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Abstract—Mass assignment is one of the most prominent
vulnerabilities in RESTful APIs, that originates from a miscon-
figuration in common web frameworks. This allows attackers
to exploit naming convention and automatic binding in order to
craft malicious requests that either: write sensitive resources sup-
posed to be confidential; or (massively) override data supposed
to be read-only.

In this paper, we adopt a black-box testing perspective to
automatically detect mass assignment vulnerabilities in RESTful
APIs. Indeed, execution scenarios are generated purely based
on the OpenAPI specification, that lists the available operations
and their message format. Clustering is used to group similar
operations and reveal read-only fields, the latter are candidates
for mass assignment. Then, test interaction sequences are auto-
matically generated by instantiating abstract testing templates,
with the aim of trying to use the read-only fields found to carry
out a mass assignment attack. Test interactions are run, and
their execution is assessed by a specific oracle, in order to reveal
whether the vulnerability could be successfully exploited.

The proposed novel approach has been implemented and eval-
uated on a set of case studies written in different programming
languages. The evaluation highlights that the approach is quite
effective in detecting seeded vulnerabilities, with a remarkably
high accuracy.

Index Terms—REST API, Security testing, Black-box testing,
Automated software testing, Mass assignment

I. INTRODUCTION

RESTful APIs (or REST APIs for short) are becoming
the standard technology to access web-oriented resources and
to interconnect software systems across the public Internet.
They operate on the web using the HTTP protocol, typically
exchanging JSON payloads, and for this reason they are also
known as Web APIs.

Considering their dominant responsibility as cornerstone
integration technology to interconnect different computer sys-
tems, it is crucial to reveal defects and vulnerabilities in their
implementation as soon as possible. In fact, the security of the
overall integrated system builds on top of the security of the
atomic REST APIs that take part to the composition.

Specific vulnerabilities are known to impend REST APIs,
as reported by the OWASP Foundation in their annual survey1.
In particular, mass assignment is among the most prominent
vulnerabilities that are peculiar to this programming domain.
This vulnerability originates from a wrong configuration of
common REST API frameworks, that typically provide an

1https://owasp.org/www-project-api-security/

automatic binding between input data fields (controlled by
a potential attacker) to internal data representation (e.g., to
database columns). A successful exploit to a mass assignment
vulnerability would allow attackers to manipulate private data,
provided that they are able to guess names in the internal data
structures (e.g., database tables/columns) used by the API.

A largely adopted perspective adopted to automatically test
REST APIs [1]–[5] is black-box testing, that does not require
access to the APIs source code. In this context, test scenarios
are generated by only using the API formal documentation
(the API specification), as provided by developers. Also in
the present work we adopt a black-box approach, since it
allows to successfully test REST APIs that are implemented
in different languages, that are based on any possible REST
framework, and that are possibly composed by closed-source
components. Indeed, a black-box perspective allows testing
REST APIs independently of their internal architecture (typi-
cally microservice oriented).

In this paper, we propose a novel approach to automatically
test REST APIs with respect to mass assignment vulnerabil-
ities. The specification of the REST API to test is analyzed
to identify what data should not be overwritten by incoming
requests, namely data that are supposed to be read-only and,
hence, candidate for mass assignment attacks. Our analysis
first identifies groups of operations dealing with similar data
using clustering, then some heuristics are exploited to identify
read-only fields. Subsequently, concrete test scenarios are au-
tomatically generated by instantiating a catalog of abstract test
templates. Eventually, a security oracle monitors the execution
of these test cases to reveal when a vulnerability is exposed.

An empirical assessment suggests that our approach is
very accurate in detecting mass assignment vulnerabilities, in
fact every vulnerability could be detected in almost all the
considered case studies, with no false positives.

To the best of our knowledge, no automated black-box
approach is available in literature to detect mass assignment
vulnerabilities in REST APIs.

The paper is organized as follows. After covering the
required background on REST APIs and mass assignment in
Section II, Section III presents our novel testing approach for
mass assignment. Section IV presents the definition of our
experimental design, while Section V applies it and comments
the collected results. After comparing our approach with
related work in Section VI, Section VII closes the paper.

https://owasp.org/www-project-api-security/


/users:
get:

operationId: retrieve_all_users
responses:
’200’:
description: See all details of the users
content:
application/json:

schema:
type: array
items:
type: object
properties:

admin:
type: boolean

email:
type: string

password:
type: string

username:
type: string

/users/register:
post:

operationId: register_new_user
requestBody:
content:
application/json:
required: true
schema:

type: object
properties:
username:
type: string

password:
type: string

email:
type: string

Fig. 1. Part of the OpenAPI specification for VAmPI.

II. BACKGROUND

A. RESTful APIs

A RESTful API is a web API that adheres to the REST
(REpresentational State Transfer) architectural style [6]. REST
APIs provide a uniform interface to create (C), read (R),
update (U ) and delete (D) resources (known as CRUD se-
mantics). A resource is identified by a HTTP URI and CRUD
operations are typically mapped to the HTTP methods POST,
GET, PUT (or PATCH) and DELETE.

As an example, consider VAmPI2, an intentionally vulnera-
ble open source REST API for the management of users and
books in a library. The HTTP URI pointing to a user resource
is /users, while the HTTP operations GET /users and POST

/users/register are used to retrieve the list of registered
users and to register a new user in the system, respectively.

A REST API may accept input parameters to specify
additional information for executing an operation, such as the
identifier of the user to retrieve (e.g., /users/{username})
or a structured object to be registered in the system in the
body of the request by means of a POST method.

B. The OpenAPI Specification

OpenAPI3 defines a standard to document REST APIs.
According to OpenAPI, an API is described by using a

2https://github.com/erev0s/VAmPI
3https://www.openapis.org/

structured file (either YAML or JSON) that specifies how to
reach the API using a URI, which authentication schema is
adopted, and the details of all the operations available in the
API. In particular, for each operation, the input parameters
(and their schema) to be used in requests, and the schema of
responses are given.

Figure 1 contains an excerpt of the OpenAPI specification
for our example VAmPI. After an initial header that specifies
versions, licenses, and the base URL of the API (not shown
in the code for space reasons), the OpenAPI specification
contains an array of paths, namely the list of URL paths avail-
able in the API. In our example, we just focus on two URL
paths: /users and /users/register. Each path supports
one or more HTTP methods. A path together with an HTTP
method composes an operation, which is usually identified
by an operation ID. For instance, the operation GET/users,
with id retrieve_all_users, is used to retrieve the list
of all registered users in the system, while the operation
POST/users/register, with id register_new_user, is
meant to register a new user in the system.

Operations input and output are associated to a schema
that specifies their type and, optionally, a set of constraints
on values (e.g., a minimum or maximum value for nu-
meric parameters). Types can be atomic (e.g., integers and
strings) or structured (i.e., compound objects). For instance,
the register_new_user operation expects a request body
containing a JSON object with three string fields: username,
password and email. Similarly, the response schema of
the retrieve_all_users operation is an array of JSON
objects, each one composed by four fields: three string fields
username, password and email; and a boolean field admin.

C. Mass Assignment Vulnerability

Developers usually rely on frameworks to develop their
REST API. These frameworks, available for all the major
web programming languages, provide a set of features and
automations to speed up and simplify the development of a
REST API. Among the most adopted frameworks we find
Spring (Java), Express.js (JavaScript), FastAPI (Python), Flask
(Python), Laravel (PHP), and Slim (PHP).

A common feature supported by REST API frameworks is
to use a naming convention to automatically map input data
in HTTP requests to the back-end data representation used
by the REST API (e.g., to map input parameters to database
columns) when they have the same name. This binding is
typically enabled by default, and it allows speeding up the
development of REST APIs by simplifying the flow of data.

As stated by the OWASP Foundation, a REST API is said to
be vulnerable to mass assignment, also known as auto-binding
vulnerability or object injection vulnerability, when the value
of a resource meant to be read-only can be manipulated by ex-
ternal users, by exploiting a misconfiguration of the automatic
parameter binding provided by REST API frameworks.

For instance, VAmPI is built on top of the Flask framework,
that automatically maps the JSON user object in an HTTP
request to the User Python class, that is eventually mapped

https://github.com/erev0s/VAmPI
https://www.openapis.org/


to the users database table. The users table (and the User

class) contains an admin boolean column (class field) meant
to be read-only, i.e., while other properties of a user are meant
to be editable (e.g., the password or the email fields), the
admin field is supposed not to be changed by using the API
public operations. Indeed, such field is not documented among
the input parameters of any operation in the VAmPI OpenAPI
specification.

However, if the REST framework is not properly con-
figured (as in the case of the default configuration), then
the framework will automatically bind an additional admin
HTTP parameter in register_new_user requests to the
corresponding admin column in the users database table.
An attacker could forge a request to the operation POST

/users/register meant to register a new user, by injecting
an additional admin parameter, that is not mentioned in the
OpenAPI specification. The additional parameter admin is
automatically linked to the admin column in the users table,
so the HTTP parameter value controlled by the attacker will
overwrite the legitimate value in the database.

Automatic binding boosts productivity by dispensing de-
velopers from the manual configuration of input/output pa-
rameters and the internal data representation. Nevertheless,
the blind use of this feature often leads to mass assignment
vulnerabilities. REST API frameworks nowadays provide a
way to mitigate this vulnerability, by allowing developers to
explicitly define which HTTP input parameters are allowed
to be mapped to the internal data representation. However,
developers should be aware of mass assignment vulnerabilities
in order to apply this mitigation correctly. As a matter of fact,
the mass assignment vulnerability is still widespread and listed
among the most common vulnerabilities in REST APIs.

III. TESTING MASS ASSIGNMENT

The OWASP Foundation provides some guidelines [7] to
detect and mitigate mass assignment vulnerabilities, even in
the case when APIs source code is not accessible (i.e., from a
black-box perspective). Such guidelines require the identifica-
tion of HTTP requests that may create or update resources in
the back-end, and the identification of sensitive object fields
(e.g., an admin attribute) by analyzing the responses received
from the API. Guidelines are meant to be manually exploited
by developers, hence they do not provide any hint on how
to automate the process of mass assignment vulnerabilities
detection.

We propose a security testing approach to automatically
find potential mass assignment vulnerabilities in REST APIs.
Usually, the source code of a REST API is not (or just
partially) available. Furthermore, REST APIs are typically
composed by many dynamically allocated distributed com-
ponents (distinctive of a microservices architecture), making
source code analysis computationally challenging. For these
reasons, we adopt a black-box perspective, i.e., our approach
does not assume source code access. This also implies that
our approach is applicable to any REST API, independently
of the programming language or framework used for its

implementation. The only requirements of our approach are:
(i) the availability of an OpenAPI specification, to retrieve
operations and their input/output message format; and (ii)
black-box HTTP access to the REST API under test, to send
test requests and receive responses.

A. The Proposed Approach

Our strategy to test mass assignment vulnerabilities is
composed of three main parts.
Identification of Read-only Attributes The OpenAPI specifi-

cation of the REST API under test is parsed, in order to
list its operations and their input/output attributes. Opera-
tions are subject to clustering, to group together those that
handle similar data resources. Operations handling similar
resources are then compared, in order to find read-only
attributes, i.e., that appear as output of read operations,
but not as input of write operations. These fields are the
candidate for mass assignment vulnerabilities.

Test Case Generation Test scenarios are automatically gener-
ated as sequences of requests, with the aim of trying to
overwrite read-only attributes. Test cases are generated by
computing concrete interactions, starting from abstract
testing templates, specifically designed to identify mass
assignment vulnerabilities.

Security Oracle Test cases are executed on the REST API
under test, and their execution is monitored by a security
oracle. The oracle reveals a successful exploitation of a
mass assignment vulnerability when a test case manages
to overwrite a read-only parameter.

In the following, we will explain in detail all the aforemen-
tioned parts.

1) Identification of Read-only Attributes: The first step
towards testing mass assignment vulnerabilities consists in
the identification of read-only attributes (according to the
OpenAPI specification) since they are potential targets of
successful attacks. In particular, this requires to identify if
operations read data or write data (i.e., to infer operations
CRUD semantics), and to identify if such read or write actions
are performed on the same resource instance.

a) CRUD Semantics and Operations Resources: We pro-
pose an automatic procedure to infer operations CRUD seman-
tics and the resources that operations act on. This information
is collected by inspecting the OpenAPI specification only.

To infer operations CRUD semantics we rely on their
HTTP method as follows. We assume that POST methods
are used to create (that we annotate as C) resources, while
GET methods are used to read resources. We distinguish
reading a single resource (that we annotate as R) when the
return schema type is a single object, from reading multiple
resources at once, that we call read-multi (that we annotate
as RM ), when the schema return type is an array of objects.
Furthermore, PUT and PATCH methods are considered to be
used to update (that we annotate as U ) resources, while
DELETE methods (that we annotate as D) are considered to
be used to delete resources. Despite there is no constraint
for REST APIs to meet this mapping, programmers typically



TABLE I
BOOLEAN ENCODING OF OPERATION PARAMETERS FOR CLUSTERING.

Operation admin email password usernam

register_new_user false true true true
retrieve_all_users true true true true

follow this convention: the converse is generally considered an
antipattern and a bad practice [8]. With respect to the example
in Figure 1, the operation GET/users is tagged as read-multi
(RM ), in fact its return type is an array, while the operation
POST/users/register is recognized as create (C).

In order to detect read-only attributes it is important to
understand when operations handle the same type of resource,
either in read or in write mode. Hence, once operations
CRUD semantics is inferred, we group operations by resource
type. For instance, the example in Figure 1, operations han-
dle user resources, even if not explicitly mentioned in the
specification. Moreover, operations handling the same type of
resource rarely operate on exactly the same set of fields. For
instance, register_new_user has three input parameters,
while retrieve_all_users has four output parameters.

In order to group together operations with the most similar
parameters, we use clustering. We collect the names of the
input/output parameters for all the operations in the OpenAPI
specification. These names are normalized using the Porter
stemming algorithm [9], to keep only the root of words (e.g.,
in case singular/plural is used). After this, duplicate names
are discarded and the remaining ones are sorted alphabet-
ically into a global list. Eventually, as shown in Table I,
each operation is encoded as a boolean array, with the i-th
element of the array set to true, when the i-th parameter
in the global list is an input or output parameter of this
operation, according to the OpenAPI specification. Then, we
apply the expectation maximization (EM) clustering algorithm
on this operation representation. The EM clustering algorithm
automatically determines the optimal number of clusters, and
which operations belong to each cluster, based on common
parameters. In our example, it is very likely that the operations
retrieve_all_users and register_new_user would be
assigned to the same cluster of user resources, because they
have a very similar set of input/output parameters.

Despite adopting the same path for resources of the same
type is considered a best practice in REST API development,
in real-world projects this convention is often not adopted.
The same resource is often handled by operations under
different paths. Hence, when applying clustering we consider
all operations, independently of their path.

Finally, it is not enough to understand when operations
insist on the same resource type (e.g., on user). We have
also to detect when the same resource instance is used in
subsequent operations in a test scenario (e.g., the same user

instance), namely we detect resource identifiers. To achieve
this objective, we detect parameters that act as resource
(unique) identifiers, that we call the resource-ids, commonly
used by REST APIs.

We recognize the resource-id with a simple but effective
heuristic that relies on common naming practices4. Among
the input/output parameters in an operation, we consider as
resource-id the field that ends with the suffix “id” or “name”.
In case more than one field satisfies this simple pattern, in
a complex schema with different level of nesting, we pick
the less nested field. In case we find more than one field at
the same level, we prefer the one with id as suffix. In case
the selection is still not unique, we take the first one. In our
example, the field username would be selected as resource-id
for all the operations on the resource user.

b) Specification Annotation: Once CRUD semantics, re-
source types and resource-ids are identified, they are saved in
the OpenAPI itself. To this aim, we elaborated an annotation
syntax to add these information to the OpenAPI specification.
Annotations are based on custom extension fields as follows.
x-operationSemantics Annotates an operation with its

CRUD semantics. This field can be create, read,
update, delete, read-multi, or other5.

x-resourceType Annotates an operation with the type of
the handled resource and accepts a string value.

x-resourceIdentifier When set to true, annotates the
parameter that is used as resource-id in the operation.

Note that, alternatively, a developer might manually anno-
tate the OpenAPI with these custom tags to skip our automated
detection. In fact, despite guidelines and best practices inspired
our identifications of the CRUD semantics, resource types and
resource-ids detection might be imprecise.

c) Read-only Parameters Detection: After all the re-
quired information is collected, we can start the actual iden-
tification of read-only parameters. Inspecting the tags in the
instrumented specification (either by means of the clustering
or manually), operations that handle resources of the same
type are grouped together. Read-only parameters are simply
detected as those parameters that are available as output in
read (R, or RM ) operations, but are never used as input in
create (C) nor update (U ) operation in the same group.

In our example, the admin parameter would be classified
as read-only, because it can be accessed by the read opera-
tion GET/users, but it can never be modified by the write
operation POST/users/register.

2) Test Case Generation: After read-only fields are iden-
tified, we need to generate execution scenarios that indeed
attempt at overwriting them. The testing approach relies on
abstract test templates that adopt the following notation.

• For a resource of type τ , requests to operations involving
τ resources are labeled as Cτ , Rτ , RMτ , Uτ , and Dτ ,
to represent, respectively, requests meant to create, read,
read multiple resources, update or delete a resource of
type τ .

• An operation request is labeled with the plus symbol
C+f
τ , when a request to the operation Cτ is modified

4https://restfulapi.net/resource-naming/
5The annotation other indicates that the operation semantics is present

for the operation, since it does not involve any resource (e.g., login operations).

https://restfulapi.net/resource-naming/


by adding the extra parameter f that is not documented
in the specification of C, in the attempt of overwriting
the read-only attribute f .

• A sequence of requests is tagged with the question mark
when it is optional (but recommended). They can be used,
for instance, to clean up the REST API from testing data.
a) Abstract Test Templates: An abstract test template is

formalized as a sequence of labels describing operations and
resources type. In particular, we identified two abstract test
templates.

Template 1: Update-injection Sequence

〈 Cτ , Rτ , U+f
τ , Rτ , (Dτ , Rτ )

? 〉

This sequence is intended to test a potential mass assign-
ment vulnerability in the update operation Uτ . The sequence
starts with the creation of a resource in the REST API. A
read operation on this resource is then performed to check a
successful creation. The third operation is the update operation
U+f
τ in which the read-only parameter f is injected. The

subsequent read operation Rτ is meant to check if the exploit
is successful, by comparing the value of f before and after the
injection U+f

τ . In case the read-only parameter has changed,
a mass assignment vulnerability has been exposed.

Additionally, the created resource may be deleted, with the
aim of cleaning testing side effects (i.e., testing data). In this
case, a last read operation checks if the resource has been
successfully deleted or if it is still present (i.e., the delete
operation has failed).

Template 2: Create-injection Sequence

〈 C+f
τ , Rτ , (Dτ , Rτ )

? 〉

This sequence is intended to test a potential mass assign-
ment vulnerability in the create operation Cτ . The first opera-
tion in the sequence tries to create a resource by specifying an
additional read-only parameter. Subsequently, a read operation
checks if the read-only parameter in the new fresh resource
has been successfully written.

As in the previous case, two optional requests close the
sequence to clean the state of the REST API: the deletion of
the testing resource and a check for successful deletion.

Note that, the last two requests (Dτ , Rτ )
? in both abstract

test templates are not directly involved in the mass assignment
vulnerability, indeed they are optional. For instance, in case
no delete operation Dτ is available in the REST API under
test, this optional cleanup sequence has to be skipped.

b) From Abstract to Concrete Test Cases: Abstract tem-
plate sequences have to be instantiated in order to be executed
on the REST API under test. For each abstract operation in
the sequence, we have to generate the corresponding HTTP
request, including values for the input parameters, and set the
correct resource-id values.

Values for input parameters of requests (that are not
resource-ids) are obtained either from the OpenAPI specifi-
cation, or by random generation. The OpenAPI specification
provides for each parameter a set of example values and

the parameter default value. Moreover, in the case of enum
parameters, also a set containing the supported enum values is
usually provided. We resort to these values, when available. In
case these values are not available or do not allow generating
successful requests (e.g., incorrect example values), we switch
to random values, that are generated to match the parameter
format defined in the specification. For string parameters that
specify no specific format, we try to infer the format from the
parameter name. For instance, if a field is named email, we
try to generate a valid e-mail address. We support more than 20
string formats including dates, timestamps, e-mail addresses,
phone numbers, URLs and UUIDs.

All the operations in a test template are supposed to operate
on the same resource instance, hence we have to set the correct
resource-id values for each test template. For example, after
creating a resource, the subsequent read operation is supposed
to access the just created resource. To make sure that this is the
case, the resource-id field is inspected in the output of create
operations Cτ and used as input in subsequent read, update
and delete operations Rτ , Uτ and Dτ . Since the resource-id
would be the same for all the operations in a sequence, in
order to keep the notation simple, we did not specify which
resource-id is handled by each operation.

However, sometimes the output of a create operation Cτ
does not contain the resource-id of the fresh resource, sup-
posed to be used in the subsequent read operation Rτ . To
solve this problem, whenever available, we resort to a read-
multi operation RMτ to list all the resources of type τ before
and after the creation Cτ . We expect to identify the newly
created resource as the difference between these two lists. The
two abstract test templates are modified in the following way.

Template 1’: 〈 RMτ , Cτ , RMτ , U
+f
τ , Rτ , (Dτ , Rτ )

? 〉
Template 2’: 〈 RMτ , C

+f
τ , RMτ , (Dτ , Rτ )

? 〉

Instantiating a concrete test case starting from an abstract
template requires to successfully execute each operation from
the corresponding sequence. However, there could be multiple
candidate operations for a step in the sequence, e.g., more than
one operations Rτ to read a resource of type τ . A candidate
operation can be tested with different input values until it
succeeds (status code 2XX). The maximum number of attempts
for testing an operation (MAX_OPERATION_ATTEMPTS) is con-
figurable. In case no attempt can obtain a successful response,
we consider the whole instantiation of the template as failed.
The instantiation of the template is restarted from scratch until
all the operations are executed successfully, for a maximum
number of attempts MAX_TEMPLATE_ATTEMPTS.

A larger number of attempts will increase the probability
of successfully instantiating a sequence, but also a longer test
generation time.

3) Security Oracle: The responsibility of the security oracle
is to classify test case executions and judge whether they are
able to reveal a mass assignment vulnerability in the REST
API under test. To this aim, the oracle verifies that the same
resource-id is used by all the operations in a sequence, and



that the injection was successful with a value different from
the default one. These three aspects of the oracle are described
in the following.

First, we perform a resource-id check. Indeed, all the
operations in a test scenario should, by construction, handle
the same resource instance, by using the same value of the
resource-id field. The security oracle has to check that this
constraint is met when a test case is executed.

Then, we perform a read-only fields overwrite check. When
the oracle detects that a read-only value has been successfully
overwritten, it reports a mass assignment vulnerability. In
practice, the oracle checks if the injected update request U+f

τ ,
or the injected create request C+f

τ could overwrite the value
of the read-only parameter f . This is achieved by comparing
the injected value of the read-only parameter f with the value
observed from the subsequent read request Rτ . In case the two
values correspond, the test case managed to write the read-only
field f .

Finally, we inject default values. What do you mean with
this? How can we know default values? When instantiating an
abstract test template into a concrete test case, values should
be chosen for all the input fields. When choosing the value
for the read-only parameter, we could unintentionally guess
its default value, especially for boolean or enum types that
support a limited set of possible values. If the subsequent read
operation reveals that the resource contain the injected value
in the read-only field, our oracle could report a vulnerability.
However, it could be the case that the attack failed, and the
read-only parameter has the value that it would have had in the
nominal case, i.e., its default value. To check for this case and
avoid a false positive, each test case that our oracle classifies
as a successful injection is repeated using a different value
for the injected read-only parameter. Our objective is to make
sure that the injection is successful with at least two distinct
values of the read-only field, and avoid false positives due to
default values.

a) Identification of Other Defects: Despite the objective
of the security oracle is to reveal mass assignment vulnera-
bilities when running test cases, it is also able to detect other
kind of defects.

Injection consists of a request that violates the specification
by adding an undocumented field. Thus, a correctly imple-
mented REST API should respond with a 4XX status code, and
reject the malformed request with the unexpected parameter
f , because it is not consistent with the documented request
format. A 2XX status code, instead, means that the REST API
accepted as valid the injected, and thus invalid, request. Even
if injection did not happen, accepting a malformed request
by itself is a defect. Additionally, a response status code
5XX stands for an internal server error that was not handled
correctly (e.g., because of an uncontrolled exception). This
suggests a potential implementation defect, that is however
different from the mass assignment vulnerability.

B. Approach Limitations

Our approach has few limitations. First, it is not applicable
to those APIs whose specification reports the API “imple-
mented behavior”, as the mass assignable read-only fields
would be included in the create and read operations as writable
parameters. This happens, for instance, when specifications
are auto-generated from the source code (few cases in our
experience).

Second, to expose a vulnerability, our approach needs to
fully test an abstract template, which means to successfully
test each operation in the corresponding sequence. Failing to
automatically test an operation in a sequence (e.g., because
of values difficult to guess) would prevent us to spot the
vulnerability for a template, and alternative templates should
be considered, if available.

Finally, our approach can detect mass assignment vulnera-
bilities only for fields that are handled by the API in HTTP
interactions. However, internal fields (fields used by the back-
end of the API, but never disclosed in HTTP interactions)
could still be mass assignable, but not detectable by our
approach because inaccessible from a black-box perspective.

IV. EXPERIMENT SETTING

In this section, we present the experiment setting for the
empirical validation of our approach.

A. Research Questions

First, our approach requires identifying operations CRUD
semantics, which resource types operations handle, and which
parameters operations use as resource-ids. Hence, our empir-
ical investigation first assesses the accuracy of the automated
identification of such information.

RQ1: What is the accuracy of the automated identification
of operations CRUD semantics, resource types, and
resource-id parameters?

Second, the main objective of our approach is to reveal mass
assignment vulnerabilities in REST APIs.

RQ2: What is the accuracy in revealing mass assignment
vulnerabilities in REST APIs?

Finally, our approach should be able to deal with real-world
production-ready REST services, that can be complex and
large in size. Hence, the last research question investigates
the scalability of the approach on large REST APIs.

RQ3: Does the proposed approach to detect mass assign-
ment vulnerabilities scale to large REST APIs?

B. Case Studies

The empirical validation is conducted on a set of REST
APIs. However, considering that test cases are supposed to
exploit a security vulnerability, it would not be ethical to test
publicly hosted APIs (such as those on APIs.guru6), since their
integrity could be compromised by a successful attack. Hence,
we opted for case studies that we can download and run in a
controlled environment.

6https://apis.guru/browse-apis/

https://apis.guru/browse-apis/


For these reasons, we looked for open-source projects
hosted on GitHub, so that we can compile and install them
locally. This also grants us full control over the REST APIs
state and data, allowing us to restore an API initial state and,
thus, avoiding side effects originated by previous injections.

We queried the GitHub search engine with the follow-
ing base strings: “REST”, “RESTful API”, “mass assign-
ment”, “autobinding”, “object injection”, “OpenAPI” and
“Swagger”. Then, we also added query strings representing
framework commonly used to implement REST APIs, such
as “swagger-ui”, “SpringFox”, “swagger-jsdoc” and “flask-
swagger”. Among the REST APIs resulting from the search,
we selected those containing an OpenAPI specification, which
is a requirement of our black-box testing approach.

The selected case studies have been downloaded, compiled
and run to discard those that failed either in compiling or in
running. After this last filtering, our final set of case studies
is shown in Table II. It consists of 5 REST APIs, written
in different programming languages (Java, ASP.NET, Python,
and Node.js), based on different frameworks and DBMSs, for a
total of 26 endpoints and 47 operations. The table also reports
the number of vulnerabilities in each case studies.

We want to remark that we were not able to collect a larger
API dataset due to the fact that most of the APIs we mined
from GitHub suffer from, at least, one of the following issues:
(1) they miss a correct OpenAPI specification; they (2) are
unrealistically small; (3) they have only read operations (i.e.,
no create nor update operation, required to exploit a mass
assignment vulnerability); or (4) they yield compilation or
execution errors.

While VAmPI and OWASP already contained some vulner-
abilities (1 and 4, respectively), the other case studies did not,
so they have been manually seeded with vulnerabilities with
the following procedure. We edited the internal representation
of a resource in the REST API (e.g., the resource user) to add
a new field with arbitrary name. Then, we edited the code of
a write operation that handles this type of resource (e.g., PUT
/user) to enable automatic mapping. Eventually, we edited
a read operation for this resource type and its section in the
OpenAPI specification to add the new field among those that
can be read by the operation.

Moreover, we also prepared non-vulnerable (safe) versions
for all the case studies. VAmPI supports an environment
boolean variable to enable or disable the vulnerability. The
repository of OWASP contains both vulnerable and patched
versions. For the remaining case studies, we fixed the vulner-
able version, adopting the mitigation features of frameworks.

Our approach requires a correct OpenAPI specification as
input. However, in some cases, specifications of open-source
REST APIs are incorrect or incomplete. So, before running the
experiment, all the OpenAPI specifications have been checked
against the source code by a team of experts, including an
author of this paper and two other external collaborators. Few
corrections have been applied, e.g., response schemas have
been added in case they were missing. The same team also
elaborated the ground truth for CRUD semantics, resource

TABLE II
VULNERABLE REST APIS CONSIDERED FOR ASSESSING THE ACCURACY

OF THE APPROACH.

Case study Language Framework # Ops. # Vuln.

VAmPI [10] Python Flask 12 1
OWASP [11] Java Spring 10 4
Toggle [12] ASP.NET .NET Core 16 2
Bookstorea Java Spring 5 1
CRUD [14] Node.js Express 4 2

aThe source code of the service is no more available online at the time of
submission. The code can be found in the replication package [13].

types, and resource-ids of all the operations.
Finally, to answer the third research question, we consid-

ered a collection of more complex case studies, namely 10
mainstream Google REST APIs (Gmail, Google Analytics,
Calendar, Classroom, Custom Search, Drive, Fitness, My
Business, Search Console and YouTube).

C. Experimental Procedure

We implemented our approach as a testing strategy
(MassAssignmentSecuirtyTestingStrategy) on top of
RestTestGen framework [15]. RestTestGen is our open-source
REST APIs testing framework (available on GitHub7, where
we also published the mass assignment vulnerability detection
strategy) and it provides some commodity and utility features
that facilitated the implementation of our approach. They are
a solid parser for the OpenAPI specification, procedures to
construct and send HTTP requests to the REST API under
test, and receive and parse the corresponding HTTP responses.

We configured the parameters of the template instantiation
with the following values: MAX_OPERATION_ATTEMPTS =

12; and MAX_TEMPLATE_ATTEMPTS = 3. These values hap-
pened to be an optimal trade-off between testing time and
successful vulnerabilities identifications during our dry run
experiments.

The testing budget scales with the size of the API to test.
The budget is computed as the number Ntemplates of templates
to test multiplied by the number Noperations of operations in
each template, and by the maximum number of attempts per
each operation, that is:

budget = Ntemplates ·Noperations · MAX_OPERATION_ATTEMPTS

Case studies have been taken into a testable state, i.e., their
states have been initialized with some data, preparatory for
testing. Most of the case studies come with a specific script,
while some other required several manual HTTP interaction
in order to provide initialization data.

Our testing strategy has been executed on each case study,
both on the vulnerable and safe version. The process has been
repeated 10 times to control potential random variations due to
the non-deterministic algorithms in our approach. After each
testing session, we restored the same identical state of the
REST APIs under test.

7https://github.com/SeUniVr/RestTestGen
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D. Metrics

In our experiment, we computed and collected the following
metrics.

Correctness of CRUD identification: For each REST
API, we compute the ratio of the operations for which the
correct CRUD semantic was identified to the total number of
the operations with a CRUD semantics in the specifications,
according to the manually provided ground truth.

Clustering correctness: We manually inspect the result
of clustering to identify what is the resource type that is
handled by the majority of the operations in each cluster.
Those operations that handle a resource type different from the
majority do, are considered as assigned to the wrong cluster.
This metric is then computed as the ratio of the operations
assigned to the correct cluster divided by the total number of
CRUD operations.

Correctness of resource-id identification: This metric is
computed as the ratio of the operation schemas for which the
resource-id field has been correctly identified to the total num-
ber of schemas of CRUD operations that contain a resource-id.
Operations can have an input schema and/or an output schema.

Accuracy in vulnerability detection: To measure the
accuracy in detecting mass assignment vulnerabilities, we use
the following standard information retrieval metrics.
True Positives (TP) That is the number of correctly detected

vulnerabilities.
False Positives (FP) That is the number of cases reported as

vulnerabilities, but that are not actually vulnerable (i.e.,
false alarms).

False Negatives (FN) That is the number of missed vulnera-
bilities (i.e., not reported by the tool).

Precision (Pr), That is the number of correctly detected vul-
nerabilities on the number of reported vulnerabilities:

Pr =
TP

TP + FP
Recall (Re) That is the number of correctly reported vulnera-

bilities on the number of vulnerabilities:

Re =
TP

TP + FN
E. Threats to Validity

Here we discuss the main threats to the validity of our
findings.

Threats to the conclusion validity are concerned with issues
that affect the ability to draw the correct conclusion. To
limit this threat, we considered standard information retrieval
metrics (i.e., precision and recall). Additionally, to increase
heterogeneity of samples in the data set, we considered soft-
ware projects written in multiple programming languages and
based on different frameworks.

Threats to internal validity concern the subjective factors
that might have affected the results, such as the definition
of the gold standard to compare the results of our approach.
To limit this subjectivity, we inspected the source code of
operation to determine its actual CRUD semantic, the type of

TABLE III
CORRECTNESS OF CRUD SEMANTICS IDENTIFICATION, OF OPERATIONS

CLUSTERING, AND RESOURCE-ID IDENTIFICATION.

Case study CRUD Clustering Resource-id

VAmPI 100% 100% 67%
OWASP 100% 80% 100%
Toggle 88% 88% 100%
Bookstore 100% 100% 100%
CRUD 100% 100% 100%

Average 98% 94% 93%

the read/written resource and what field is used as resource-id
(if any).

The threats to construct validity concern the data collection
and analysis procedures. To mitigate this threat, we made sure
that, when injecting faults in case studies, the vulnerability
definition as explained by the OWASP Foundation was pre-
cisely followed.

Threats to external validity concern the generalization of
our findings. Despite our analysis considers REST APIs writ-
ten in different programming languages and based on different
rest frameworks, our analysis could still be biased because we
only considered open-source projects. Our results might not
extend in general to other software projects, for instance to
closed-source industrial software. Only replications with more
samples can confirm our findings beyond our experimental
settings.

V. EXPERIMENTAL RESULTS

This section presents the results of our empirical valida-
tion. The replication package for the experiments is available
online [13].

A. RQ1: Accuracy of CRUD Semantics, Resource Type, and
Resource-id

In our approach, before starting the actual test case gener-
ation, some preliminary results, that are purely based on the
OpenAPI specification, must be computed. The accuracy of
this preliminary step is investigated by the first research ques-
tion, for all case studies. The tool automated labeling has been
compared with the gold standard, and results are reported in
Table III. For each case study (first column), the table reports
the correctness of the CRUD semantics identification (second
column), the clustering correctness (third column), and the
correctness of resource-id identification (fourth column).

The identification of CRUD semantics is 100% for almost
all the case studies, reaching an average correctness of 98%.
Such a high accuracy is due to a disciplined use of HTTP
methods in the observed REST APIs. Despite accuracy was
still very high (i.e., 88%, on average), a wrong semantics
have been identified in some operations of Toggle. A manual
investigation revealed that read multi operations were automat-
ically labeled as read, because of an uncommon return type.
Instead of returning an array of objects, a single JSON object is
returned that, in turn, contains many sub-objects corresponding
to the resources.



TABLE IV
ACCURACY IN REVEALING MASS ASSIGNMENT VULNERABILITIES.

Case study Safe Vulnerable
Tests FP Tests TP FP FN Pr Re

VAmPI 4.0 0.0 4.0 1.0 0.0 0.0 100% 100%
OWASP 8.0 0.0 7.4 3.6 0.0 0.4 100% 90%
Toggle 2.0 0.0 2.0 2.0 0.0 0.0 100% 100%
Bookstore 2.0 0.0 2.0 1.0 0.0 0.0 100% 100%
CRUD 2.0 0.0 2.0 2.0 0.0 0.0 100% 100%

The clustering correctness is also quite high, with an average
value of 94%. Operations that have been allocated to the wrong
cluster turned out to be only delete operations. This is due to
the fact that, typically, delete operations only require no other
input than the resource-id of the resource to delete. When
the other operations insisting on the same resource type have
a lot more input parameters than the delete operation, the
clustering algorithm is very likely to assign the latter to a
separate cluster (only containing the delete operation itself).
Nevertheless, availability of delete operations is not strictly
required for our testing approach (Dτ is optional in both
Template 1 and Template 2).

Resource-ids identification is also quite accurate, with an
average correctness of 93%. Inaccurate detection was due to
custom naming in some case studies that violated common
practices. For instance, VAmPI uses the field book_title as
resource identifier, instead of a more intuitive book_id or
book_name.

Based on this results, we can formulate the subsequent
answer to RQ1.

RQ1 Our approach shown a quite high accuracy in
analyzing OpenAPI specifications, since the CRUD
semantics was correctly detected for 98% of the
operations, 94% of the operations have been grouped
together when they handle a resource of the same
type, and the 93% of resource-ids have been correctly
identified.

B. RQ2: Accuracy of Vulnerability Detection

We applied our whole testing approach to two variants of
each case study: with and without vulnerabilities. Then, the
outcome of our security oracle evaluating the automatically
generated test cases has been compared with the gold standard.
The accuracy of vulnerability detection is shown in Table IV
in terms of true positives (TP), false positives (FP), false
negatives (FN), precision (Pr), and recall (Re). The table
also reports the number of concrete test cases that could be
successfully generated for the read-only fields detected on each
variant of each case study. The table reports the average values
over 10 repetitions of each testing session (thus, decimal
values).

Accuracy in testing mass assignment vulnerabilities shown
to be very high. All the vulnerabilities are detected in almost

of all case studies, with no false positives. Only in one run
out of ten (this is why the average TP is a decimal number in
the table) on OWASP, our approach missed few vulnerabilities.
Manual investigation on test execution traces revealed that, in
a particular execution on OWASP, our approach could only
instantiate two sequences out of eight, so the corresponding
vulnerabilities could not be tested.

As a side effect of security testing, our tests could also
reveal the presence of other defects such as crashes (status
code 5XX) in all case studies, except for Toggle. In total,
24 HTTP responses with status code 500 occurred. Manual
inspection on HTTP requests and responses revealed that they
originated from 5 distinct bugs.

Based on these results, we can formulate the subsequent
answer to RQ2.

RQ2 The accuracy in revealing mass assignment
vulnerabilities with automated black-box testing is
very high, because all the vulnerabilities could be
detected in our case studies with no false positives,
with the only exception of a single execution out of
ten in a single case study.

C. RQ3: Scalability of the Approach

To study the scalability of our approach, we ran the
static analysis part on the specifications of 10 mainstream
Google services, listed in Table V, that include a total of
454 operations. To mitigate the impact of non-determinism
introduced by clustering, each service has been tested 5 times
independently. Note that, we could not run the dynamic test
case generation part for ethical reasons, i.e., we meant to avoid
the risk of mounting a successful injection attack on a service
that runs in production.

The static analysis of all services took 37.2 seconds (on
average) and, in total, it revealed 981 read-only fields. Even
if we could not run the automated test case generation part,
we expect that not a long time would be needed to validate
these candidate vulnerabilities, with few test cases. So, we
can speculate that scalability on large REST APIs does not
represent an issue for our approach.

Thus, we can formulate the subsequent answer to RQ3.

RQ3 Our approach seems to scale well on large
APIs, since it took 37.2 seconds to analyze remark-
ably large OpenAPI specifications, detecting 981
read-only parameters (on a total of 454 operations)
that are potential candidates of mass assignment
vulnerabilities.

VI. RELATED WORK

While most of the literature on automated testing of REST
APIs is focused on functional testing, just few approaches to



TABLE V
GOOGLE REST APIS CONSIDERED FOR ASSESSING THE SCALABILITY OF

THE APPROACH.

Case study # Ops. Time (s) # Read-only fields

Gmail 68 3.0 23
Analytics 88 5.0 166
Calendar 37 2.0 11
Classroom 61 5.0 15
Custom Search 2 1.0 66
Drive 48 3.0 49
Fitness 13 1.4 4
My Business 50 7.4 527
Search Console 11 1.0 10
YouTube 76 8.4 110

Total 454 37.2 981

automate security testing are starting to rise [2]–[5] to detect
potential security vulnerabilities in REST APIs.

In particular, Mai et al. [3] use metamorphic relations to
address the oracle problem: 22 system-agnostic metamorphic
relations are defined to automate security testing in Web
systems. Their approach is not black-box and does not target
REST APIs. Furthermore, mass assignment vulnerabilities are
not part of their catalog of metamorphic relations.

Atlidakis et al. [2] introduce four security rules that capture
desirable properties of REST APIs, specifically meant to
test some security relevant aspects of Azure REST APIs. In
particular, their objective is to test four conditions: (i) use-
after-free, when it is possible to read a resource after it
has been deleted; (ii) resource-leak, when a resource can be
read after its creation failed; (iii) resource-hierarchy, when a
resource is accessible under the wrong parent resource; and
(iv) user-namespace, when a private resource of a user is ac-
cessible to another user. Despite being effective, their approach
targets particular security aspects, that do not comprise mass
assignment vulnerabilities. Recall that, the latter is indicated
by the OWASP Foundation as one of the most important REST
APIs vulnerability to mitigate.

Luo et al. [4], [5] focus on access control. In their first
work [4], their aim is to simplify the privilege partitioning
problem into a classification problem of RESTful functions.
They propose a REST API classification approach (RestSep)
based on genetic algorithms. In their second work [5], they
propose a policy language (RestPL) to express authorization
policies for REST APIs. A RestPL policy can be automatically
generated from an actual request, which helps to mitigate users
intervention. Access control is surely an import aspect that
testing tools should address, but it is not related to a mass
assignment defect.

To the best of our knowledge, no approach is available to
automatically test REST APIs with respect to mass assignment
vulnerabilities. Remaining literature on functional testing is
mainly split into two different lines of work.

One consists in white-box approaches, that rely on the
availability of REST APIs source code to perform static
analysis, or to instrument it, to collect execution traces and

metric values. In this context, Arcuri [16] proposes a fully
automated solution to generate test cases with evolutionary
algorithms, that requires the OpenAPI specification and the
access to the Java bytecode of the REST API to test. This
approach has been implemented as a tool prototype called
EvoMaster, extended with the introduction of a series of
novel testability transformations aimed at providing guidance
in the context of commonly used API calls [17]. Unfortunately,
white-box approaches are very often not practically usable in
the context of REST APIs, where usually the source code is
not available.

On a complementary direction, black-box approaches do not
require any source code, which is often the case when using
closed-source components and libraries. Fuzzers [18]–[22] are
black-box testing tools that generate new tests starting from
previously recorded API traffic: they fuzz and replay new
traffic in order to find bugs. Some of these also exploit the
OpenAPI specification of the service under test [19]–[21].

Godefroid et al. [23] propose a methodology to fuzz body
payloads intelligently using JSON body schemas and advanced
fuzzing rules. Even if they are automatic black-box tools, their
goal is to generate input values to tests, so they cannot be
used as standalone testing tools (except for the approach of
Godefroid et al. [23] that has been implemented in RESTler).

Ed-douibi et al. [24] propose a model-based approach for
black-box automatic test case generation of REST APIs. A
model is extracted from the OpenAPI specification of a REST
API, to generate both nominal test cases (with input values
that match the model) and faulty test cases (with input values
that violate the model).

Karlsson et al. [25] propose QuickREST, a tool for property-
based testing of RESTful APIs. Starting from the OpenAPI
specification, they generate test cases with the aim to verify
whether the API under test complies with some properties (i.e.,
definitions) documented in the specification (e.g., status codes,
schemas).

Segura et al. [26] propose another black-box approach for
REST APIs testing, with an oracle based on (metamorphic)
relations among requests and responses. For instance, they
send two queries to the same REST API, where the second
query has stricter conditions than the first one (e.g., by adding
a constraint). The result of the second query should be a proper
subset of entries in the result of the first query. When the
result is not a sub-set, the oracle reveals a defect. However,
this approach only works for search-oriented APIs. Moreover,
this technique is only partially automatic, because the user
is supposed to manually identify the metamorphic relation to
exploit, and what input parameters to test.

Corradini et al. [1] propose RestTestGen, an automated
black-box test case generation tool for REST APIs. The
approach allow testing nominal and error scenarios, and the
test generation strategy is based on the Operation Dependency
Graph, a graph which encodes data dependencies among the
operations available in the API.

Atlidakis et al. [27] propose RESTler, a stateful REST API
fuzzer developed at Microsoft Research. RESTler generates



stateful sequences of requests by inferring producer-consumer
relations between request types described in the specification.
It also dynamically analyzes responses to intelligently build
request sequences and avoiding sequences leading to errors.

Martin-Lopez et al. [28] propose RESTest, another auto-
mated black-box testing tool for RESTful APIs. The peculiar-
ity of this tool is the inter-parameter dependencies support.
Indeed, some REST APIs impose constraints restricting not
only input values, but also the way in which input values can
be combined to fill valid requests.

Finally, Laranjeiro et al. [29] propose bBOXRT, a black-
box robustness testing tool for RESTful APIs. The aim of
bBOXRT is to assess the robustness of REST APIs observing
the behavior of services under test when providing invalid
requests. The tool provides a fault model consisting of 57
different mutations applicable to input parameters of various
types (numbers, strings, booleans, dates, times, arrays, etc.).

All the aforementioned black-box testing tools for REST
APIs are not meant to spot security vulnerabilities, and mass
assignment in particular. Nevertheless, they can be extended in
order to implement the methodology presented in the present
work. In this respect, we chose to apply our testing strategy on
top of the RestTestGen framework, since it provides a modular
and easily extensible architecture.

VII. CONCLUSION

Dependability and confidentiality of data rely on the correct
and secure implementation of those REST APIs that are
supposed to enforce appropriate data access policies. Mass
assignment is among the most common vulnerabilities in
REST APIs, often caused by wrong settings in web frame-
works. These vulnerabilities might allow an attacker to directly
override private internal data structures in the REST API back-
end, such as sensitive database columns.

We proposed an automated approach based on black-box
testing to reveal mass assignment vulnerabilities. Starting from
the OpenAPI specification, we apply clustering to identify
those operations that are very likely to operate on the same
resources. Clusters content is compared to identify resource
fields that are not supposed to be exposed in write opera-
tions, i.e., read-only data according to the developer intention.
Abstract test templates are turned into concrete test cases, to
test each alleged read-only field according to mass assignment
vulnerability. To the best of our knowledge, this is the first
work that proposes an automated approach to reveal mass
assignment vulnerabilities using automated black box testing.

Experimental results suggest that a variety of program-
ming languages are prone to these vulnerabilities when web
frameworks are not appropriately configured. As future work,
we plan to extend our experimental validation to either a
more complete set of open-source projects (hence, more pro-
gramming languages and web frameworks) and closed-source
industrial projects from our industrial partners. Additionally,
we plan to extend our approach to other kind of programming
defects and security vulnerabilities of REST APIs, such as
broken object level authorization and incorrect access control.

In particular, as a natural next step, we plan to consider “mass
read” vulnerabilities, such as excessive data exposure (ranked
by OWASP as third among the most common vulnerabilities),
that can be seen as the dual version of mass assignment.
Finally, we plan to conduct user studies with developers to
identify the most appropriate way to report vulnerabilities in
REST APIs, to support a fast and accurate fix of these defects.
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