConstraints(P𝑖 , k)
2 (covered, hypertest) ← RunInputs(𝑃, k, goals,∅, population,∅)
3 while TestingBudgetNotExpired() do
4 offspring← GenerateOffspring(P𝑖 , k, population)
5 (covered, hypertest) ← RunInputs(𝑃, k, goals, covered, offspring, hypertest)
6 fronts← PreferenceSorting(goals, covered, population ∪ offspring)
7 newPopulation← ∅
8 while |newPopulation | + |frontsrank | ≤ size do
9 currentFront← CrowdingDistanceAssignment(frontsrank)

10 newPopulation← newPopulation ∪ currentFront
11 rank← rank + 1

end
12 lastFront← CrowdingDistanceDescendingSort(frontsrank)
13 lastIndividuals← lastFront[1 : (size − |newPopulation |) ]
14 population← newPopulation ∪ lastIndividuals

end
15 return (covered, hypertest)

Algorithm 4: Evolutionary-based hyperproperty testing.

Definition 3.6 (Single Memory Mutation). The Single Memory
Mutation operatorM for the hypertest input 𝑡 = (m1, . . . ,m𝑘 ) is:

M(𝑡) ≜
{
𝑡 ′ if 𝑡 ′ =M(𝑡, 𝑗) ∧ P𝑖 (𝑡 ′) for a random 𝑗 ∈ [1, 𝑘]
𝑡 otherwise

whereM(𝑡, 𝑗) ≜ (m1, . . . ,m𝑗 [𝑣/x], . . . ,m𝑘 ), for a random variable

x ∈ vars(m𝑗 ) and a value 𝑣 ∈ typeOf (x) randomly generated.

Finally, since hypertest inputs must satisfy the input predicate P𝑖 ,
the resulting individuals violating P𝑖 are discarded. An alternative

to discarding the individuals that violate P𝑖 (not yet implemented

in our tool) could be to repair them, e.g., by applying an SMT solver

to P𝑖 after replacing some concrete values with free variables.

3.4 Implementation
We have developed two tools that implement the proposed hyper-

testing procedure (Algorithm 2) for Java, HyperFuzz and HyperEvo,
considering one specific hyperproperty, Non-Interference [12]. In

particular, HyperFuzz adopts the Hyper-Fuzzing approach of Sub-

section 3.1, while HyperEvo adopts the Evolutionary Hypertesting

approach of Subsection 3.3. Both tools can execute a Java program

under two execution scenarios, whose inputs satisfy the input pred-

icate for Non-Interference, i.e., in the two executions all public

input variables have the same values, while confidential input vari-

ables differ on at least one value. Both can also check the output

predicate for Non-Interference, i.e., whether any public output vari-

able has a different value in the two executions, which indicates

some information leakage from confidential to public variables. The

difference between HyperFuzz and HyperEvo is that the latter uses
the hypercoverage-based fitness function described in Section 3.2

as guidance, while the former has no guidance (i.e., it generates

random hypertest inputs that satisfy the input predicate).

3.5 Discussion
A potential weak point of our approach consists in the fact that the

proposed coverage criterion is a necessary but not sufficient condi-

tion to reveal hyperproperty violations, hence our tool may yield

false negatives. This is somewhat expected, being our approach
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dynamic in nature. Nevertheless, the empirical evaluation we con-

ducted in Section 4 indicates that the approach is indeed effective

in spotting hyperproperty violations (at least for Non-Interference).

In addition, our framework targets 𝑘-hyperproperties and it may

not generalize to other hyperproperties. We started with such sub-

set of hyperproperties since Non-Interference, that is the prominent

hyperproperty example, belongs to it (and other important require-

ments, such as data races, are 𝑘-hyperproperties). We plan to extend

our framework to other kinds of hyperproperties as a future work.

4 EMPIRICAL EVALUATION
To empirically validate the value-insensitive hypercoverage cri-

terion and the proposed hypertesting approach, we considered

a specific hyperproperty, Non-Interference [12] (in short, there

should be no information flow from confidential to public vari-

ables), and we instantiated our framework to test it. We considered

Non-Interference among other possibilities because of its relevance

and importance for software privacy and security. In our empirical

study, we address the following three research questions.

RQ1 (Correlation): Is there a relation between high value-insensitive
hypercoverage and the detection of Non-Interference violations?

RQ2 (Coverage): Is the proposed approach for hypertest input gener-
ation able to achieve high hypercoverage?

RQ3 (Effectiveness): Is the proposed hypertesting technique effective
at exposing Non-Interference violations? How does it compare to state-
of-the-art dynamic taint analysis?

With these research questions we gradually validate the hypothe-

ses behind the proposed hypertesting approach: first we check if

hypercoverage correlates with the exposure of hyperproperty vi-

olations (RQ1), by adopting a standard correlation metric (Point-

biserial); then, if the proposed hypertest input generators can achieve

high coverage (RQ2), by measuring the amount of hypercoverage

goals covered; and, finally, if the hypertest inputs generated under

the guidance of hypercoverage can effectively expose hyperprop-

erty violations (RQ3), by computing standard information retrieval

metrics (recall and accuracy). Since there are no dynamic verifica-

tion approaches specifically targeting Non-Interference providing

a tool (see Section 5 for a qualitative comparison with the related

work), we compare our approach with a dynamic taint analysis,

that is the most similar dynamic technique allowing to track infor-

mation flows (and, hence, serve as baseline for our tools). For such

comparison, we have chosen the state-of-the-art tool Phosphor [4].
Technically, the latter is not purely dynamic, since it leverages

static program analysis (e.g., to track control-flow relationships, as

described by Hough and Bell [19]).

4.1 Experiment Setting
Program Datasets. In our empirical evaluation, we used the Java

classes provided by IFSpec [17], a collection of Java applications that

are by design vulnerable or non-vulnerable to Non-Interference.

In IFSpec, variables are already tagged with security levels, either

public or confidential, by using RIFL [3] specifications. IFSpec is
intended to be a benchmark to stress the capabilities of static ana-

lyzers that target Non-Interference vulnerabilities. For this reason,

the programs in IFSpec make use of a large portion of the syntactic

structures provided by Java. Since our implementation does not

support yet some of them (e.g., exceptions), we selected the samples

in IFSpec that can be managed by our tool instrumentation, resulting

in 34 vulnerable and non-vulnerable Java classes (FullDataset). To
answer the first research question only the vulnerable programs

are needed, which amounts to 14 samples (UnsecureOnlyDataset).

Experimental Procedure. To answer the previously mentioned re-

search questions, we adopted the following methodology.

(RQ1). We specifically developed a tool that randomly generates

a pool of POOL_SIZE = 1000 hypertest inputs for each program of Un-
secureOnlyDataset. Then, the tool randomly assigns the elements of

such pool to groups of size SAMPLING = 100. For each group, the tool

considers its element in random order, measuring the incremental

hypercoverage reached and associating to each level whether a

Non-Interference violation was exposed or not. Such hypercover-

age level and violation flag pairs have been finally used to compute

the Point-biserial correlation.

(RQ2). Both HyperFuzz and HyperEvo take as input the source

code of the Java class under test and a configuration file containing

the security tags for class and method variables (that we manually

retrieved from the RIFL specification present in IFSpec). Then, the
tools instrument and compile on-the-fly the input class and perform

the hypertesting session. For each program of FullDataset, we run
HyperFuzz and HyperEvo with the same testing budget of MAX_CALLS

= 2000 invocations of the method under test. After completion, we

collected the reached level of hypercoverage for both tools. Due

to non-deterministic components present in the hypertest input

generation, each tool (for each program) has been run 5 times,

measuring then the average hypercoverage.

(RQ3). Phosphor requires a manual modification of the program

source code, in order to insert the information needed to perform

instrumentation. In particular, sources (confidential variables in our

case) and sinks (public variables in our case) must be wrapped into

specific calls to Phosphor’s APIs (again, variables security levels have
been manually retrieved from the RIFL specifications present in

IFSpec). For each program of FullDataset, we runHyperFuzz,HyperEvo
and Phosphor (the first twowith a testing budget of MAX_CALLS = 2000
invocation of themethod under test, while the third does not require

any analysis budget to be set). After completion, we retrieved the

testing/analysis results for all tools. HyperFuzz and HyperEvo output
directly whether Non-Interference violations have been found or

not, while Phosphor outputs the possible taint tag of each sink.

We considered a Non-Interference violation for Phosphor as the
fact that a public variable is tainted by a label corresponding to a

confidential variable (indicating a dependence between the latter

and the former). Due to non-deterministic components present in

all approaches, each tool (for each program) has been run 5 times.

Collected Metrics. To answer RQ1 we compute the correlation be-

tween the number of value-insensitive hypercoverage goals covered

and the detection of a Non-Interference vulnerability. Since in our

dataset each sample contains only one vulnerability, the outcome

of the testing is binary (violation found or not). Hence, we apply

the Point-biserial correlation, a standard correlation coefficient

(denoted as R) to be used when one variable is dichotomous.
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To answer RQ2 we compute the coverage level reached by our

hypertesting approach, for both HyperFuzz and HyperEvo versions.
To answer RQ3 we compare the Non-Interference violations

(unsafe programs) found during the hypertesting sessions with

the ground truth provided by IFSpec. In particular, we adopt the

following standard information retrieval metrics.

True Positives (TP) That is, the number of unsafe programs

that are correctly detected as unsafe.

False Positives (FP) That is, the number of programs reported

as unsafe that correspond to safe ones (i.e., false alarms).

False Negatives (FN) That is, the number of unreported un-

safe programs (i.e., missed violations).

True Negatives (TN) That is, the number of safe programs

that are correctly detected as safe.

While, by construction, HyperFuzz and HyperEvo, report only hy-

pertests that provably produce a Non-Interference violation, Phos-
phor might instead report a public variable as incorrectly tainted.

This may happen for two reasons: because Phosphor approximates

a hyperproperty (Non-Interference) with a trace property (taint

propagation); or, because of dynamic overtainting, i.e., because it
conservatively propagates the taint tag when the information flow

is unknown (e.g., when information flows into native code or into

black-box library components that cannot be instrumented). Hence,

only Phosphor could potentially report false positives.

Since our technique has FP = 0 by construction, to evaluate its

accuracy the most interesting metrics are TP and FN, which can be

combined into the True Positives Rate (TPR) (aka recall). We also

compute a single accuracy metricAccuracy (ACC), that aggregates
all correct predictions against all performed predictions.

TPR ≜ TP / FN+TP ACC ≜ TP+TN / FN+FP+TP+TN
False positives FP are measured for Phosphor only, as they are by

construction zero for HyperFuzz and HyperEvo. In our empirical eva-

luation, we consider a false (resp. true) negative for HyperFuzz and
HyperEvo when they output LIKELY_SAFE or GIVE_UP for an unsecure

(resp. secure) program.

4.2 Experimental Results
Table 1 shows the Point-biserial correlation R between the level of

hypercoverage achieved by randomly generated hypertest inputs

and the corresponding boolean variable stating whether a Non-

Interference vulnerability was exposed or not by the hypertest. The

𝑝-values indicate that all correlations are significantly different

from 0. Actually, most of them indicate strong correlation, with

a value greater than 0.7 (green-highlighted in Table 1). Based on

these results, we can formulate the following answer to RQ1.

RQ1 (Correlation) The value-insensitive hypercoverage crite-
rion helps in discovering Non-Interference violations, since there
is an overall positive and significant correlation between the in-
creasing number of value-insensitive hypercoverage goals covered
and the likelihood of detecting a Non-Interference violation.

Table 2 (Coverage columns) shows the number of hypercoverage

goals identified in each Java program (column Goals) followed by

the proportion of such goals covered by HyperFuzz and HyperEvo, re-
spectively. In general, the achieved level of coverage is high for both

Table 1: Correlation results

Sample (UnsecureOnlyDataset) R 𝑝-value

Aliasing-ControlFlow-u 0.3376 0.0154

Aliasing-InterProcedural-u 0.7071 0.0000

Aliasing-Nested-u 0.7071 0.0000

Aliasing-Simple-u 0.6547 0.0000

Arrays-ImplicitLeak-u 0.5787 0.0000

BooleanOperations-u 1.0000 0.0000

Deepalias-u 0.1286 0.0315

Deepcall-u 1.0000 0.0000

DirectAssignment-u 1.0000 0.0000

DirectAssignmentLeak-u 1.0000 0.0000

HighCond.IncrementalLeak-u 0.7071 0.0000

IFLoop-u 0.5222 0.0000

ScenarioPassword-u 0.5078 0.0000

SimpleArraySize-u 0.8660 0.0000

Weak Positive:

0 < R ≤ 0.3

Positive:

0.3 < R ≤ 0.7

Strong Positive:

0.7 < R ≤ 1

HyperFuzz and HyperEvo, which indicates that on this benchmark

both proposed generation strategies (fuzzing and search-based) are

generally effective. However, there is also evidence that the search-

based strategy can be more effective than fuzzing: on Aliasing-
ControlFlow-u and Arrays-ImplicitLeak-u HyperEvo achieves 100%
coverage, while HyperFuzz achieves respectively 67% and 62% cov-

erage. We manually investigated the reasons for such a difference

and found that the hypercoverage goals missed by fuzzing require a

smart selection of the confidential inputs values, because a specific

path, yielding when traversing the code guarded by a non-trivial

conditional, has to be taken to reach them.

There are also two instances inwhich full coverage is not reached,

neither by HyperEvo nor by HyperFuzz, that are ScenarioPassword-s
and ScenarioPassword-u. We manually investigated the hypercov-

erage goals missed by both implementations of our approach and

found that they are both infeasible goals (Definition 2.6), hence

associated with paths that cannot be covered by any pair of in-

puts satisfying the input predicate. Based on these results, we can

formulate the following answer to RQ2.

RQ2 (Coverage) The proposed hypertesting approach is very
effective in covering value-insensitive hypercoverage goals, since
it obtains full-coverage in the majority of the considered case
studies and, overall, the coverage reached is never less than 43%.

Table 2 (Violations columns) shows the ground truth classifica-

tion of each Java program, which can be secure (✓) or unsecure (✗).
The outcome of each tool being compared is reported in the follow-

ing columns. In particular, column Phosphor reports secure (✓) (resp.

unsecure (✗)) when the taint tag associated with confidential vari-

ables propagates to a public variable in a program execution, while

columns HyperFuzz and HyperEvo report secure (✓) (resp. unsecure
(✗)) when an automatically generated hypertest input provides a

counterexample violating Non-Interference, i.e., the tool generated

a pair of executions differing only on the value of some confidential

input variables, eventually affecting the value of some public output

variables, which differ between the two executions.

We can notice that in many cases there is agreement with the

ground truth across the three tools: they all find the vulnerability,

if present, or report no alarm if the code is secure. Disagreements

with ground truth are indicated with a red background. There

are two instances in which both Phosphor and HyperFuzz miss the
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Table 2: Hypercoverage and Accuracy results

Sample (FullDataset) Coverage (RQ2) Violations (RQ3)

Go
al
s

H
yp
er
Fu
zz

H
yp
er
Ev
o

Gr
ou
nd

Tr
ut
h

Ph
os
ph
or

H
yp
er
Fu
zz

H
yp
er
Ev
o

Aliasing-ControlFlow-s 6 1.00 1.00 ✓ ✓ ✓ ✓
Aliasing-ControlFlow-u 6 0.67 1.00 ✗ ✓ ✓ ✗
Aliasing-InterProcedural-s 4 1.00 1.00 ✓ ✓ ✓ ✓
Aliasing-InterProcedural-u 4 1.00 1.00 ✗ ✗ ✗ ✗
Aliasing-Nested-s 5 1.00 1.00 ✓ ✓ ✓ ✓
Aliasing-Nested-u 4 1.00 1.00 ✗ ✗ ✗ ✗
Aliasing-Simple-s 3 1.00 1.00 ✓ ✓ ✓ ✓
Aliasing-Simple-u 5 1.00 1.00 ✗ ✗ ✗ ✗
Aliasing-StrongUpdate-s 7 1.00 1.00 ✓ ✓ ✓ ✓
ArrayIndexSensitivity-s 3 1.00 1.00 ✓ ✓ ✓ ✓
ArraySizeStrongUpdate-s 4 1.00 1.00 ✓ ✓ ✓ ✓
Arrays-ImplicitLeak-s 8 1.00 1.00 ✓ ✓ ✓ ✓
Arrays-ImplicitLeak-u 8 0.62 0.97 ✗ ✓ ✓ ✗
BooleanOperations-s 1 1.00 1.00 ✓ ✓ ✓ ✓
BooleanOperations-u 1 1.00 1.00 ✗ ✓ ✗ ✗
CallContext-s 3 1.00 1.00 ✓ ✓ ✓ ✓
Deepalias-s 27 1.00 1.00 ✓ ✓ ✓ ✓
Deepalias-u 27 1.00 1.00 ✗ ✗ ✗ ✗
Deepcall-s 1 1.00 1.00 ✓ ✓ ✓ ✓
Deepcall-u 1 1.00 1.00 ✗ ✗ ✗ ✗
DirectAssignment-s 1 1.00 1.00 ✓ ✓ ✓ ✓
DirectAssignment-u 1 1.00 1.00 ✗ ✗ ✗ ✗
DirectAssignmentLeak-u 1 1.00 1.00 ✗ ✗ ✗ ✗
HighCond.Incr.Leak-s 1 1.00 1.00 ✓ ✓ ✓ ✓
HighCond.Incr.Leak-u 3 1.00 1.00 ✗ ✓ ✗ ✗
IFLoop-s 16 1.00 1.00 ✓ ✓ ✓ ✓
IFLoop-u 9 1.00 1.00 ✗ ✗ ✗ ✗
IFMethodContractA-s 7 1.00 1.00 ✓ ✓ ✓ ✓
IFMethodContractB-s 7 1.00 0.97 ✓ ✓ ✓ ✓
LostInCast-s 4 1.00 1.00 ✓ ✗ ✓ ✓
ScenarioPassword-s 7 0.43 0.43 ✓ ✓ ✓ ✓
ScenarioPassword-u 12 0.50 0.50 ✗ ✓ ✗ ✗
SimpleArraySize-u 2 1.00 1.00 ✗ ✗ ✗ ✗
Simp.Eras.ByCond.Checks-s 11 1.00 1.00 ✓ ✓ ✓ ✓

TPR 0.64 0.86 1.00

ACC 0.82 0.94 1.00

vulnerability, while HyperEvo can detect it: Aliasing-ControlFlow-u
and Arrays-ImplicitLeak-u. Not surprisingly, these are the same

two cases where HyperEvo achieved higher hypercoverage than

HyperFuzz, which shows the usefulness of hypercoverage as ade-

quacy criterion for hyperproperty testing: by achieving 100% hy-

percoverage, HyperEvo can also expose the vulnerabilities in these

two Java programs, while HyperFuzz misses some hypercoverage

goals and correspondingly misses also the vulnerability present

in these two programs. It is interesting that Phosphor misses these

two vulnerabilities as well. In fact, Phosphor does not rely on hy-

percoverage. Actually, the taint propagation path that would lead

Phosphor to expose the vulnerability was manually found to be also

involved in the hypercoverage goals missed by HyperFuzz, thus con-
firming that a search-based strategy might be needed to look for

inputs that exercise specific, vulnerable paths. In three more cases

Phosphor missed the vulnerability, while HyperFuzz and HyperEvo
are able to detected it: BooleanOperations-u, HighCond.Incr.Leak-u
and ScenarioPassword-u. By manually investigating these cases, we

found that taint tags should have been propagated along a path that

involves an implicit information flow (e.g., inside a loop). Implicit

flows are hard to catch by using (not-hyper) dynamic techniques,

that use syntactic dependencies to approximate Non-Interference.

Overall, HyperEvo achieves 100% TPR and ACC, HyperFuzz 86%
TPR (94% ACC) and Phosphor 64% TPR (82% ACC). By construc-

tion, all vulnerabilities reported by HyperFuzz and HyperEvo cannot
be false alarms, as the executions exposing the vulnerability are

explicitly run and checked to be true positives during the test gener-

ation process. On the contrary, dynamic taint analysis is potentially

subject to false alarms, in case of over-tainting. Indeed, Phosphor
erroneously detects the program LostInCast-s as vulnerable. By
manually investigating this case, we found that the information

flow from a confidential variable to a public one is nullified, at some

point during program execution, by a cast operation (that drops

the four most significant bytes of the confidential variable). Such

kind of alarms are quite hard to rule out without comparing two

executions of the program and, indeed, Phosphor conservatively
marks such syntactic dependency as a (potential) violation. Based

on the results, we can provide the following answer to RQ3.

RQ3 (Effectiveness) The proposed hypertesting approach is very
accurate in detecting Non-Interference vulnerabilities, since it
outperforms state-of-the-art dynamic taint analysis. In particular,
HyperFuzz and HyperEvo reach an accuracy of 94% and 100%,
respectively, while Phosphor reaches an accuracy of 82% only.

4.3 Threats to Validity
Internal Validity. Internal validity threats are due to the metrics

chosen to answer the research questions. We adopted standard met-

rics from statistics (correlation), structural testing (coverage) and

information retrieval (true positive rate, accuracy) that are directly

related to the respective research questions. However, different

metrics might provide different insights and view points.

External Validity. External validity threats are associated with the

generalizability of our findings beyond the considered benchmark.

We do not claim any form of general validity of our results beyond

the benchmark and we believe that future replications and exten-

sions of the empirical study are needed to corroborate our findings.

We chose a subset of the standard benchmark IFSpec, such that our

tools could be applied to it, resulting in 34 Java programs.

5 RELATEDWORK
Among all works in V&V, only some static approaches systemat-
ically deal with hyperproperties, in particular using abstract in-

terpretation [2, 23] or model-checking [16, 20]. The latter define

a hyperlogic, i.e., a temporal logic quantifying over sets of execu-

tions. Unfortunately, only a small fragment of this logic is decidable,

hence statically verifiable. The drawback of static approaches to

hyperproperty verification is their imprecision: hyperproperties are

often quite complex, hence resulting in a very coarse analysis. In-

deed, a dynamic approach would be potentially more effective but,

to the best of our knowledge, there are only few dynamic methods

designed to verify hyperproperties [18, 27–31].

Muduli et al. [29] use fuzzing to generate test cases for generic

hyperproperties in the context of Systems-on-Chip (SoC). The ap-

proach randomly generates pairs of inputs and checks pairs of

executions, but test generation is unguided (there is no target hy-

percoverage adequacy criteria, as in our approach) and the proposed

technique is designed for a very narrow application context (SoC),

which makes it difficult to compare with our approach.
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Fuzzing-based approaches, such as DifFuzz [30], ct-fuzz [18] and

QFuzz [31], test programs against side-channel leaks, that are hyper-
properties (e.g., timing guarantee). Nevertheless, Non-Interference

violations and side-channel leaks are not in general comparable. In

such fuzzers, test generation, which exploits either multi-executions

[7, 30, 31] or self-composition [18], is essentially random, and not

guided by the hyperproperty to test as in our approach. Since test

generation in such works is random, hence similar to that imple-

mented in HyperFuzz, we believe that our empirical results support

already an indirect comparison with these approaches.

Concerning information-flows, the closest work is HyperGI [28],

a technique that uses multiple program executions to measure infor-

mation leaks and to repair them by using genetic improvement. By

resorting to entropy-based measures, HyperGI checks Quantitative
Non-Interference [9, 36]. Nevertheless, their focus is on program

repair rather than test input generation (our paper’s focus). Indeed,

in HyperGI input generation is based on a binary search, that itera-

tively halves the input space and selects some public inputs from

each half. Then, confidential inputs are altered, in order to spot

changes in the output. Since they hold several similarities, we could

have compared HyperGI with HyperFuzz and HyperEvo, but, unfor-
tunately, the tool is not available. HyperGI’s follow-up work [27]

proposes LeakReducer, that improves the repair phase of HyperGI

by adopting a multi-objective approach, keeping unchanged the test

input generation phase. Again, we could have compared LeakRe-

ducer with HyperFuzz and HyperEvo, but the tool is not available.
Finally, some other V&V works verify Non-Interference by using

abstract interpretation [24] or hybrid monitors [22].

Metamorphic Testing. As in our approach, Metamorphic Testing
(MT) [8] also exploits multiple program executions. In MT some

necessary properties of the program are identified, taking the form

of metamorphic relations (MR) among multiple inputs and their

expected outputs. Such relations are used to transform existing

(source) test cases into new (follow-up) ones, which by construction

satisfy the input part of the MR. A bug is found when source and

follow-up test cases satisfy the input but not the output part of a

MR. Indeed, MT was proposed as a method to alleviate the oracle

problem when testing programs whose expected behaviour is diffi-

cult or impossible to anticipate (e.g., machine learning techniques).

Even when a thorough oracle cannot be defined, if the actual out-

puts of source and follow-up tests violate a certain MR, we can say

that the program under test is faulty w.r.t. the program property

associated with that relation.

In this respect, a metamorphic relation can be seen as a particular

𝑘-hyperproperty. However, MT does not provide any guidance on

how to verify/refute such relation, in contrast to our framework that

derives a hypercoverage adequacy criterion from the hyperproperty,

in order to craft specific inputs that may refute it. We believe that

our frameworkmay help in improvingMT approaches, by providing

them with a guiding adequacy criterion for MR violation. Our

framework represents a step toward the systematic testing of 𝑘-

hyperproperties, which include metamorphic relations.

Mutation Testing. Mutation testing [1] can be formulated as a

hyperproperty problem, where multi-executions are given by the

mutated and the non-mutated versions of the program and the

predicate to check is equality. Indeed, Fellner et al. [14] exploit

such correspondence to reuse hyperproperty formal verification

machinery (i.e., model-checking) to perform mutation testing. So,

differently from us, their goal is not to check a hyperproperty but,

rather, to improve mutation testing. As mutation testing can be

encoded into a hyperproperty, we may use our approach to craft

inputs suitable for improving mutation testing as well.

6 CONCLUSION
We have proposed a novel testing framework for hyperproperty

testing, consisting of an adequacy criterion, a structural search

metaheuristic and a test generation approach. The adequacy crite-

rion, called hypercoverage, was designed to force the exploration

of the different variable value assignments, possibly involved in

a hyperproperty violation. The test generation approach has two

instances, HyperFuzz and HyperEvo, respectively based on fuzzing

and search algorithms. The latter takes advantage of the proposed

distance metaheuristic to lead test generation to the satisfaction of a

hypercoverage goal, which allowed us to formulate hyperproperty

testing as an optimization problem in the hypertest input space,

solved by the HyperEvo multi-objective search algorithm.

Experimental results confirmed the validity of our framework, at

least for the hyperproperty considered in the evaluation (i.e., Non-

Interference), by showing that inputs achieving high hypercoverage

have a higher chance of exposing hyperproperty violations, and

that both tools HyperFuzz and HyperEvo achieve high hypercoverage

and correspondingly detect a high number of vulnerabilities in the

considered benchmark. They both outperformed the state-of-the-

art dynamic taint analysis tool Phosphor. Between them, HyperEvo
showed marginal advantages on Java programs that require specific

input combinations both to reach the target hypercoverage goals

and to expose the vulnerabilities contained in these programs.

Even if the empirical evaluation has been conducted on a specific

hyperproperty (i.e., Non-Interference), we believe that the proposed

framework is applicable to any 𝑘-bounded hyperproperty [23]. In

future work, we want to extend the applicability of HyperFuzz and
HyperEvo to other hyperproperties, beyond Non-Interference, and

we want to test them on additional, more complex, programs.
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