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“The purpose of abstraction is not to be vague, but to create a new semantic level in which one can
be absolutely precise.”

Edsger W. Dijkstra
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Hyper Static Analysis of Programs
An Abstract Interpretation-Based Framework for Hyperproperties Verification

by Michele Pasqua

In the context of systems security, information flows play a central role. Unhandled infor-
mation flows potentially leave the door open to very dangerous types of security attacks,
such as code injection or sensitive information leakage. Information flows verification is
based on a notion of dependency between a system’s objects, which requires specifications
expressing relations between different executions of a system. Specifications of this kind,
called hyperproperties, go beyond classic trace properties, defined in terms of predicate over
single executions. The problem of trace properties verification is well studied, both from a
theoretical as well as a practical point of view. Unfortunately, very few works deal with the
verification of hyperproperties. Note that hyperproperties are not limited to information
flows. Indeed, a lot of other important problems can be modeled through hyperproperties
only: processes synchronization, availability requirements, integrity issues, error resistant
codes check, just to name a few.

The sound verification of hyperproperties is not trivial: it is not easy to adapt classic
verification methods, used for trace properties, in order to deal with hyperproperties. The
added complexity derives from the fact that hyperproperties are defined over sets of sets
of executions, rather than sets of executions, as happens for trace properties. In general,
passing to powersets involves many problems, from a computability point of view, and this
is the case also for systems verification.

In this thesis, it is explored the problem of hyperproperties verification in its theoretical
and practical aspects. In particular, the aim is to extend verification methods used for trace
properties to the more general case of hyperproperties. The verification is performed ex-
ploiting the framework of abstract interpretation, a very general theory for approximating
the behavior of discrete dynamic systems.

Apart from the general setting, the thesis focuses on sound verification methods, based
on static analysis, for computer programs. As a case study – which is also a leading moti-
vation – the verification of information flows specifications has been taken into account, in
the form of Non-Interference and Abstract Non-Interference. The second is a weakening of
the first, useful in the context where Non-Interference is a too restrictive specification.

The results of the thesis have been implemented in a prototype analyzer for (Abstract)
Non-Interference which is, to the best of the author’s knowledge, the first attempt to imple-
ment a sound verifier for that specification(s), based on abstract interpretation and taking
into account the expressive power of hyperproperties.
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Preface

The present thesis is the result of my research work, developed at the University of Verona
during part of my PhD. Indeed, I spent most of my first year (out of three) working in a dif-
ferent research project, leading to publications [Dalla Preda and Pasqua, 2016] and [Dalla
Preda and Pasqua, 2018], but not related to the present thesis. Nevertheless, in the remain-
ing two years I was able to obtain some results about hyperproperties verification, namely
the topic of the present thesis.

The thesis is organized in nine chapters and one appendix, containing long proofs.
Chapter 1 serves as an introduction of the problem I addressed. It contains also a descrip-
tion of the contributions and a conceptual road-map guiding the reader through the central
part of the thesis. Chapter 2 contains notions and mathematical notations required to fully
understand the concepts showcased in the thesis. From Chapter 3 to Chapter 8 we have the
main contributions of the thesis, interleaved with already known results and concepts. I
have chosen this mixed presentation in order to make the text more easy and, hopefully, en-
joyable to read. Nevertheless, my contributions are well marked within any chapter. Finally,
Chapter 9 concludes and discusses future research directions.

Most of the contents of this thesis have been published in international peer-reviewed
conferences and they have been developed under the supervision of Isabella Mastroeni,
Associate Professor at the University of Verona. In the rest of the work I adopt the academic
“we” instead of “I”.

The first version of the thesis has been submitted for the reviewing process in December
15, 2018. The present text is the revised and corrected version.

Verona – May 15, 2019
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Introduction
1

Cconcerning systems security, a fundamental problem is how to protect the confiden-
tiality or, dually, integrity of data manipulated by programs. Namely, it is important

to guarantee that no confidential information can be caught by unauthorized attackers ob-
serving the executions of a system. The standard way used to protect private data is access
control. As the name indicates, access control verifies the system rights at entry-point and it
does not take into account the propagation of information. This is inadequate in many situ-
ations, in fact the system may leak/compromise information after the access check. Instead,
information flow control tracks how information propagates through the system during exe-
cution, to make sure that it handles the information securely. Unhanded information flows
potentially leave the door open to very dangerous types of attacks, such as code injection or
sensitive data leakage. So, it is important to build verification mechanisms, aiming to check
if systems comply with a given confidentiality/integrity specification, stating which flows
of information are allowed and which are not.

The problem of information flows control is far from a solution. There are several dif-
ficulties concerning information flows verification. First of all, the problem is undecidable,
hence a form of approximation is mandatory. Unfortunately, also approximated verification
is not easy for information flows, since they are formalized as hyperproperties. This means
that they cannot be verified on single executions, since they require the comparison of mul-
tiple computations: this makes hard to exploit standard verification techniques. Indeed,
whilst for trace properties standard techniques can be used with an acceptable degree of ap-
proximation, the verification of hyperproperties is a hard problem to solve in a sufficiently
precise way. Being a hyperproperty means to be modeled as a set of sets of executions and,
indeed, the extra level of sets introduces a lot of technical problems for approximation-based
verification methods. Hence, in order to obtain significant results w.r.t. analysis precision,
we need new verification methods which approximate sets of sets (instead of just sets) of
executions, namely we need verification methods for hyperproperties.

Note that, information flows control is the leading motivation, but hyperproperties can
express a lot of other useful specifications, like availability requirements, process synchro-
nization problems, cryptographic protocols checks, etc. The latter, as well as information
flows, cannot be expressed with classic trace properties.

The goal of the thesis is to face the problem of verifying hyperproperties, namely to de-
velop a methodology which goes beyond the standard trace properties. In order to cope
with this problem, we need to reason about systems semantics, namely the representations
of systems executions, and hence we rely on abstract interpretation, which is a general frame-
work for the sound approximation of the semantics of discrete dynamic systems.

Since its origin in 1977, abstract interpretation has been widely used, implicitly or explic-
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itly, to describe and formalize approximate computations in many different areas of com-
puter science, from its very beginning use in formalizing (compile-time) program analysis
frameworks to more recent applications in model checking, program verification, compar-
ative semantics, malware detection, code obfuscation, etc. When reasoning about systems
executions a key point is the degree of approximation given by the choice of the seman-
tics used to represent computations. In this direction, comparative semantics consists in
comparing semantics at different levels of abstraction, always by abstract interpretation.
The choice of the semantics is a key point, not only for finding the desirable trade-off be-
tween precision and decidability of program analysis in terms, for instance, of specifications
verification, but also because not all the semantics are suitable for proving every possible
specification of interest. This means that the specification to verify necessarily affects the
semantics we have to choose for modeling the system to analyze.

Hyperproperties verification is a new research topic and so there are very few works
about it. For this reason, we started reasoning about hyperproperties from the roots, namely
from a structural point of view. In particular we characterized hyperproperties with topo-
logical and algebraic approaches. With a better theoretical understanding of hyperproper-
ties, we were able to tackle the problem of verification of hyperproperties, which is more
complex than the standard case of trace properties verification. In fact, at the “hyper level”,
standard systems semantics are not useful, because they are defined at the sets of traces
level. This led us to define new semantics, termed hypersemantics, computed at the same
level of hyperproperties, namely at the sets of sets of executions level. In order to make the
verification feasible, we still need approximation, namely simpler (i.e. approximate) ver-
sions of the systems (hyper)semantics. As already said, we perform approximation exploit-
ing the framework of abstract interpretation. Once we set the concrete semantics, in our
case hypersermantics able to verify hyperproperties, we need abstract domains, in order to
obtain approximate, but decidable, verification methods. The verification is performed by
means of static analysis, using a decidable abstract interpretation of the hypersemantics.
Clearly, classic abstract domains cannot be used for hyperproperties, hence we define some
design patterns useful to generate hyperdomains, namely abstract domains for hyperproper-
ties verification.

Apart from these general results, we deepen the verification problem of a restriction of
subset-closed hyperproperties, i.e. bounded subset-closed hyperproperties. These hyperprop-
erties are expressive enough to capture lots of interesting specifications (such as information
flows) but their verification is made easier. In particular, the verification of these hyperprop-
erties is bounded to a fixed input cardinality, restricting the search space for confutation.
Nevertheless, also for this kind of hyperproperties, the verification has to move to the hy-
perlevel. We propose a general technique for lifting the semantic operator computing the
concrete systems semantics to the hyperlevel. The added value of tackling the problem from
a general and formal point of view is that it allows us to discuss and prove soundness and
completeness properties.

We instantiate our theoretical results to the verification of (Abstract) Non-Interference,
allowing us to design a prototype verifier of Non-Interference for a toy programming lan-
guage. In particular, we first design the hyperdomain denoting the hyperproperty that has
to be satisfied by the semantics of non-interfering programs, i.e. the values of public vari-
ables must be always the same single value. Once we fix the domain of the abstract ob-
servable hyperproperty we define the abstract hypersemantics computing the executions
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of a program on the hyperdomain, exactly as it happens in classic static analysis, but with
the only difference that we are abstracting an hypersemantics into an hyperdomain. To the
best of our knowledge, this is the first attempt to provide a sound analyzer/verifier of Non-
Interference exploiting the expressiveness of hyperproperties. Finally, in order to test the
feasibility of the proposed approach we have implemented a prototype (called nonInterfer)
of the designed verifier. This prototype exhibits a good trade-off between verification speed
and precision.

1.1 Structure of the Thesis and Contributions

Apart from this chapter, Chapter 2 introduces the basic mathematical concepts needed to
understand the work and the notations adopted in the rest of the thesis. At the end of
the chapter we can find a general introduction to abstract interpretation, which is the main
framework we will use. The central part of the thesis comprises chapters from 3 to 8.

In Chapter 3 we introduce the problem of systems correctness which, basically, requires
the definition of a (mathematical) model of the system and a (mathematical) description of
a specification. Furthermore, concepts as verification, enforcement, systems analysis and
approximations are described. Finally, we list some examples of common systems specifi-
cations and, in particular, we focus on information flows.

In Chapter 4 we introduce in detail the system model we have chosen, i.e. transition
systems, and how to retrieve the behavior, i.e. the semantics, associated to a system. We
do the same for specifications, namely we introduce hyperproperties. In Section 4.2.2 we
investigate these latter from a theoretical point of view, giving a topological and algebraic
characterization of hyperproperties. The topological characterization has been published
in [Pasqua and Mastroeni, 2017]. At the end of Section 4.1.1 we describe a very simple
programming language Imp, which will be used in the rest of the thesis. Indeed, starting
from Chapter 5, the systems we take into account are programs written in Imp.

Chapter 5 aims to make the reader familiar with classic program verification of trace
properties. We perform verification by means of analysis, formalized as an abstract inter-
pretation of the concrete program semantics. In particular we build step by step a very
simple numerical analysis for programs in Imp. This latter will be taken as a comparison for
the case of hyperproperties verification.

Then we go at the hyperlevel. In Chapter 6.1 we deal with the problem of program ver-
ification of hyperproperties. Unfortunately, it is not easy to adapt classic static analysis for
trace properties, to the more general hyperproperties. In this chapter we highlight the prob-
lems concerning hyperproperties verification and some possible solutions. Furthermore,
we show how to define, in a constructive way, hypersemantics, i.e. program semantics com-
puting at the level of sets of sets. Every abstract interpretation needs an abstract domain, in
order to perform approximate verification. Hence, in Section 6.2, we take into account the
problem of defining hyperdomains, namely abstract domains fro hyperproperties. Most of
the results presented in this chapter have been published in [Mastroeni and Pasqua, 2017]
and, partially, in [Mastroeni and Pasqua, 2018].

In Chapter 7 we focus on particular hyperproperties, the bounded subset-closed one,
which exhibit a good trade-off between expressiveness and verification feasibility. Indeed,
they could express, among other specifications, information flows and their verification can
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be simplified significantly. In particular, we show how to adapt the existing classic static
analyses, by lifting the semantic operator used to define the concrete semantics. Some parts
of this chapter have been published in [Mastroeni and Pasqua, 2018].

Chapter 8 concludes the contributions of the thesis, giving an applicative example of our
theoretical findings. In particular, exploiting the result of Chapter 7 we develop a (paramet-
ric) abstract semantics for Abstract Non-Interference and an abstract semantics for Non-
Interference. These are formalizations of information flows specifications, hence we build
a feasible and sound verification mechanism for information flows. The abstract seman-
tics for Non-Interference has been implemented in a prototype verifier for Imp programs,
called nonInterfer. The part of this chapter concerning Non-Interference has been published
in [Mastroeni and Pasqua, 2019].

Finally, in Chapter 9 we discuss related works, the possible future research directions
and the concluding remarks.

Publications. Most of the results presented in the thesis have been already published in:

[Mastroeni and Pasqua, 2017] Isabella Mastroeni and Michele Pasqua (2017). “Hyper-
hierarchy of Semantics - A Formal Framework for Hyperproperties Verification”. In: Static
Analysis - 24th International Symposium, (SAS 2017), New York City, USA, August 30 – Septem-
ber 1, 2017, Proceedings, pp. 232–252. doi: 10.1007/978-3-319-66706-5_12. url: https:
//doi.org/10.1007/978-3-319-66706-5_12

[Pasqua and Mastroeni, 2017] Michele Pasqua and Isabella Mastroeni (2017). “On topolo-
gies for (hyper)properties”. In: 18th Italian Conference on Theoretical Computer Science (ICTCS
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Mathematical Background
2

This chapter introduces mathematical notations, basic notions and existing results that
are at the foundation of our work and will serve in subsequent chapters. Then, in the

last section, we provide an overview of abstract interpretation, which is the principal theory
we use in our work.

2.1 Basic Notions and Notations
We recall now some basic notations of set theory. A set is a (not proper) class of distinct
and unordered objects. When an object x is a member, or an element, of the set X we write
x ∈ X , we write x /∈ X otherwise. We represent extensionally a (finite) set, the elements
of which are x1, x2, . . .xn, with the notation {x1, x2, . . . xn}. Dually, we represent inten-
sionally a (sub)set (of a set U ), the elements of which fulfill a predicate φ, with the notation
{x ∈ U | φ(x)}. When U is clear from the context, we often omit it for brevity. The predi-
cate φ is specified by a first-order formula possibly containing the classic logical operators:
∧ (conjunction), ∨ (disjunction), ¬ (negation), ⇒ (implication), ⇔ (logical equivalence), ∀
(universal quantification), ∃ (existential quantification). The empty set is denoted by ∅ and
the cardinality of a set X is denoted by |X|.

A set Y is a subset of a setX , written Y ⊆ X , if and only if every element of Y is inX . The
empty set is a subset of every set. The set of all subsets of a set X , denoted ℘(X), is defined
as ℘(X) , {Y | Y ⊆ X}. Here the symbol , stands for “is defined as”, in contrast to the
symbol = which stands for “is the same as”. The union of two setsX and Y , writtenX ∪Y ,
is the set of elements belonging to X or Y , namely: X ∪ Y , {x | z ∈ X ∨ z ∈ Y }. More
generally, the union of a family of sets X , denoted by

⋃
X , is

⋃
X ,

⋃
X∈X X = {x | ∃X ∈

X . x ∈ X}. Similarly, the intersection of two sets X and Y , written X ∩ Y , is the set of
elements belonging toX and Y , namely: X ∩ Y , {x | z ∈ X ∧ z ∈ Y }. More generally, the
intersection of a family of sets X , denoted by

⋂
X , is

⋂
X ,

⋂
X∈X X = {x | ∀X ∈ X . x ∈

X}. The set-difference between set X and one of its subsets Y , denoted by X \ Y , is the set
of all elements of X which are not elements of Y , namely X \ Y , {z | z ∈ X ∧ z /∈ Y }.
Given a setX , a set P ⊆ ℘(X) is a partition (ofX) when P 6= ∅,

⋃
P∈P P = X and for every

P1, P2 ∈ P either P1 = P2 or P1 ∩ P2 = ∅.
The cartesian product of two sets X and Y , written X × Y , is the set of all pairs where

the first component is inX and the second component is in Y , namelyX×Y , {〈x, y〉 | x ∈
X ∧ y ∈ Y }. The cartesian product can be extended to n-tuples, with n > 2: X1 × X2 ×
. . . Xn , {〈x1, x2, . . . xn〉 | ∀i ∈ {1, 2, . . . n} . xi ∈ Xi}. We write Xn in order to denoted the
n-times cartesian product of X with itself.

Some sets are very important, hence they deserve a reserved symbol denoting them. The
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M. Pasqua 2.1. Basic Notions and Notations

set of natural numbers is denoted by N and the set of integer numbers is denoted by Z. A
numeric (integer) interval [n,m] is the set of all integer numbers between n and m, called
bounds, namely [n,m] , {x ∈ Z | n ≤ x∧ x ≤ m}. When the left bound is not in the set we
use ‘]’ in place of ‘[’, i.e. ]n,m] , [n,m] \ {n} (and similarly for the right bound).

Finally, we will often use, in order to shorten the notation, the inline conditional con-
struct ( cond? doTrue : doFalse ), borrowed from programming languages like C and Java.
The meaning is that the construct is replaced by the term doTrue if the condition cond is
satisfied and by the term doFalse otherwise.

2.1.1 Relations and Functions
A relation R between sets X1, X2, . . . Xn, for n ∈ N, is a subset of the cartesian product
X1 ×X2 × . . . Xn. The elements xi, such that xi ∈ Xi for every i ∈ [1, n], are in relation R
when 〈x1, x2, . . . xn〉 ∈ R ⊆ X1 ×X2 × . . . Xn. A relation R is binary when n = 2, namely
R ⊆ X1 × X2. We often write x1 R x2 for 〈x1, x2〉 ∈ R and x1 6R x2 for 〈x1, x2〉 /∈ R.
The composition of a relation R1 ⊆ X × Y with a relation R2 ⊆ Y × Z is the relation
R2 ◦ R1 ⊆ X × Z defined asR2 ◦ R1 , {〈x, z〉 | ∃y ∈ Y . x R1 y ∧ y R2 z}.

A binary relation R on a set X is a subset of X × X and could have some important
properties:

reflexivity ∀x ∈ X .x R x

irreflexivity ∀x ∈ X .x 6R x

symmetry ∀x, y ∈ X .x R y ⇒ y R x

antisymmetry ∀x, y ∈ X .x R y ∧ y R x⇒ x = y

transitivity ∀x, y, z ∈ X .x R y ∧ y R z ⇒ x R z

totality ∀x, y ∈ X .x R y ∨ y R x

A binary relation is termed equivalence if it is reflexive, symmetric, and transitive. In a set
with an equivalence relation, we consider, for each x ∈ X , the subset of X containing all
the elements y ∈ X such that xRy. This set is called equivalence class of x (in X , throughR)
and usually it is denoted by [x]R. An equivalence relation induces a partition of the set on
which it is defined, and the elements of the partition are its equivalence classes.

A binary relation is a preorder if it is reflexive and transitive. A partial order is an antisym-
metric preorder. A partial order which is total is called a total order (or linear order). Partial
or a total orders are strict if they are irreflexive instead of reflexive. Note that, for strict or-
ders, the antisymmetry requirement is useless: xRy and yRy cannot both hold since, by
transitivity, this would imply xRx, which cannot hold by irreflexivity.

A function f from the set X , called domain, to the set Y , called co-domain, is a relation
f ⊆ X × Y such that:

• {x ∈ X | 〈x, y〉 ∈ f} = X

• if 〈x, y〉 ∈ f and 〈x, y′〉 ∈ f then y = y′

66
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This means that a function maps every element ofX to one, and only one, element of Y . The
element of y in relation with x ∈ X is said its image and it is usually written y = f(x). The
set of all functions from X to Y is denoted by X −→ Y . When we need to describe functions
extensionally, we will use the following notation: [x1 7→y1 x2 7→y2 . . . xn 7→yn] denotes the
function {〈x1, y1〉, 〈x2, y2〉, . . . 〈xn, yn〉}. We will often use the lambda notation to denote a
function: λx . f(x). The composition of a function f ∈ X −→ Y with a function g ∈ Y −→ Z
is a function g ◦ f ∈ X −→ Z such that: ∀x ∈ X . g ◦ f(x) = g(f(x)).

A function f ∈ X −→ Y could have some important properties:

injectivity ∀x, x′ ∈ X . f(x) = f(x′)⇒ x = x′

surjectivity ∀y ∈ Y ∃x ∈ X . f(x) = y

An injective function is also called one-to-one, whilst a surjective function is also called onto.
A bijection (or isomorphism) is an injective and surjective function. The inverse of a bijective
function f ∈ X −→ Y is the bijective function f−1 , {〈y, x〉 | 〈x, y〉 ∈ f}. The direct image
(sometimes called additive lift) of f ∈ X −→ Y is the the function f̂ ∈ ℘(X) −→ ℘(Y )

mapping a set Z ⊆ X to the set of images of elements in Z, namely: f̂(Z) , {f(z) | z ∈ Z}.
Sometimes, we will abuse notation denoting with f(Z) the direct image of f on Z.

A partial function f from the set X the set Y is a relation f ⊆ X × Y such that:

• if 〈x, y〉 ∈ f and 〈x, y′〉 ∈ f then y = y′

Technically, the term partial function is improper, since partial functions are not functions.
Partial functions model the fact that for some elements of the domain the function is not
defined. The set of all partial functions fromX to Y is denoted byX ↪−→ Y . As for relations,
we can define functions with more than one argument: f ∈ X1×X2× . . . Xn −→ Y . Usually,
the notation f(〈x1, x2, . . . xn〉) = y is replaced with f(x1, x2, . . . xn) = y.

In the rest of the thesis, we will use very often the pointwise extension of relations and
functions, as described in the following definition.

Definition 1 (Pointwise Extension). Let X,Y, Z be arbitrary sets.

• The pointwise extension of a relation≤⊆ Y ×Y is a relation ≤̇X ⊆ (X −→ Y )× (X −→
Y ) defined as: ≤̇X , {〈f, g〉 | ∀x ∈ X . f(x) ≤ g(x)}.

• The pointwise extension of a function α ∈ Y −→ Z is a function α̇X ∈ (X −→ Y ) −→
(X −→ Z) defined as: α̇X , λf . λx . α(f(x)).

• The pointwise extension of an operator
∨
∈ ℘(Y ) −→ Y is an operator

∨̇
X ∈ ℘(X −→

Y ) −→ (X −→ Y ) defined as:
∨̇
XW , λx .

∨
{f(x) | f ∈W}.

Usually, the subscripts are omitted when X is clear from the context.

2.1.2 Ordered Structures
A set X with a partial order ≤, denoted 〈X,≤〉, is called partially ordered set or, more
concisely, POSET. If the relation ≤ is just a preorder, then 〈X,≤〉 is called preordered set or,
PROSET. Finite partially ordered sets can be drawn as line diagrams, called Hasse diagrams
(Figure 2.1, on the left). We can draw also an infinite POSET by showing a finite part which
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illustrates the building principle (Figure 2.1, on the right). In a Hasse diagram, each element
x ∈ X is uniquely represented by a node of the diagram, and there is an edge from a node
x to a node y if y covers x, namely, x ≤ y and there exists no z ∈ X such that x ≤ z ∧ z ≤ y.
Hasse diagrams are usually drawn placing the elements higher than the elements they cover.

Let 〈X,≤〉 be a POSET and let Y ⊆ X . We say that u ∈ X is an upper bound of Y if
∀y ∈ Y . y ≤ u; u is said maximal if it also belongs to Y . If the set of upper bounds (of Y )
has the smallest element, then we call this latter least upper bound (or lub; join; supremum)
of Y , denoted

∨
Y (or supY ). If the lub belongs to Y then it is said maximum (or top) and

it is usually denoted by > (or maxY ). Dually, we say that l ∈ X is a lower bound of Y if
∀y ∈ Y . l ≤ y; l is said minimal if it also belongs to Y . If the set of lower bounds (of Y ) has
the biggest element, then we call this latter greatest lower bound (or glb; meet; infimum) of Y ,
denoted

∧
Y (or inf Y ). If the glb belongs to Y then it is said minimum (or bottom) and it is

usually denoted by⊥ (or minY ). Note that maximum, minimum, supremum and infimum,
when they exist, are unique. In general, we denote by x∨ y and x∧ y, the elements

∨
{x, y}

and
∧
{x, y}, respectively.

A PROSET 〈X,≤〉 is called directed if every pair of elements x, y ∈ X has an upper bound
inX . This is equivalent to say that every non-empty finite subset ofX has an upper bound.
Since a POSET is, in particular a PROSET, the definition of directed POSET is immediate. A
(directed) complete partial order or, more concisely DCPO, is a partially ordered set in which
every non-empty directed subset has a least upper bound. If a DCPO has a minimum, it is
called pointed.

A subset of a partially ordered set is called a chain, when the partial order is total if
restricted to the elements of the chain only. Note that every chain is a directed POSET. A
partially ordered set is chain-complete when every chain, including the empty chain, has a
least upper bound. The fact that the lub for the empty chain∅ exists implies that the POSET
has a minimum element

∨
∅.

An important result in order theory is that a partially ordered set is a pointed DCPO if
and only if it is chain-complete, but it is provable only if we assume the axiom of choice (a
proof can be found in [Markowsky, 1976]). Due to this equivalence, in the following we use
the term complete partial order or, more concisely, CPO to refer a pointed DCPO or a chain-
complete POSET. We denote a CPO with the tuple 〈X,≤,∨,⊥〉, where ∨ is the partial least
upper bound operator (see Definition 2) and ⊥ is the minimum.

A POSET 〈X,≤〉 satisfies the ascending chain condition (ACC in short) if and only if any
infinite increasing chain x0 ≤ x1 ≤ . . . of elements of X is not strictly increasing, namely:
∃k ∈ N such that ∀j > k . xk = xj . Dually, it satisfies the descending chain condition (DCC
in short) if and only if any infinite decreasing chain . . . ≤ x1 ≤ x0 of elements of X is not
strictly decreasing, namely: ∃k ∈ N such that ∀j > k . xk = xj . Note that if a POSET has
minimum and it is ACC, then it is a CPO.

A POSET 〈X,≤〉 is a join-semilattice (or ∨-semilattice) if every pair of elements x, y ∈ X
has a least upper bound. This is equivalent to say that every non-empty finite subset of X
has a least upper bound. A join-semilattice is said bounded if it has minimum, namely the
least upper bound of ∅, and it is said complete if it has a least upper bound for every subset
of X . Dually, it is a meet-semilattice (or ∧-semilattice) if every pair of elements x, y ∈ X has
greatest lower bound. This is equivalent to say that every non-empty finite subset of X has
greatest lower bound. A meet-semilattice is said to be bounded if it has maximum, namely
the greatest lower bound of∅, and it is said complete if it has a least upper bound for every
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{a, b}

{b}{a}

∅

. . .3210

⊥

Figure 2.1: Hasse diagram examples.

subset of X . A lattice is a join-semilattice which is also a meet-semilattice. In a similar way,
we obtain the notions of bounded and complete lattice. We denote a complete lattice with
the tuple 〈X,≤,∨,∧,⊥,>〉, where ∨ is the (total) least upper bound operator, ∧ is the (total)
greatest lower bound operator, ⊥ is the minimum and > is the maximum.

So we can distinguish the ordered structures, depending on the subsets which have least
upper bound (or, dually, on the subsets which have greatest lower bound). In order to be
clear, we define the following operator.

Definition 2. Let 〈P,≤〉 be a POSET, then a partial least upper bound operator ∨ ∈ ℘(P ) ↪−→ P
is a partial function such that, for every X ∈ ℘(X) if ∨(X ) is defined then the least upper
bound of X , i.e.

∨
X , exists and ∨(X ) =

∨
X .

So we can discriminate the various ordered structures introduced so far by looking when
this operator is defined, as we can see in the following table.

∨(X ) is, at least, defined when
POSET X is a singleton

POSET with minimum X is a singleton or X = ∅
DCPO X is directed

pointed DCPO X is directed or X = ∅
chain-complete POSET X is a, possibly empty, chain

join-semilattice X is a non-empty finite set
bounded join-semilattice X is a finite set
complete join-semilattice X is a set

It is clear that the partial least upper bound operator is a total function if and only if it is
defined over a complete lattice. We abuse notation denoting in the same way the least upper
bound

∨
X of a set X and the partial least upper bound operator ∨(X ) applied to X .

Let 〈X,≤〉 be a POSET with minimum ⊥ and maximum >. For each x ∈ X we say
that y ∈ X is the complement of x if x ∧ y = ⊥ and x ∨ y = >. A lattice where every
element has a complement is called complemented. The complement of x is denoted as ¬x.
A lattice such that for all x, y, z ∈ X we have x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) and x∨ (x∧ z) =
(x∨y)∧(x∨z) is called distributive. A boolean algebra or, more concisely BA, is a complemented
and distributive lattice. If the lattice is complete then the boolean algebra is said complete
as well. We denote a complete BA with the tuple 〈X,≤,∨,∧,⊥,>,¬〉, where ∨, ∧, ⊥, >
have the same meaning as in the case of a complete lattice and ¬ is the (total) complement
operator.
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2.1.3 Ordinals
A set equipped with a total order is said totally ordered (or linearly ordered; simply ordered).
Note that a chain is totally ordered. A binary relation R over a set X is well-founded when
every non-empty subset of X has a least element with respect to R. A well-founded total
order is called a well-order (or well-ordering). A well-ordered set 〈W,≤〉 is a setW equipped
with a well-ordering ≤.

Every well-ordered set is associated with an order type. Two well-ordered sets 〈W1,≤2〉
and 〈W2,≤2〉 have the same order type if and only if they are order-isomorphic, that is, if
there exists a bijective function f ∈W1 −→W2 such that, for all elements x, y ∈W1 we have:
x ≤1 y ⇔ f(x) ≤2 f(y). An ordinal is the order type of a well-ordered set and it represents all
well-ordered sets which are order-isomorphic to it. In fact, a well-ordered set 〈W,≤〉, with
order type β, is order-isomorphic to the well-ordered set of all ordinals strictly smaller than
the ordinal β itself, namely it is order-isomorphic to the well-ordered set {w ∈W | w < β}.
Here < is the strict version of the relation ≤. This property permits to define each ordinal
as the well-ordered set of all ordinals that precede it, namely:

0 , ∅ is the smallest ordinal
β + 1 , β ∪ {β} is a successor ordinal

Thus, the first successor ordinal is 1 , {0} = {∅}. The next is 2 , {0, 1} = {∅, {∅}}.
Continuing in this manner, we obtain all natural numbers, that is, all finite ordinals. A limit
ordinal is an ordinal number which is neither 0 nor a successor ordinal, namely λ is a limit
ordinal when ∀β < λ . β+ 1 < λ. The set N of all natural numbers, denoted as an ordinal by
ω, is the first limit ordinal and the first transfinite ordinal (or infinite ordinal). Using ordinals
we can use a technique, generalizing the classic induction on naturals, to prove or define
properties of uncountable sets.

Definition 3 (Transfinite Induction). A property φ holds for each ordinal β if:

base case φ(0) holds

successor case for each successor ordinal β + 1: φ(β) holds implies φ(β + 1) holds

limit case for each limit ordinal λ: ∀β < λ, φ(β) holds implies φ(λ) holds

The classic induction principle works only for denumerable sets and it coincides with
the transfinite induction of Definition 3 where we do not have the limit case and where the
successor ordinals we take into account are only those strictly smaller that ω.

2.1.4 Functions on Ordered Structures
Let 〈D,≤〉 and 〈D],≤]〉 be two POSET. A function f ∈ D −→ D] is said to be monotonic (or
monotone; order preserving) when, for each x, y ∈ D, x ≤ y ⇒ f(x) ≤] f(y). It is Scott-
continuous when it preserves existing least upper bounds of directed subsets, that is, for di-
rected setsZ ⊆ D, if

∨
Z exists then

∨]{f(x) | x ∈ Z} exists and f(
∨
Z) =

∨]{f(x) | x ∈ Z}.
The definition can be equivalently given using (lub of) non-empty chains in place of directed
subsets. Dually, it is Scott-co-continuous when it preserves existing greatest lower bounds of
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co-directed1 subsets, that is, if
∧
Z exists, for a co-directed setZ ⊆ D, then

∧]{f(x) | x ∈ Z}
exists and f(

∧
Z) =

∧]{f(x) | x ∈ Z}. A function f is said (completely) additive (or com-
plete join-morphism) if it preserves existing least upper bounds of arbitrary non-empty sets.
Dually, f is said (completely) multiplicative (or complete meet-morphism; co-additive) if it
preserves existing greatest lower bounds of arbitrary non-empty sets. Finally, f is said strict
if it preserves bottom elements, namely, whenever bottom elements ⊥ ∈ D and ⊥] ∈ D]

exist, then f(⊥) = ⊥].

Definition 4 (Iteratable Function). Given a POSET 〈X,≤〉, with partial least upper bound
operator ∨ ∈ ℘(X) ↪−→ X , we say that a monotone function f ∈ X −→ X is ∨-iteratable on
x ∈ X when the transfinite iterates of f from x, defined as,

fλ ,


x if λ = 0

f(fβ) if λ = β + 1∨
β<λ f

β if λ is a limit ordinal

are well-defined.

2.1.5 Fixpoints
Given a partially ordered set 〈X,≤〉 and a function f ∈ X −→ X , a fixpoint of f is an element
x ∈ X such that f(x) = x. An element x ∈ X such that x ≤ f(x) is called a pre-fixpoint
while, dually, a post-fixpoint is an element x ∈ X such that f(x) ≤ x. The ≤-least fixpoint
of f , written lfp≤ f , is a fixpoint of f such that, for every fixpoint x ∈ X of f , lfp≤ f ≤ x.
We write lfp≤x f for the ≤-least fixpoint of f which is greater than, or equal to, an element
x ∈ P . Dually, we define the≤-greatest fixpoint of f , denoted by gfp≤ f , and the≤-greatest
fixpoint of f smaller than, or equal to, x ∈ X , denoted by gfp≤x f .

It is interesting, and useful, to know whether a function admits fixpoints, in particular
the least and the greatest one. For this reason, we recall some important fixpoint theorems.

Theorem 1 (Knaster-Tarski Fixpoint Theorem). Let 〈L,≤,∨,∧,⊥,>〉 be a complete lattice and
f ∈ L −→ L monotonic. The set of fixpoints of f is a complete lattice.

As a corollary of the theorem, we have that f has a ≤-least fixpoint lfp≤ f =
∧
{x ∈

P | f(x) ≤ x} and a ≤-greatest fixpoint gfp≤ f =
∨
{x ∈ P | x ≤ f(x)}. These characteri-

zations guarantee that fixpoints exist but do not gives us any hint on how we can compute
such fixpoints. Another fixpoint characterization, which is constructive, is the following.

Theorem 2 (Kleene Fixpoint Theorem). Let 〈D,≤,∨,⊥〉 be a CPO and f ∈ D −→ D Scott-
continuous. Then, f has a ≤-least fixpoint which is the least upper bound of the increasing chain

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ . . .

namely: lfp≤⊥ f =
∨
n<ω f

n(⊥) =
∨
{fn(⊥) | n ∈ N}.

This ensures that the fixpoint is reached in, at most, a denumerable number of steps.
Note that the number of steps is finite when the the CPO satisfies the ascending chain con-
dition. A dual result holds for the greatest fixpoint case.

1A POSET 〈X,≤〉 is called co-directed if every pair of elements x, y ∈ X has a lower bound in X.
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Having a continuous function is a strong assumption, hence we show now another fix-
points constructive characterization, which relaxes the continuity condition, but requires a
possibly transfinite iteration.

Theorem 3 (Cousot Fixpoint Theorem). Let 〈D,≤〉 be a DCPO (not necessarily pointed), f ∈
D −→ D monotonic and x ∈ D a pre-fixpoint. Then, the iteration sequence:

fλ ,


x if λ = 0

f(fβ) if λ = β + 1∨
β<λ f

β if λ is a limit ordinal

converges towards the ≤-least fixpoint lfp≤x f .

The theorem basically says that f is ∨-iteratable on x, with respect to the partial least
upper bound operator ∨ ∈ ℘(D) ↪−→ D, and its least fixpoint greater than x is given by the
transfinite iterates of f from x.

2.1.6 Galois Insertions, Closure Operators and Moore Families
Given a POSET 〈X,≤〉, a monotone function ρ ∈ X −→ X is an upper closure operator (or uco)
if it satisfies the following conditions:

extensivity ∀x ∈ X .x ≤ ρ(x)

idempotence ∀x ∈ X . ρ(ρ(x)) = ρ(x)

Vice versa, if ρ is reductive, namely ∀x ∈ X . ρ(x) ≤ x, and idempotent then it is called lower
closure operator (or lco). An upper closure operator is fully identifiable with the sets of its
fixpoints, denoted as ρ(X) = {x ∈ X | ρ(x) = x}. We denote the set of all closure operators
of X as uco(X).

Let 〈D,≤〉 and 〈D],≤]〉 be two POSETs. Consider two monotone functions α ∈ D −→ D]

and γ ∈ D] −→ D. We say that (D,α, γ,D]) is a Galois connection, shortly GC, when

∀x ∈ D ∀x] ∈ D] . x ≤ γ(x])⇔ α(x) ≤] x]

In this case we write:
〈D,≤〉 −−→←−−α

γ
〈D],≤]〉

Here, α and γ are said to be adjoint functions2, where α is the left (or upper) adjoint and γ
is the right (or lower) adjoint. An important feature of adjoint functions is that each adjoint
can be uniquely determined by using the other one in the following way:

α = γ+ , λx .
∧
{x] ∈ D] | x ≤ γ(x])}

γ = α− , λx] .
∨
{x ∈ D | α(x) ≤] x]}

This is tantamount to say that α is additive, i.e. α(
∨
Y ) =

∨]{α(x) | x ∈ Y }, and γ is co-
additive, i.e. γ(

∧
Y ) =

∧]{γ(x]) | x] ∈ Y }. Galois connections have also other nice algebraic
properties:

2The term adjoint is borrowed from category theory, indeed α and γ are basically adjoint (covariant) functors
between the categories induced by the underlining POSETs.
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• γ ◦ α is extensive and idempotent

• α ◦ γ is reductive and idempotent

• γ ◦ α ◦ γ = γ and α ◦ γ ◦ α = α

When α ◦ γ is the identity function id = λx] . x] on D], we say that (D,α, γ,D]) is a Galois
insertion, shortly GI. In this case we write:

〈D,≤〉 −−→−→←−−−
α

γ
〈D],≤]〉

In a Galois insertion we have that α is surjective and γ is injective. We can always obtain
a Galois insertion starting from a Galois connection. This process is called reduction and it
consists in collecting together all the elements x] ∈ D] having the same image under γ.

When we also have that γ ◦ α is the identity function id = λx . x on D, we say that
(D,α, γ,D]) is a Galois isomorphism. In this case we write:

〈D,≤〉 −−→−→←←−−−α
γ
〈D],≤]〉

It is called Galois ismorphism because α and γ are bijective functions.
Let 〈X,≤〉 be a POSET with maximum >. Then Y ⊆ X is a Moore family of X when

for every Z ⊆ Y we have that
∧
Z exists and, in particular,

∧
Z ∈ Y . This implies that∧

∅ = > ∈ Y . A Moore family is hence closed under meet. The Moore closure of a set
Y ⊆ X is defined as M(Y ) , {

∧
Z | Z ⊆ Y }, namely M(Y ) is the smallest (w.r.t. set

inclusion) subset of X which contains Y and which is a Moore family of X .
An important fact is that there is a strong link between upper closure operators, Galois

insertion and Moore families. Indeed, for every Galois insertion (D,α, γ,D]), we have that
γ ◦ α is an upper closure operator of D. Dually, given a ρ ∈ uco(D) and an isomorphism
ι ∈ ρ(D) −→ D] we have that (D, ι ◦ ρ, ι−1, D]) is a Galois insertion. Note that if we chose
D] = ρ(D), then the isomorphism ι is just the identity function id = λx . x and the Galois
insertion is (D, ρ, id, ρ(D)). The set of fixpoints of an upper closure operator in uco(X) is a
Moore family ofX . Hence, we have thatD] in a Galois insertion (D,α, γ,D]) is isomorphic
to a Moore family of D.

Finally, note that Moore families, and hence the set of fixpoints of upper closure opera-
tors, are closed under meet but not necessarily under join.

2.2 Abstract Interpretation
The prominent application of abstract interpretation is static analysis, where it is used for
the definition of abstract semantics of programs. In this setting, the concrete semantic of a
program, namely its “meaning”, is a representation of all its possible behaviors by means
of a mathematical object (usually a set). This latter is, in general, not computable: it is not
possible to represent and to compute all possible behaviors of any program in all its possi-
ble execution environments. Clearly all non trivial properties of the concrete semantics of
a program are undecidable: it is not possible to answer any question about the behaviors
of every program. For this reason abstract interpretation is born, as a theory for the sound
approximation of the semantics of discrete dynamic systems. The approximation consists
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in the observation of the semantics at a specified level of abstraction, focusing only on the
important aspects of the computation. In this setting abstract interpretation permits to cal-
culate a (computable) abstract semantics of the system, parametrized on the properties of
interest. The approximation is sound by design, in the sense that what holds in the abstract
holds also in the concrete (no false negatives).
Remark. The choice of the concrete semantics, and consequently the abstract semantics, is
relative to the goal of the analysis. Indeed, it is possible that an abstract semantics could be
the concrete semantics w.r.t. another one. Abstract interpretation is a theory for relating a
concrete and an abstract semantics, hence the focus is in this relation, not in the semantics
themselves.

Abstract interpretation is not limited to static analysis. Indeed, it is a theoretical frame-
work to reason about computing systems but, at the same time, it offers a constructive
methodology to build formal algorithms that manipulate them. So it is not surprising that
abstract interpretation is applied in a lot of fields of computer science: static analysis [Cousot
and Cousot, 1977], type inference [Cousot, 1997], model checking [Clarke, Grumberg, and
Long, 1994], comparative semantics [Comini, Levi, and Meo, 2001], program transformation
[Cousot and Cousot, 2002], automatic deduction [Plaisted, 1981], database queries optimiza-
tion [Helm, Marriott, and Odersky, 1995], cryptography [Adi and Debbabi, 2003], quantum
computing [Perdrix, 2008], etc. In the following we introduce the basic concepts of abstract
interpretation, in a general setting.

2.2.1 Concrete and Abstract Objects
In the most general sense, abstract interpretation is a theory for the approximation of math-
ematical objects, whatever these objects refer to. Indeed, abstract interpretation is not fo-
cused on the meaning of these objects but in the relation between concrete and abstract, i.e.
approximated, elements. The goal of abstract interpretation is to give the formal means for
relating mathematical objects at different levels of abstraction, potentially transferring the
computations from the concrete level to the abstract one.

The concrete objects domain O describes the elements of interest. For instance, sets of
numbers, functions, collecting semantics of programs, etc. The goal of abstract interpre-
tation is to approximate concrete objects with abstract ones, chosen in an abstract objects
domain O]. In other words, the intention of an abstract interpretation is to find an abstract
object A in the abstract domain O] which is a correct approximation of the concrete object
C ∈ O. Concrete and abstract objects came with two relations stating the relative precision
between elements: more precise elements (concrete or abstract) carry more information.
This means that 〈O,4〉 and 〈O],4]〉 are POSET and C ∈ O is more precise than C ′ ∈ O if
and only ifC 4 C ′. Analogously,A ∈ O] is more precise thanA′ ∈ O] if and only ifA 4] A′.
Usually,4 is called approximation order and4] is called abstract approximation order. Cor-
rectness, more often said soundness, is given by a correctness relation, stating which are the
correct approximations of a concrete object. This relation can be defined in a lot of ways,
depending on the algebraic properties that concrete and abstract domains have (see [Cousot
and Cousot, 1992] for a detailed explanation). In the following, we assume that the sound-
ness relation is given in terms of either a monotonic abstraction function α ∈ O −→ O] or
a monotonic concretization function γ ∈ O] −→ O. This means that α(C) ∈ O] is a correct
approximation of C ∈ O, or similarly, that A ∈ O] is a correct approximation of γ(A) ∈ O.
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The domains are called approximation domains, since they are useful for comparing objects,
w.r.t. their precision.

The monotonicity of the abstraction, or the concretization, function preserves the relative
precision of objects, namelyC 4 C ′ impliesα(C) 4] α(C ′), orA 4] A′ implies γ(A) 4 γ(A′).
Monotonicity is not sufficient to obtain best abstractions. For instance, even if α maps a
concrete object to a correct abstract object, it is not guaranteed that this latter is the most
precise. We have the best abstraction when the abstraction α is a complete join-morphism
or, equivalently, the concretization γ is a complete meet-morphism (assuming that arbitrary
join and meet exist). This tantamount to say that α and γ are adjoint functions and hence
form a Galois connection. We will deal with Galois connection-based abstract interpretation
in a moment.

2.2.1.1 Functions Abstraction

Usually, concrete objects are computed by means of a function on the concrete domain.
Hence, once we have abstracted objects, the natural second step is to abstract computations.
Indeed, abstract interpretation is motivated by the fact that a concrete function F ∈ O −→ O
is not computable (or too expensive in terms of complexity). Hence we seek an abstract
function F ] ∈ O] −→ O] which correctly approximates F , and that is computable. As said,
the abstract function must be sound, namely:

∀C ∈ O . α(F (C)) 4] F ](α(C)) or ∀A ∈ O] . F (γ(A)) 4 γ(F ](A)) (2.1)

This means that computing in the abstract always yields less or as much information as
computing in the concrete. When the equality is required, namely when we require that
the abstract computation does not lose any information w.r.t. the concrete one, we say that
F ] is exact, or more commonly complete. This happens when concrete and abstract functions
commute, i.e. when α ◦ F = F ] ◦ α or F ◦ γ = γ ◦ F ].

2.2.1.2 The Optimal Case of Galois Connections

When the abstraction function preserves existing least upper bounds, i.e. it is additive, there
is a unique concretization γ expressing the same soundness relation between concrete and
abstract elements: γ , α− = λA .

b
{C ∈ O | α(C) 4] A}. Dually, when the concretization

function preserves existing greatest lower bounds, i.e. it is co-additive, there is a unique
abstraction α expressing the same soundness relation between concrete and abstract ele-
ments: α , γ+ = λC .

c]{A ∈ O] | C 4 γ(A)}. In this case we have that abstraction and
concretization are adjoint functions, hence they form a Galois connection:

〈O,4〉 −−→←−−α
γ
〈O],4]〉

In a Galois connection setting, soundness can be checked, equivalently, in the concrete or in
the abstract, in fact it holds:

∀C ∈ O, A ∈ O] . α(C) 4] A⇔ C 4 γ(A) (2.2)

In particular we have that α(C) is the best possible abstract element approximating C,
namely it is the most precise, w.r.t. 4], correct approximation of C in O].
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One of the fundamental aspects of Galois connection-based abstract interpretations is
that the majority of the properties of the approximation process are specified only by the
(abstract) domain of mathematical objects chosen for representing the objects of interest.
A theory of domains for abstract interpretation was defined in [Cousot and Cousot, 1977;
Cousot and Cousot, 1979b] based on the notion of Galois connection.

In a Galois connection setting we can exploit nice algebraic properties. For instance,
Equation 2.2 implies that the two definitions of soundness in Equation 2.1 are equivalent.
Furthermore, given a concrete function F it is always possible to retrieve a sound approxi-
mation, which is also the most precise [Cousot and Cousot, 1979b]. This latter is called best
correct approximation and it is defined as F bca , α◦F ◦γ. As a consequence, in order to prove
soundness, it is sufficient to prove that F ] approximates F bca, namely prove that F bca 4̇

]
F ].

Unfortunately, when we need exact approximations things are more complicated. First,
even in a Galois connection setting, an exact abstract function is not guaranteed to exist.
Second, the two notions of completeness are not equivalent. Indeed we have:

• backward completeness, when F ◦ γ = γ ◦ F ]

• forward completeness, when α ◦ F = F ] ◦ α

We have this two different notions of completeness, depending on where we compare the
concrete and the abstract computations. If we compare the results in the abstract domain,
we obtain backward completeness while, if we compare the results in the concrete domain,
we obtain forward completeness. An important result is that a function admits a backward,
or forward, complete abstraction if and only if its best correct approximation is backward,
or forward, complete [Giacobazzi, Ranzato, and Scozzari, 2000].

Lattice of Abstract Interpretations. A Galois insertion is a Galois connection whereα◦γ =
λA .A (i.e. it is the identity function on O]). It is not restrictive to reason with insertions
instead of connections, since any Galois connection can be reduced to a Galois insertion,
eliminating the redundant elements. Often it is convenient to consider domains indepen-
dently from the representation of their objects. In this case they are specified by means
of upper closure operators. As we have already seen, an upper closure operator is com-
pletely described by the set of its fixpoints ρ(O) = {C ∈ O | C = ρ(C)}. Every Galois
insertion (O, α, γ,O]), and so every abstract domain of O, is uniquely identifiable with an
upper closure operator γ ◦ α on O. The converse also holds, namely every upper closure
operator ρ induces a Galois insertion (O, ρ, id, ρ(O)). So there is a one-to-one correspon-
dence between upper closure operators and abstract domains defined by Galois insertions.
If 〈O,v,t,u,⊥,>〉 is a complete lattice then 〈uco(O), v̇, ṫ, u̇, λC .C, λC .>〉, where uco(O)
denotes the set of all upper closure operators on O, is the lattice of abstract interpretations of
O. This is the complete lattice of all possible abstract domains of O. The partial order v̇ is
used to compare domains: ρ1 is more precise than ρ2 if and only if ρ1 v̇ ρ2, namely if and
only if ρ2(O) ⊆ ρ1(O).

2.2.2 Fixpoint Computations
Very often, the objects of interest are the result of a fixpoint computation, namely they are
(usually the least or the greatest) fixpoints of some functions. For instance, this is the case
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for many formulations of programs semantics. Not all functions admit fixpoints: some as-
sumptions are needed in order to apply one of the fixpoint theorems presented in Subsec-
tion 2.1.5. In the rest of the thesis we assume to deal with objects computable by means of
functions which admit a fixpoint. Indeed, we only deal with objects which are constructive,
as explained in the following definition.

A mathematical object is said to be constructive, i.e. expressible in fixpoint form, if there
exists a computational fixpoint definition3, computing it.

Definition 5 (Computational Fixpoint Definition). 〈F ,D,⊥p 〉 is a computational fixpoint defini-
tion whenD = 〈D,≤,∨〉 is a POSET with partial least upper bound operator∨ ∈ ℘(D) ↪−→ D,
F ∈ D −→ D is ≤-monotone, ⊥p is a pre-fixpoint of F and F is ∨-iteratable on ⊥p . The object
computed is lfp≤⊥p F ∈ D.

Remark. lfp≤⊥p F always exists, applying Theorem 3. We can use this latter even if D is not a
CPO, since F is supposed to be ∨-iteratable and hence the least upper bound of its iterates
does exist.

Then an object D is constructive when there exists a computational fixpoint definition
〈F ,D,⊥p 〉, with D = 〈D,≤,∨〉, such that D = lfp≤⊥p F . By definition, lfp≤⊥p F is the limit of
the increasing iterates of F starting from ⊥p , namely lfp≤⊥p F = Fλ, for a limit ordinal λ (see
Definition 4).
Remark. Usually, D is at least a CPO (in this case monotonicity implies that F is iteratable),
nevertheless, the least upper bound needs to be defined for the iterates of F , not for every
directed subset of D. If D is a CPO, the pre-fixpoint is usually chosen to be the minimum.

In abstract interpretation, we assume that a concrete objectC ∈ O is computed by means
of a computational fixpoint definition 〈F,O,⊥〉, with O = 〈O,v,t〉. In particular C is the
v-least fixpoint of F greater than ⊥ and it is computed as C =

⊔
n<λ F

n(⊥). Similarly, we
assume that an abstract object A ∈ O] is computed by means of a computational fixpoint
definition 〈F ],O],⊥]〉, with O] = 〈O],v],t]〉. In particular A is the v]-least fixpoint of F ]

greater than⊥] and it is computed asA =
⊔]

n<δ F
]n(⊥]). These domains are called computa-

tional domains since they are useful for computing objects. Usually,v is called computational
order and v] is called abstract computational order. These latter may, or may not, be equal
to the approximation orders. In the following, for simplicity of exposure, we assume that
computational and approximation orders coincide, hence we let 4 be equal to v and 4] be
equal tov]. We wanted to explicit this difference here because, in some cases, as we will see
in some chapters, the domain of computation is different from the one in which we compare
objects w.r.t. precision.

The abstract interpretation framework allows us to systematically derive the abstract op-
erator F ], computing A, starting from the definition of the concrete operator F , computing
C, such that A is correct approximation of C. We can do the same also when we have com-
putations involving fixpoints exploiting approximation and transfer theorems. In the fol-
lowing theorems let 〈F,O,⊥〉, with O = 〈O,v,t〉, and 〈F ],O],⊥]〉, with O] = 〈O],v],t]〉,
be concrete and abstract computational fixpoint definitions.

Theorem 4 (Kleenian Fixpoint Approximation). Assume that the strict Scott-continuous func-
tion α ∈ O −→ O] is such that for every pre-fixpoint C ∈ O there exists C ′ v C such that
α(F (C)) v] F ](α(C ′)). Then α(lfpv⊥ F ) v] lfpv

]

⊥] F
].

3The following definition is taken from the fixpoint semantics specification of [Cousot, 2002].
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Theorem 5 (Tarskian Fixpoint Approximation). Suppose that 〈O,v,t,u,⊥,>〉 and 〈O],v]

,t],u],⊥],>]〉 are complete lattices. Assume that the monotone function α ∈ O −→ O] is such that
for every post-fixpoint A] ∈ O] there exists a post-fixpoint C ∈ O such that α(C) v] A]. Then
α(lfpv⊥ F ) v] lfpv

]

⊥] F
].

The first theorem relies on the fact that, each abstract iteration step F ]n(⊥]) is a sound
approximation of the corresponding concrete iteration step Fn(⊥). Passing to the limit,
we obtain that the limit of the abstract iterations chain is a sound approximation of the
concrete iteration chain. The second theorem, instead, exploits the fact that lfpv⊥ F is the
smallest post-fixpoint and the fact that a post-fixpoint of a sound abstract function is a sound
approximation of a post-fixpoint of the concrete function.

When we require exactness, in this cases backward completeness, we can use the follow-
ing transfer theorems.

Theorem 6 (Kleenian Fixpoint Tranfser). Assume that the strict Scott-continuous function α ∈
O −→ O] satisfies the commutation condition F ] ◦α = α◦F . Then we have α(lfpv⊥ F ) = lfpv

]

⊥] F
].

Theorem 7 (Tarskian Fixpoint Transfer). Assume 〈O,v,t,u,⊥,>〉 and 〈O],v],t],u],⊥],>]〉
complete lattices. Assume that the co-additive function α ∈ O −→ O] satisfies the commutation
inequality F ] ◦α v] α◦F and that for each post-fixpointA ∈ O] there exists a post-fixpointC ∈ O
such that α(C) = A. Then α(lfpv⊥ F ) = lfpv

]

⊥] F
].

In Theorems 4 and 6 Scott-continuity is a too strong hypothesis, since in the proof of
[Cousot, 2002] the author only uses the fact that α preserves the lub of the iterates of F
starting from ⊥.

2.2.2.1 Fixpoint Extrapolation

Even if a fixpoint of a function exists, it is not always the case that the iteration sequence
computing it converges in finite time. Indeed, Theorem 3 guarantees that lfpv⊥ F = Fλ, for a
limit ordinal λ, but this latter could be transfinite. Note that in the concrete case we have that
the computation does not converge in finite time, this is why we need to move to the abstract
domain. Nevertheless, we can have infinite computations also in the abstract domain, for
instance when this latter has infinite ascending chains. Indeed, we seek an abstract element
such that lfpv

]

⊥] F
] = F ]β , with β < ω, meaning that lfpv

]

⊥] F
] =

⊔]

n<m F
]n(⊥), with m ∈ N.

We have that the iteration reaches the fixpoint in finite time when O] is finite or when it
satisfies the ACC condition. When this is not the case, a classic example is the intervals
domain, we need an extrapolation operator forcing convergence (and so termination).

Widening. A widening is a binary operator used to enforce or accelerate the convergence
of increasing iteration sequences over abstract domains with infinite or finite but too long
ascending chains. Let 〈X,≤〉 a POSET, a widening O ∈ X×X −→ X is an operator satisfying
two constraints. First, it must compute upper bounds, namely for every x, y ∈ X we must
have that x ≤ x O y and y ≤ x O y. Second, for every increasing chain x0 ≤ x1 ≤ . . . ≤
xn ≤ . . ., the increasing chain y0 , x0 ≤ y1 , y0 O x1 ≤ . . . yn , yn−1 O xn ≤ . . . stabilizes
in a finite number of steps, that is ∃k ∈ N . yk = yk−1. Basically, if xi are the iterates of
the abstract funtion f in the abstract domain, the widening uses two consecutive iterates yi
and f(yi) in order to obtain the next iteration yi+1. In this way, the widening computes in
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finite time a post-fixpoint of the abstract function and, in turn, an approximation of the least
fixpoint of the concrete function.

2.3 Derived Structures and Abstractions
In this last section we give some constructions, in order to define ordered structures starting
from other ordered structures. Furthermore, we do the same for abstractions, namely we
show how to derive Galois connections starting from other Galois connections.

Structures.

Definition 6 (Powerset Construction). LetX be a set. Then 〈℘(X),⊆,∪,∩,∅, X, \〉 is a com-
plete Boolean Algebra.

Definition 7 (Dual Structure). Let 〈X,≤,∨,∧,⊥,>〉 be a complete lattice, then we have that
〈X,≥,∧,∨,⊥,>〉 is a complete lattice. The same holds for a lattice, a CPO and a POSET.

Definition 8 (Pointwise Construction). Let 〈C,≤,∨,∧,⊥,>〉 be a complete lattice and X a
set. Then 〈X −→ C, ≤̇, ∨̇, ∧̇, λx .⊥, λx . C〉 is a complete lattice, where:

• f1 ≤̇ f2 , (∀x ∈ X . f1(x) ≤ f2(x))

•
∨̇
Y , λx .

∨
{f(x) | f ∈ Y }

•
∧̇
Y , λx .

∧
{f(x) | f ∈ Y }

The same holds for a lattice, a CPO and a POSET.

Abstractions.

Definition 9 (Compositional Abstraction). Let 〈X1,≤1〉 −−−→←−−−
αA

γA 〈X2,≤2〉 and 〈X2,≤2〉 −−−→←−−−
αB

γB

〈X3,≤3〉 be two Galois connections, then

〈X1,≤1〉 −−−−−−→←−−−−−−
αB◦αA

γA◦αB 〈X3,≤3〉

is Galois connection. If αA and αB are surjective then so is αB ◦ αA, namely we have that
(X1, αB ◦ αA, γA ◦ γB, X3) is a Galois insertion.

Definition 10 (Dual Abstraction). Let 〈X,≤〉 −−→←−−α
γ
〈Y,4〉 be a Galois connection, then we

have that 〈X,≥〉 −−→←−−γ
α 〈Y,<〉 is a Galois connection. The same holds for a Galois insertion.

Definition 11 (Subset Abstraction). Let C be a set and A ⊆ C, then

〈℘(C),⊆〉 −−→−→←−−−
α

γ
〈℘(A),⊆〉

with α(X) , C ∩A and γ(Y ) , Y ∪ (C \A).
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Definition 12 (Elementwise Set Abstraction). Let C and A be two sets, f ∈ C −→ A, then

〈℘(C),⊆〉 −−→←−−α
γ
〈℘(A),⊆〉

with α(X) , {f(c) | c ∈ X} and γ(Y ) , {c | f(c) ∈ Y }. If f is surjective then α is surjective,
namely −→←− becomes −→−→←−−.

Definition 13 (Supremum Abstraction). Let 〈A,v,t,u,⊥,>〉 be a complete lattice, C be a
set and f ∈ C −→ A, then

〈℘(C),⊆〉 −−→←−−α
γ
〈A,v〉

with α(X) ,
⊔
{f(c) | c ∈ X} and γ(a) , {c | f(c) v a}.

Definition 14 (FunRel Abstraction). Let D and E be two sets, then

〈℘(D −→ E),⊆〉 −−→←−−α
γ
〈℘(D × E),⊆〉

with α(X) , {〈d, f(d)〉 ∈ D × E | f ∈ X} and γ(Y ) , {f ∈ D −→ E | ∀d . 〈d, f(d)〉 ∈ Y }.

Definition 15 (Pointwise Encoding). Let D and E be two sets, then

〈℘(D × E),⊆,∪,∩, D × E,∅〉 −−→−→←←−−−α
γ
〈D −→ ℘(E), ⊆̇, ∪̇, ∩̇, λd .E, λd .∅〉

is a Galois isomorphism, with α(X) , λd . {e | 〈d, e〉 ∈ X} and γ(f) , {〈d, e〉 | e ∈ f(d)}.

Definition 16 (Pointwise Abstraction). Let 〈X,≤〉 −−→←−−α
γ
〈Y,4〉 be a Galois connection and Z

an arbitrary set. Then
〈Z −→ X, ≤̇〉 −−→←−−

α̇

γ̇
〈Z −→ Y, 4̇〉

is a Galois connection. The same holds for a Galois insertion.

Definition 17 (Non-Relational Abstraction). Let A and B two sets, then

〈℘(A −→ B),⊆〉 −−−−→−→←−−−−−
αnr

γnr 〈A −→ ℘(B), ⊆̇〉

with αnr(X) , λa . {f(a) | f ∈ X} and γnr(ḟ) , {f | ∀a ∈ A . f(a) ∈ ḟ(a)}.

Definition 18 (Componentwise Abstraction). Let A and B be two sets, then

〈℘(A×B),⊆,∪,∩, A×B,∅〉 −−−→←−−−
α×

γ×

〈℘(A)× ℘(B),⊆2,∪2,∩2, 〈A,B〉, 〈∅,∅〉〉

with α×(X) , 〈{a | ∃b . 〈a, b〉 ∈ X}, {b | ∃a . 〈a, b〉 ∈ X}〉 and γ×(〈X,Y 〉) , X × Y . Here,
⊆2,⊆ × ⊆, ∪ , ∪ × ∪ and ∩ , ∩ × ∩.
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System Correctness
3

Systems, from computer programs to biological precesses, should behave as intended.
Indeed, every system is designed for a task and the system should complete it, possibly

without errors. Unfortunately, errors very often occur and hence some control mechanisms
are needed. These latter aim to discover when a system exhibits an unwanted behavior,
potentially taking some repairing actions. Basically, these control mechanisms say whether
a system is correct or not.

In order to build systems control mechanisms, it is necessary to have to establish what
means “to be correct”. In the general case, correctness has an informal meaning: given
a specification, i.e. an informal requirements description1 stating what a system could or
could not do, a system is correct if complies with the specification. Clearly in order to deal
with the problem with automatic means it is necessary a more precise definition. For this
purpose formal methods are used to prove the correctness of a system.

3.1 Correctness Condition
A control mechanism is itself a system, hence it is legitimate to wonder whether the con-
trol mechanism itself is correct. In the following, we refer to the correctness of a control
mechanism with the term soundness. In this thesis, we take in consideration only control
mechanisms which are sound by design. In order to do so, we need to specify all actors
needed to build a control mechanism and, in particular, what we call a correctness condition.

3.1.1 Informal Introduction
Systems are generic objects so first we need a mathematical representation describing them:
the system model. From this latter, we need to retrieve the behavior of a system, namely a
representation of its execution. Then, depending on the system model and from the infor-
mal requirements, a specification is defined. Finally, a correctness condition is introduced
to determine whether the system behavior adheres to the specification or not.

So a control mechanism can be described as follows (see also Figure 3.1). From the be-
haviors of systems and from a specification the correctness condition is obtained. A security
mechanism takes a system and retrieves its behavior. Then it checks whether the latter ful-
fills the correctness condition. If the answer is positive then the system is correct otherwise
the system is incorrect. In this latter case, the mechanism may also perform some actions

1The requirements can be even specified in a rigorous mathematical way but are not formal in the sense that
there is not a formal link between them and the behavior of the system and/or the execution context.
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Correctness conditions

System

Control
mechanism

Correct/Incorrect (possibly perform some ‘repairing’ actions)

System
behavior

[System model]

Formal
specification|=?

Informal requirements

Figure 3.1: Control mechanism process.

in order to revise the system behavior. The control mechanism implements the methods
needed for checking the specification.

The correctness condition is also needed to formally prove soundness (only correct sys-
tem behaviors are accepted by the mechanism) and precision (which correct systems are
wrongly ruled out due to mechanism incompleteness) of a given control mechanism. This
connection is important as it ensures that the mechanism actually guarantees the specifica-
tion in the sense of the correctness condition.

To sum up, a specification describes, more or less formally, which requirements a system
should fulfill. The system model specifies how to represent the behavior of the system. The
correctness condition links the two aspects, describing formally what it means for a system
to be correct.

3.1.2 Going (a Little Bit) Formal
As we have seen, with a control mechanism we want to state whether a system is correct or
not, namely we want to answer the following question: “is a given system correct?”. This
implies a formalization of “to be correct”, namely the formalization of correctness condi-
tions. In order to define this concept, we take into account a more general setting. Indeed
“to be correct” is a particular property a system could have.

Suppose we have a set of systems, called Sys, with elements s ∈ Sys. In order to reason
about systems with automatic means we need to represent these latter as mathematical ob-
jects. We need, indeed, a representation function I ∈ Sys −→ REPSys, mapping a system with
its formal representation in REPSys. This step is not necessarily automatic indeed, usually, it
involves a human interaction.
Remark. Very often, the representation function I is intended as the semantics, formalizing
the behavior of systems. Here we have chosen a different name since I is not restricted to
represent semantic information about systems. Indeed, I could output syntactic informa-
tion, as the code of a program. This is not a real concern since we can always see the syntax
as a particular semantics interpreting symbols with themselves. As a consequence, we use
another term in order to avoid confusion.

At this point, a systems property Q is a function in REPSys −→ {“yes”, “no”} such that,
given a system representation I(s), it returns “yes” if s has the property Q and “no” other-
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wise. How to define properties from the informal requirements is another not trivial task
and, again, it can involve human interaction. From now on, we refer a system property with
the term specification. This is due to the fact that the term property will be overloaded in the
rest of the thesis.

Specifications are not necessarily injective, indeed more than one system could satisfy
the same specification. There are also specifications which are not surjective. Indeed, the
function λs . “no” (not surjective) represents, informally, “not to be a system”, which is not
satisfiable by any system. Dually, the specification saying “to be a system” is the func-
tion λs . “yes” and it is satisfied by every system. The satisfaction relation |=⊆ REPSys ×
(REPSys −→ {“yes”, “no”}) associates a system representation with the specifications it satis-
fies, i.e. I(s) |= Q if and only if Q(I(s)) = “yes”.

Reasoning with functions is sometimes not convenient, hence we redefine specifications
in terms of sets. Indeed, a specification induces a trivial partition of REPSys. We can hence
represent a specification Q as the set of system representations satisfying it, i.e. {I(s) ∈
REPSys | I(s) |= Q} = {I(s) ∈ REPSys | Q(I(s)) = “yes”}. In the following, we abuse notation
denoting with Q both a specification and its set-encoding. Hence, we have that system rep-
resentations are inREPSys, specifications are in Specs , ℘(REPSys) and the satisfaction relation
is set-membership.
Definition 19. A system s ∈ Sys, whose representation is I(s) ∈ REPSys, satisfies a specifica-
tion Q ∈ ℘(REPSys), written s |= Q, if and only if I(s) ∈ Q.

In logic, if all models of a formula φ are also models of another formula ψ then ψ is said
a logical (or semantic) entailment of φ. In this case, φ logically implies ψ, written φ⇒ ψ. In
the setting of specifications, we have that the logical implication is set-inclusion, meaning
that if Q1 ⊆ Q2 then all systems satisfying Q1 also satisfy Q2. We have that 〈Specs,⊆〉 is a
POSET with a bottom element ∅ and a top element REPSys. These two elements represent,
respectively, the strongest and the weakest specification. Indeed, Q1 ⊆ Q2 means that more
systems satisfy Q2 than Q1, hence Q2 is, in some sense, weaker than Q1. In fact, ∅ is not
satisfied by any system and, dually,REPSys is satisfied by every system (they are, respectively,
the specifications λs . “no” and λs . “yes” introduced before).

Given a system s we can hence retrieve its strongest specification, which is {I(s)}. Indeed,
{I(s)} ⊆ Q, for any specification Q such that s |= Q. This means that we can use the logical
implication, namely set-inclusion, in order to state satisfiability. Indeed we have:

s |= Q if and only if {I(s)} ⊆ Q (3.1)

This is important because⊆ is much easier to be used than∈ in the context of approximation-
based control mechanisms. Here, ⊆ is used as the approximation order, since 〈Specs,⊆〉 is
the POSET2 of systems specifications, where ⊆ compares specifications w.r.t. their degree
of approximation.
Remark. In the context of program analysis, I(s) corresponds to the standard semantics (of s)
and {I(s)} corresponds to a collecting semantics (of s). The collecting semantics is intended
as the specification s does have, whence, an arbitrary specification Q is intended as a speci-
fication s may have.

The correctness condition is given by a specification Q and its satisfiability relation |=. A
system s is correct w.r.t. Q if and only if s satisfies Q, i.e. if and only if s |= Q.

2Actually 〈Specs,⊆,∪,∩,∅,REPSys, \〉 is complete Boolean Algebra.
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3.2 Control Mechanisms: Verification vs Enforcement
Now that we have made clear what is a correctness condition, we can start talking about
control mechanisms. As already said, a control mechanism implements the correctness
condition and, optionally, it performs some repairing actions if it finds an incorrect system.
Hence, we can distinguish two kinds of control mechanisms: verifiers and enforcers.

Verification is intended as the general process of checking if a system complies with a
specification. So verification checks if a system is correct or not. This process can be static
or dynamic. In the static case the analysis of the system is done without executing it (e.g. an-
alyzing its code if the system is a program). If the specification control is performed during
the execution of the system, so dynamically, then the process is called runtime verification. A
verifier (runtime or not) can only figure out if a system performs not allowed actions, noth-
ing else. Giving to the verifier the power to modify the system execution, a mechanism of
enforcement is obtained. So enforcement assures that the system under control is correct, or
better, assures that it behaves like a correct system. Also in this case there is the possibility
to perform the process statically or dynamically (runtime enforcer).

The power of the verification/enforcement mechanisms, i.e. the specifications that they
are able to verify/enforce, depends on their “capabilities” or, dually, on the constraints they
have to respect. For instance, a mechanism could be limited to only observe the behavior
of the system, i.e. it does not have extra information other than the actions executed by the
system. This type of mechanisms does not have the possibility to look-forward in the system
execution, i.e. decisions rely only on the actions already seen. Furthermore, an unrestricted
runtime enforcer can stop, insert, delete, delay and edit all the actions performed by the
system under control. In addition it could perform some analysis of the system and look-
forward for retrieving information about the future actions executed. This modifications to
the system behavior can also be performed syntactically before its execution, so statically,
and they are termed rewriting. A particular class of mechanisms is defined restricting the
power of a runtime enforcer to only stop system executions, and it is called monitoring.

In any case, a verifier is formally a function Verifier ∈ Specs × Sys −→ {“yes”, “no”}
implementing the correctness condition, namely

Verifier(Q, s) =

{
“yes” if s |= Q

“no” otherwise

Enforcement is a slightly different process, since it has to modify the systems under control.
Indeed, enforcement is the process of retrieving the closest system s′ such that s′ |= Q. An
enforcer could be defined as a function Enforcer ∈ Specs× Sys −→ Sys such that:

Enforcer(Q, s) = s′ and s′ |= Q and s ' s′

for a given equivalence relation'⊆ Sys×Sys. The definition of this latter is crucial, since it
reflects the precision of the enforcement process. For instance, it is easy to make an enforcer
for the trivial equivalence ', Sys× Sys.

Example 1. Given a specification Q, it is not so hard to retrieve a system (maybe a trivial
one) ŝ satisfying Q. Then an enforcement for the equivalence relation '⊆ Sys × Sys is
trivially definable as Enforcer(Q, s) , ŝ.
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Remark. Usually, a control mechanism is built specifically for a particular specification.
Hence it is more realistic to say that a verifier (and similarly, an enforcer) is a function in
Sys −→ {“yes”, “no”}, parametric on Q, namely VerifierQ(s) , ( s |= Q ? “yes” : “no” ).

Both verification and enforcement mechanisms should be feasible, i.e. implementable in
some way. Unfortunately, due to Rice’s theorem, every non trivial (semantics) correctness
condition is undecidable, hence verification mechanisms need approximations. For what
concerns enforcement, it is always possible to enforce every correctness condition, as long as
we sacrifice precision. In this thesis we do not deal with enforcement, we have just sketched
the idea here. Hence, in the next subsection, we talk about approximate verification, in order
to make the problem decidable.

3.2.1 Analysis and Approximations
Systems analysis is a related, but yet slightly different, concept compared to verification.
As already said, in verification we want to answer the question: “does a system satisfy a
given specification?”. In analysis, instead, we do not have the concept of specification to
verify. Indeed, an analysis of a system returns the most precise information we are able
to retrieve about the system. Usually, a system could fulfill more than one specification,
hence, a system analysis returns the strongest specification fulfilled by the system. This
means that analysis is an automatic means for computing {I(s)} and verification, instead, is
an automatic means for computing {I(s)} ⊆ Q.

Unfortunately, in general, we are able to compute neither {I(s)} nor {I(s)} ⊆ Q. In-
deed, we need approximations. A set of abstract specification Specs], which we are able to
compute, represents concrete specifications in a simpler way, usually losing some infor-
mation. Clearly, we have to define when an abstract specification is a sound approxima-
tion of a concrete one, namely we need a soundness function ς ∈ Specs] −→ Specs. This
latter naturally induces a preorder on Specs] (a partial order if ς is injective), defined as:
⊆], {〈Q]

1,Q
]

2〉 | ς(Q
]

1) ⊆ ς(Q]

2)}3. The order ⊆] mimics the approximation order ⊆ in the
abstract, namely Q]

1 ⊆] Q]

2 implies that the set of systems satisfying ς(Q]

1) is a subset of the
set of systems satisfying ς(Q]

2). Note that we can express this in the abstract interpretation
framework, where the concrete objects domain is 〈Specs,⊆〉, namely concrete specifications,
the abstract objects domain is 〈Specs],⊆]〉, namely approximate specifications, and the con-
cretization function γ is exactly ς .
Remark. Note that an abstraction is always (silently) performed in classic program analysis.
Systems are represented with sets of executions and hence, technically, specifications are
sets of sets of executions. Trace properties are sets of executions, namely they are already
abstract specifications. In this case, the abstract approximation order remains set-inclusion
and the soundness function is the powerset operator. Finally, in this setting the interpreta-
tion of a system, i.e. a set of executions, plays also the role of the strongest specification.

In this setting, the analysis aims to compute a sound abstract specification of a given
system, namely it could be defined as a function Analyzer] ∈ Sys −→ Specs] such that:

{I(s)} ⊆ ς(Analyzer](s))

3This definition is very strong and, in practice, we settle for an order ⊆]⊆ {〈Q]

1,Q
]

2〉 | ς(Q
]

1) ⊆ ς(Q]

2)}. This is
sufficient to guarantee soundness and it is much easier to achieve in practice: ⊆] becomes a semi-test.
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Hence, even if we are not able to compute {I(s)}, with an (abstract) analyzer we can compute
an approximate version Analyzer](s) of {I(s)}, which is sound. We can do a similar rea-
soning also for verification. In approximate verification we obtain an approximate answer
to the question: “does a system satisfy a specification?”. Indeed, an abstract verifier could
answer “yes” or “maybe”, where this latter means that the verifier is not able to say anything
about the verification. The check {I(s)} ⊆ Q is approximated totally in the abstract, given
an under-approximation of the specification we want to verify. An abstract specification Q]

is an under-approximation of a concrete specification Q when ς(Q]) ⊆ Q. The verifier must
be sound, hence it is a function Verifier] ∈ Specs] × Sys −→ {“yes”, “maybe”} such that:

Verifier](Q], s) = “yes” implies {I(s)} ⊆ ς(Q]) (in turn implying s |= Q)
Note that we can define an (abstract) verifier in terms of an (abstract) analyzer as follows:

Verifier](Q], s) ,

{
“yes” if Analyzer](s) ⊆] Q]

“maybe” otherwise

If the answer of the analyzer is “maybe” then we have to perform another verification pro-
cess, refining Q] and/or changing the abstract specification domain Specs]. In any case, it is
not guaranteed to give a definitive answer to the problem.

3.3 Safety and Confidentiality Requirements
Specifications are very generic and, indeed, they could involve every aspect of a system.
They could be syntactic, namely describing structural aspects of a system, or they could be
semantic, namely involving the behavior of a system. Clearly, these latter are more inter-
esting but, at the same time, more challenging to verify and enforce. In particular, from a
practical point of view, in system verification/enforcement not all specifications are worth to
be checked. Usually, the prominent specifications are those specifying some safety or confi-
dentiality/integrity requirement. The first, basically, say that the system does not go[goes]
in an error[goal] state, whichever the definition of error[goal] state is. For instance, a sys-
tem supposed to run forever should not stop inadvertently its execution. Other examples
are partial correctness, which guarantees that all terminating executions produce correct re-
sults, and mutual exclusion, which guarantees that concurrent processes do not enter their
critical section at the same time. These specifications are “safety-like”, in the sense that they
require systems to never reach unwanted states. Conversely, “liveness-like” specifications
require that a goal state is eventually reached. Examples of this kind are program termination,
which guarantees that all program computations do not run forever, and starvation freedom,
which guarantees that a system process will eventually enter its critical section.

The specifications expressing confidentiality/integrity requirements, aim to guarantee
that sensitive information is managed in a correct way, during the execution of the system.
They are the leading motivation for hyperproperties, and in turn for this thesis, hence we
introduce them in a more detailed way in the next subsection.

3.3.1 Information Flow
Information flow control tries to guarantee confidentiality and integrity of the data manip-
ulated during the execution of a system. For confidentiality, sensitive information must be
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prevented from flowing to public destinations, and dually, for integrity, untrusted infor-
mation must be prevented from affecting, or flowing to, trusted destinations4. These two
notions are dual, meaning that the reasoning for the first applies also for the second, modulo
an isomorphic representation. For this reason, in the following we deal with confidentiality
information flow control only.

Computing systems confidentiality relies on how information is propagated during sys-
tems execution. Historically, access control has been the main means of preventing informa-
tion from being disseminated. As the name indicates, access control verifies the system
rights at the entry-point. However, it is inadequate in many situations, in fact the system
may leak/compromise information after the access check. Instead information flow control
tracks how information propagates through the system during execution to make sure that
the system handles the information securely. In this section when we use the term security
we mean confidentiality.

One (or more) action of the system that uses the value of some object x to derive a value
for another object y causes a flow from x to y. The system handles information in a secure
way, w.r.t. a flow policy, if the flows it causes are permitted by the policy. A flow policy is
usually represented by a lattice 〈L, 〉, where L is a given set of security levels and is a
flow relation specifying permissible flows between pairs of levels. Each object x is assigned
to a security level Γ(x) ∈ L, so Γ(x)  Γ(y) means that a flow from object x to object y
is permissible in the flow policy. With a little abuse of notation, we denote an information
flow from object x to object y as x  y. So a system s is secure if and only if no executions
of s result in a flow x y, unless Γ(x) Γ(y).

An information flow x y could be of two types: explicit or implicit. It is explicit when
the system actions generating it do not depend on the value of x. It is implicit when the
system causes a flow from another object z to y but the execution depends on the value of
x. Furthermore, an information flow x y is direct if a system action transfers directly the
value (or a function of the value) of x to y. Otherwise it is indirect, i.e. the transfer of the
value from x to y involves an intermediate object z.

y := x explicit
if x == 5 then y := z implicit
y := abs(x) direct
z := abs(x); y := z indirect

Figure 3.2: Examples of flow types x y.

Secure information flow is comprised of two related aspects: information confidentiality
and information integrity. The first says that information should not be disclosed by the
system in a not permitted way (some kind of read-protection). The second says that infor-
mation should not be altered by the system in a not permitted way (some kind of write-
protection). Despite the fact that these two notions are duals, researchers in information
flow control have worked basically only on the confidentiality side, in particular on one of
its formalization: Non-Interference.

In the last forty years, a lot of security conditions have been proposed (noninterference

4The availability aspect of the CIA trinity [Stallings and Brown, 2007] is not taken into account in information
flow control.
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[Goguen and Meseguer, 1982], nondeducibility [Sutherland, 1986], restrictiveness [McCul-
lough, 1987], separability [McLean, 1996], etc). They differ on the formal definitions but
share the following common informal understanding of confidentiality: the lack of depen-
dencies on confidential information. This is precisely the absence of strong dependency of
[Cohen, 1977] and it is the base of confidentiality information flow specifications. The idea
of Cohen is that there exists an information flow from x to y in a system s whenever vari-
ety in x is conveyed to y by the execution of s (strong dependency). So a system respects
a flow policy, i.e. it is secure, if there is no strong dependency between objects x, y unless
Γ(x) Γ(y).

Example 2. Suppose the flow policy is specified by the following Hasse diagram. The only
information flows allowed (other the trivial reflexive ones)
are: unlcass  confA, unlcass  confB, unlcass  
Tsecret, confA  Tsecret, confB  Tsecret. Hence, for in-
stance, we cannot have a flow from confA to unclass. unclass

confA confB

Tsecret

The majority of Non-Interference formulations take into account only two security lev-
els: private, i.e. information that has to be kept secret, and public, i.e. information that could
be freely released. So they represent a security lattice 〈{L,H}, 〉where H (high) is the pri-
vate level, L (low) is the public level and the only flows not permitted are those from H to L
(so , {〈L, L〉, 〈L,H〉, 〈H,H〉}). Furthermore, in the classic definition, Non-Interference is
expressed as the correlation between input and output data only and is given for determin-
istic systems. With these premises, a system is said to be non-interfering if the values of the
public outputs do not depend on the values of the private inputs. Following the standard
notation based on the equivalence relation L

=, Non-Interference can be expressed as follows,
with Σ denoting the set of system states and JsK the execution of the system s:

∀σ1, σ2 ∈ Σ . σ1
L
= σ2 ⇒ JsKσ1

L
= JsKσ2 (3.2)

More precisely, JsKσ = σ′ means that the system s, executed on the state σ, yields the state
σ′. The equivalence relation L

= says that two states are equivalent, modulo the public data.
So a system s is said to be non-interfering if and only if for any two states σ1, σ2 having the
same low data (written σ1

L
= σ2), the executions of s in the initial states σ1, σ2 produce states

with the same low data.
Remark. As already said, information flows can also be seen from the point of view of in-
tegrity, with a dual definition. In this case the values of the private outputs are not in-
fluenced by the values of the public inputs, i.e. they are not altered by public, untrusted,
inputs. This is simply modeled inverting the flow relation, so  , {〈L, L〉, 〈H, L〉, 〈H,H〉}.
The definition of Non-Interference becomes:

∀σ1, σ2 ∈ Σ . σ1
H
= σ2 ⇒ JsKσ1

H
= JsKσ2

where H
= has a similar meaning as L

=, but on high data.
In a more general setting, the definition may additionally involve other aspects such as

power consumption, computation time, termination, a different model of systems etc, and
so there are a lot of variants of the notion of Non-Interference. One of these is Abstract

2828



Chapter 3. System Correctness M. Pasqua

Non-Interference [Giacobazzi and Mastroeni, 2004] and it states that there is no strong de-
pendency between some properties of the secret inputs and some properties of the public
outputs. The properties on outputs are those that an attacker can distinguish. The proper-
ties on inputs are those that must be kept secret. This is important because it deals natu-
rally with declassification. In fact, for practical uses, the definition of non-interference as in
Equation 3.2 is too restrictive: sometimes it is necessary to release some confidential infor-
mation in order to make a system useful (selective dependencies of [Cohen, 1977]). Moreover,
Abstract Non-Interference formalizes, in a unifying framework, also the other method to
weak Non-Interference: constraining the attacker power, namely limiting what is observ-
able about systems execution. As the name indicates, Abstract Non-Interference generalizes
Non-Interference by means of abstract interpretation.

3.3.2 Different Flavors of Non-Interference
3.3.2.1 Qualitative vs Quantitative Information Flow

Let 〈L, 〉 be a security lattice, where L = {`1, `2, . . . `n} is a finite set of security levels and
 is the flow relation, stating which information flows are allowed. Given a system s, its
security typing Γ specifies the security clearance of every object occurring in s. We can have
an information flow from x to y if and only if Γ(x) Γ(y).

Given a security level ` ∈ L we can define a relation on states stating that two states
are `-equivalent, namely that the two states agree on objects having security level at most `.
Formally, `

=⊆ Σ× Σ is defined as:

σ
`
= σ′ , (∀x .Γ(x) `⇒ σ(x) = σ′(x))

With these notions we can define the security specification `-Non-Interference, stating that
a system executed in two states `-equivalent must terminate in two states `-equivalent:

∀σ, σ′ ∈ Σ . σ
`
= σ′ ⇒ JsKσ `

= JsKσ′

We say that a system s is secure, w.r.t. 〈L, 〉 and Γ, if and only if it does not exhibit forbidden
information flows, namely if and only if it satisfies `-Non-Interference for every security
level ` ∈ L. Note that the Non-Interference check for the highest security level `>, i.e. the
top element of the lattice, is not useful since every flow from ` ∈ L to `> is always allowed.

Example 3. The classic Non-Interference is obtained with the two security levels {L,H} and
the only allowed flow L  H. Then Non-Interference checks only L-equivalence, namely
Non-Interference coincides with L-Non-Interference. Hence, a system is secure if and only
if it satisfies L-Non-Interference.

Specifications of this kind are called qualitative information flow specifications, since they
only express the fact that there is a leakage of confidential information. They are opposed
to quantitative information flow specifications, designed to measure how much information
have been, potentially, leaked. In particular, their aim is to retrieve how much an attacker
may learn (about confidential information) by observing the input/output behavior of a
system on public objects. In a deterministic setting, all information in the output has to
come from the input, and what is not provided by the public input has to be provided by
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the private input. Therefore, we can characterize how much of the information carried by
the private input to a system can be learned observing the low output. This means that any
variation of the output is due to a variation of the input.

The leakage is measured in terms of the number of private values that can be accurately
distinguished by an attacker able to observe only public values. The idea is that if there are
k such distinguishable values, then in a private object it is possible to encode an arbitrary
number in [0, k[ that can be leaked through a public object. In other words, log2 k bits of
sensitive information could flow.

More formally, let Σ` , {X ⊆ Σ | ∀σ, σ′ ∈ X .σ
`
= σ′} be the set of all possible subsets

of states having the same values for objects with security level at most `. Then consider an
object x such that Γ(x)  `. The set of sets {{(JsKσ)|x | σ ∈ X} | X ∈ Σ`} collects all the
possible values the object x may have executing the system s on states `-equivalent. Then,
the leakage of s on x, w.r.t. an attacker with observation power `, is given by:

leak`x(s) , log2

(
max

{
|{(JsKσ)|x | σ ∈ X}|

∣∣ X ∈ Σ`
})

This measures the number of bits of sensitive data (i.e. with clearance greater than `) the
attacker could retrieve observing the execution of s over x. Given a threshold k ∈ N, we
can say that a system is secure if it does not leak more than k bits, namely if it satisfies
`-Non-Interferencek:

∀x .Γ(x) `⇒ leak`x(s) ≤ k
The qualitative notion of `-Non-Interference coincides with `-Non-Interference0, since it re-
quires that no information about sensitive data is leaked.

3.3.2.2 Declassification and Attacker’s Power

The classic Non-Interference is based on a characterization of the attacker that does not
impose any observational (or complexity) restriction on the attackers’ power. In the liter-
ature, we can find mainly two approaches for weakening Non-Interference: constraining
the power of the attacker (from the observational or the computational point of view); or
allowing some confidential information to flow.

Despite the fact that we can see quantitative information flow as a form of declassifica-
tion, indeed we can let that some bits of information could leak, it is arguable to have a more
qualitative approach, aiming to discover which is the information that flows. Declassifying
information means downgrading the sensitivity of data in order to accommodate with (in-
tentional) information leakage. The complete separation between private and public objects
assumed by Non-Interference is sometimes too strong. As a classic example, consider a lo-
gin form taking a password from the user, a public object, and comparing it with the correct
password, a private object. The output of the form, a public object, alerts the user whether
the password inserted is correct or not. Clearly, from the point of view of Non-Interference
there is a forbidden information flow. In this case the output of the form should be declas-
sified.
Remark. Integrity is the dual of confidentiality and, indeed, there is also the dual concept
of declassification, called endorsement. As an example, an untrusted input used to form a
database query can be safely considered trustworthy after a sanitization step. Again, the
Non-Interference condition is violated due to the flow of information from untrusted input
to some trusted output. In this case the sanitized input should be endorsed.

3030



Chapter 3. System Correctness M. Pasqua

Both these aspects of Non-Interference weakening can be modeled in the abstract inter-
pretation framework, by means of the notion of Abstract Non-Interference.

3.3.2.3 Abstract Non-Interference

Abstract Non-Interference [Giacobazzi and Mastroeni, 2004] is a possible way for weakening
Non-Interference. In this context, an attacker is seen as an abstract interpreter analyzing
the system with the intent of revealing properties of secret data, observing the public one.
Furthermore the amount of information released can be modeled by the property which is
allowed to flow from private to public objects.

Basically, Abstract Non-Interference states that there is no strong dependency between
some properties of the private input data and some properties of the public output data.
The property on output is the one that an attacker can distinguish. The property on in-
put is the one that must be kept secret. This is important because it deals naturally with
declassification. Moreover Abstract Non-Interference formalizes, in a unifying framework,
also the other method for weakening Non-Interference: constraining the attacker power,
namely limiting what is observable about system behaviors. So Non-Interference is made
parametric on two abstractions, each one modeling different aspects of the information flow:
the observer (attacker) and what is allowed to flow. In general, we can suppose that the ob-
server may not have the same constraints in observing inputs and outputs. Therefore it is
possible to consider three (potentially) different abstractions: one on the public input, one
on the private input and one on the public output. The attacker is a pair of abstractions (we
deliberately let the concept of abstraction vague for now, we define it precisely in Chapter 8)
〈η, ρ〉which represents what can be observed about the public input/output of the system.

For the declassification, in the private input we can specify what information is allowed
to flow. In this case, it is possible to select for which sets of inputs Non-Interference has to
be checked. Let φ be the input property representing the inputs that need to be checked.
This models the information that may flow since it is not interesting to check if its variation
is visible through the output.

With these premises Abstract Non-Interference definition is given by a little modification
of Equation 3.2:

∀σ1, σ2 ∈ Σ . φ(σ1) = φ(σ2)⇒ ρ(JsK(η(σ1))) = ρ(JsK(η(σ2))) (3.3)

This means that a system s satisfies abstract Non-Interference relatively to an output obser-
vation ρ, an input property η to protect and an input property φ that may flow if, whenever
the input values have the same property φ, then the best correct approximation of the sys-
tem s semantics w.r.t. η in input and ρ in output does not report any change, meaning that
the variation of η does not affect the observation ρ in s.
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Systems, Semantics and Specifications
4

Chapter 3 introduces the concept of correctness condition and it describes, in a general
fashion, control mechanisms. The focus of the thesis is to develop verification mech-

anisms for computer programs, dealing with specifications formalized as hyperproperties.
In the following chapter, we go more in detail on the definition of a control mechanism. In
the first section we define the systems model we have chosen, while in the second section
we introduce hyperproperties, i.e. our specifications of interest.
Remark. In this work we are interested in the behavior of systems, formalizing the possible
executions of a system. Indeed, both system models and specifications deal with semantic
aspects of systems.

4.1 Systems and Semantics
In order to represent systems, there are a plethora of different mathematical models we can
use. We chose transition systems, since they are very expressive and well suitable to deal
with programs semantics. In the following, we introduce transition systems and, at the end,
we show how to retrieve a transition system out of a program written in a simple imperative
language.

4.1.1 Transition Systems
We model systems behaviors as transition systems, which are a very general way for ex-
pressing discrete dynamic systems semantics. The idea is to model system executions by
means of states, representing the most precise information we have about systems in a par-
ticular interval of time, and transitions between states.

Definition 20 (Transition System). A transition system is a tuple 〈Σ, τ ,Υ,Ω〉where

• Σ is a, possibly infinite, set of states;

• τ ⊆ Σ × Σ is the transition relation between states, namely it describes the successor
state(s) of a given one;

• Υ ⊆ Σ is a designated set of initial states;

• Ω ⊆ Σ is a designated set of final states, namely states σ such that ∀σ′ ∈ Σ . 〈σ, σ′〉 /∈ τ

Sometimes transition systems are defined without initial and final states, which is equiv-
alent to say that Υ = Σ and Ω = ∅. In the following, we use the notation σ τ σ′, in place of
〈σ, σ′〉 ∈ τ , denoting the fact that the system changes state, from σ to σ′.
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Remark. In the literature, labeled transition systems are often used, in order to model non-
determinism in programs’ semantics. They are transition systems augmented with a set ∆
of actions and with a labeled transition relation τ ⊆ Σ × ∆ × Σ, in place of the classic one.
The meaning of 〈σ, δ, σ′〉 ∈ τ is that the system can transition from state σ to state σ′ by
executing the action δ. A transition system can be viewed as a labeled transition system
where ∆ , {?} is a singleton. In this case, every transition relation in Σ× Σ is isomorphic
to a labeled one in Σ× {?} × Σ.

LetD be the set of possible denotations of systems states. Then, given a system s, Σs ⊆ D
is the state space of s and Υs, Ωs, τ s are the other components of the transition system.
Very often, for the sake of simplicity, we omit the superscript s in the transition system.
In the following, we assume to know the transition system associated with a system s. In
Section 4.1.3 we will show how to retrieve the transition system associated to a given system
(where the system is a program in a deterministic programming language).

4.1.1.1 System Semantics

A transition system is a mere static mathematical description of a system. Information about
its behavior, i.e. semantic information, emerges when considering sequences of transitions.
Before we define the trace semantics, which expresses the most information about a system,
we have to introduce some notation about sequences.

Sequences. Given a set S, the set S~n , [0, n[ −→ S, n ∈ N, is the set of finite sequences1

s̄ = s̄0s̄1 . . . s̄n−1 of length |s̄| = n over S. We denote ε the empty sequence, so S~0 , {ε}.
The set of finite non-empty sequences is S~+ ,

⋃
0<n<ω S

~n. The set S~ω , N −→ S contains
infinite sequences s̄ = s̄0s̄1 . . . of length |s| = ω over S. The set of non-empty sequences is
S ~∞ , S~+ ∪ S~ω . We denote with S~+ε and S ~∞ε the sets S~+ ∪ S~0 and S ~∞ ∪ S~0, respectively.

Given sequences s̄, s̄′ ∈ S ~∞, their concatenation is s̄s̄′ when s̄ ∈ S~+ and it is just s̄ when
s̄ ∈ S~ω . The empty sequence is the identity element for concatenation, namely s̄ε = εs̄ = s̄.
Given s̄, s̄′ ∈ S ~∞, s̄′ can be appended to s̄ when s̄|s̄|−1 = s̄′0 (hence s̄ is finite) and their
append is s̄ _ s̄′ , s̄0s̄1 . . . s̄|s̄|−1s̄

′
1s̄
′
2 . . . s̄

′
|s̄′|−1 (|s̄′| could be ω). In the case of |s̄| = ω, we

define the append as s̄ _ s̄′ , s̄.
Finally, given X ⊆ S ~∞, we denote with X ~+ its selection of finite non-empty sequences,

namely X ~+ , X ∩ S~+, and with X~ω its selection of infinite non-empty sequences, namely
X~ω , X ∩ S~ω. Concatenation and append lift to sets as follow: for every X,Y ⊆ S ~∞, their
(set) concatenation isXY , {s̄s̄′ | s̄ ∈ X ∧ s̄′ ∈ Y } and their (set) append isX _ Y , {s̄ _
s̄′ | s̄ ∈ X ∧ s̄′ ∈ Y }.

Trace Semantics. An execution, called trace, of a system s, whose associated transition
system is 〈Σ, τ ,Υ,Ω〉, is a sequence of states in Σ where adjacent elements are in τ . We
denote with τ~n, {σ̄ ∈ Σ~n | σ̄n−1 ∈ Ω ∧ ∀i ∈ [0, n − 1[ . σ̄i τ σ̄i+1} the finite final traces of
length n of s and with τ~ω , {σ̄ ∈ Σ~ω | ∀i ∈ N . σ̄i τ σ̄i+1} the infinite traces of s. So we can

1A sequence is isomorphic to a function whose domain is a subset of natural numbers with cardinality equal
to length of the sequence and whose co-domain is the set of symbols of the sequence. For instance, the sequence
abc is isomorphic to the function [0 7→a 1 7→b 2 7→c].
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define the most precise semantics of s, namely the one which gives us the most information
about the behavior of s.

Definition 21 (Maximal Trace Semantics). The maximal trace semantics τ ~∞ ∈ ℘(Σ ~∞) of s,
which is associated with the transition system 〈Σ, τ ,Υ,Ω〉, is:

τ ~∞ , τ ~+ ∪ τ~ω

where τ ~+,
⋃

0<n<ω τ
~n is called the maximal finite trace semantics and τ~ω is called the infinite

trace semantics.

The maximal trace semantics models the terminating executions of the system, namely
those which end in a final state (the ones in τ ~+) and the divergent executions, namely those
which do not end (the ones in τ~ω). In this sense the term ’maximal’ is used: the longest finite
sequences, which are the terminating ones, or the infinite sequences, which are longer than
any finite sequence.

The maximal trace semantics is constructive, in the sense of Definition 5. Its compu-
tational fixpoint definition is 〈F ~∞,D ~∞,⊥ ~∞〉, where F ~∞ ∈ ℘(Σ ~∞) −→ ℘(Σ ~∞), ⊥ ~∞ and
D ~∞ , 〈℘(Σ ~∞),v,t〉 are2:

• F ~∞ , λX . τ
~1 ∪ τ~̇2_ X

• ⊥ ~∞ , Σ~ω

• X v Y , X ~+ ⊆ Y ~+ ∧ Y ~ω ⊆ X~ω , for every X,Y ⊆ Σ ~∞

•
⊔
X ,

⋃
X∈X X

~+ ∪
⋂
X∈X X

~ω , for every X ⊆ ℘(Σ ~∞)

Here, τ ~̇n , {s ∈ Σ~n | ∀i ∈ [0, n − 1[ . si τ si+1} denotes the finite traces of length n (not
necessarily terminating)3. The maximal trace semantics is the least fixpoint, greater than
Σ~ω , of F ~∞, namely:

τ ~∞= lfpv
⊥ ~∞

F ~∞

To reason about particular systems behaviors, it is not necessary to consider all aspects
of systems executions. In fact, reasoning is facilitated by the design of simpler semantics,
abstracting away from irrelevant information. Therefore, there are a wide variety of systems
semantics, each one of them dedicated to a particular verification task. Abstract interpreta-
tion is a method for relating these semantics, as shown in [Cousot, 2002].

4.1.2 Hierarchy of Semantics
In [Cousot, 2002] the author showed that many well-known (program) semantics can be
computed as abstract interpretations of the maximal trace semantics, and they can be orga-
nized in a hierarchy. At first glance, one could remain a little bit disoriented, since abstract
interpretation, as introduced in Chapter 2, needs a notion of approximation between objects
(here semantics). But, what does it mean that the semantics of a system is an approximation

2Actually, 〈℘(Σ ~∞),v〉 is a complete lattice and t is total.
3In particular, τ~̇2 coincides with τ .
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of another semantics? Indeed, what is left implicit in [Cousot, 2002] is that the approxima-
tion regards the collecting semantics of systems, which is actually a specification (we will
explain better the concept of collecting semantics in Chapter 5). The author, and in general
the field of comparative semantics, is mainly interested in trace properties, namely specifi-
cations asserting properties of executions rather than properties of systems. Hence, in this
case, semantics, collecting semantics and trace properties lie all in the same domain. In the
following we make explicit the steps left implicit in [Cousot, 2002].

The most concrete semantics of the hierarchy is τ ~∞ and, indeed, systems semantics are
in ℘(Σ ~∞). This latter is the systems representation domain REPSys of Chapter 3. Specifi-
cations are in Specs , ℘(℘(Σ ~∞)) and the strongest system specification is {τ ~∞}, which is
the collecting semantics. As usual, the implication between specifications is set-inclusion,
namely Q1 ⊆ Q2 means that all systems satisfying Q1 also satisfy Q2. Since we are inter-
ested in trace properties, hence specifications on systems traces, we can apply the following
abstraction α∪ , λX .

⋃
X , obtaining the new set of specifications Specs′ , {α∪(X ) | X ∈

Specs} = ℘(Σ ~∞). The soundness function is γ℘ , λX .℘(X), meaning that Q′ ∈ Specs′

is a correct abstraction of Q ∈ Specs if Q ⊆ ℘(Q′). Abstracting the collecting semantics on
Specs into the collecting semantics on Specs′, we obtain exactly the standard semantics of
the system, namely, τ ~∞= α∪({τ ~∞}). In this setting, the approximation order ⊆ in Specs′

has a precise meaning: if τ ~∞ implies (i.e. it is contained in) a specification in Specs′, then
all trace properties implied by the specification are implied by τ ~∞ as well. In other words,
the relation ⊆ in 〈Specs′,⊆〉, domain of the standard semantics, is the satisfiability relation.
With this in mind, we can answer the question mentioned at the beginning: a semantics is
an approximation of another semantics if the first satisfies more trace properties than the
second.

The semantics of the hierarchy are all constructive objects, namely they can be computed
by fixpoint of a function over an ordered domain. It is not always possible to obtain seman-
tics by fixpoint w.r.t. the standard inclusion order (⊆), the approximation order. In fact,
in some cases the fixpoint operator is not ⊆-monotone, and therefore we have to define a
computational order forcing monotonicity, and therefore convergence of the fixpoint com-
putation (this is indeed the case of maximal trace semantics). In this subsection we recall
the original hierarchy of [Cousot, 2002], introducing the most important elements. In all the
following cases, the computational fixpoint definition is built upon a complete lattice and
the partial least upper bound operator is indeed total.

The maximal trace semantics is defined as the union of the maximal finite trace se-
mantics and the infinite trace semantics. Both these latter are constructive. The compu-
tational fixpoint definition for the maximal finite trace semantics τ ~+ is 〈F ~+,D~+,∅〉, where
F ~+ ∈ ℘(Σ~+) −→ ℘(Σ~+) is F ~+ , λX . τ

~1 ∪ τ~̇2_ X and D~+ , 〈℘(Σ~+),⊆,∪〉. The finite trace
semantics is the least fixpoint, greater than ∅, of F ~+, namely:

τ
~+= lfp⊆∅ F

~+

The computational fixpoint definition for the infinite trace semantics τ~ω is 〈F ~ω,D~ω,Σ~ω〉,
where F ~ω ∈ ℘(Σ~ω) −→ ℘(Σ~ω) is F ~ω , λX . τ

~̇2_ X and D~ω , 〈℘(Σ~ω),⊇,∩〉. The infinite
trace semantics is the least fixpoint, greater than Σ~ω, of F ~ω , namely:

τ~ω= lfp⊇
Σ~ω
F ~ω
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Remark. We already said that the maximal trace semantics is the composition (or fusion, us-
ing [Cousot, 2002] terminology) of the maximal finite and infinite trace semantics, namely:

τ ~∞ = τ
~+ ∪ τ~ω = lfp⊆∅ F

~+ ∪ lfp⊇
Σ~ω
F ~ω = lfpv

Σ~ω
F ~∞

But the composition is also at the level of the semantic operator (given X ∈ ℘(Σ ~∞)):

F
~+(X

~+) ∪ F ~ω(X~ω) = (τ
~1 ∪ τ~̇2_ X

~+) ∪ (τ
~̇2_ X~ω) =

= τ
~1 ∪ τ~̇2_ (X

~+ ∪X~ω) = τ
~1 ∪ τ~̇2_ X = F ~∞

It is trivial to note that the finite maximal and infinite trace semantics are abstractions of
the maximal trace semantics: in the first we rule out infinite traces whilst in the second we
rule out finite traces. Consider the functions α~+ ∈ ℘(Σ ~∞) −→ ℘(Σ~+) and α~ω ∈ ℘(Σ ~∞) −→
℘(Σ~ω), defined as α~+ , λX .X ~+ and α~ω , λX .X~ω. Then we have that τ ~+ = α~+(τ ~∞) and
τ~ω = α~ω(τ ~∞). The abstraction is formalized by the Galois insertions:

〈℘(Σ ~∞),⊆〉 −−−→−→←−−−−
α
~+

γ
~+

〈℘(Σ~+),⊆〉 〈℘(Σ ~∞),⊆〉 −−−→−→←−−−−
α~ω

γ~ω

〈℘(Σ~ω),⊆〉

with γ~+ , λX .X ∪ Σ~ω and γ~ω , λX .X ∪ Σ~+

Another important semantics is the maximal relational semantics τ∞ (called natural
in [Cousot, 2002]). This latter associates, with program traces, an input-output relation
by using a special symbol, 	 /∈ Σ, to denote non-termination. Also in this case, we have
a semantics representing only finite executions, called finite relational semantics τ+, and
a semantics representing only infinite executions, called infinite relational semantics τω .
The finite relational semantics corresponds to an abstraction of the maximal finite trace se-
mantics, where intermediate computation states are ignored. Consider the function α+ ∈
℘(Σ~+) −→ ℘(Σ × Σ), defined as α+ , λX . {〈σ̄0, σ̄n−1〉 | σ̄ ∈ X ∩ Σ~n}. Then we have
that τ+ = α+(τ ~+). Similarly, the infinite relational semantics corresponds to an abstrac-
tion of the infinite trace semantics, where intermediate computation states are ignored.
Consider the function αω ∈ ℘(Σ~ω) −→ ℘(Σ × Σ	), where Σ	 , Σ ∪ {	}, defined as
αω , λX . {〈σ̄0,	〉 | σ̄ ∈ X}. Then we have that τω = αω(τ~ω). The abstraction is for-
malized by the Galois insertions:

〈℘(Σ~+),⊆〉 −−−→−→←−−−−
α+

γ+

〈℘(Σ× Σ),⊆〉 〈℘(Σ~ω),⊆〉 −−−→−→←−−−−
αω

γω

〈℘(Σ× {	}),⊆〉

with γ+ , λX . {σ̄ ∈ Σ~n | 〈σ̄0, σ̄n−1〉 ∈ X} and γω , λX . {σ̄ ∈ Σ~ω | 〈σ̄0,	〉 ∈ X}

The computational fixpoint definition for the finite relational semantics is 〈F+,D+,∅〉, with
F+ ∈ ℘(Σ× Σ) −→ ℘(Σ× Σ) defined as F+ , λX . {〈σ, σ〉 | σ ∈ τ~1} ∪ τ ◦X (note that here
X is a relation) and D+ , 〈℘(Σ × Σ),⊆,∪〉. The finite trace semantics is the least fixpoint,
greater than ∅, of F+, namely:

τ+= lfp⊆∅ F
+

The computational fixpoint definition for the infinite relational semantics is 〈Fω,Dω,⊥~ω〉,
where Fω ∈ ℘(Σ × {	}) −→ ℘(Σ × {	}) is Fω , λX . τ ◦ X (again, here X is a relation),
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Dω , 〈℘(Σ × {	}),⊇,∩〉 and ⊥ω , Σ × {	}. The infinite relational semantics is the least
fixpoint, greater than ⊥ω , of Fω , namely:

τω= lfp⊇⊥ω F
ω

Finally, the maximal relational semantics corresponds to an abstraction of the maximal
trace semantics, where intermediate computation states are ignored. Consider the function
α∞ ∈ ℘(Σ ~∞) −→ ℘(Σ × Σ	), defined as α∞ , λX .α+(X ~+) ∪ αω(X~ω). Then we have
τ∞ = α∞(τ ~∞). The abstraction is formalized by the Galois insertion:

〈℘(Σ ~∞),⊆〉 −−−−→−→←−−−−−
α∞

γ∞

〈℘(Σ× Σ	),⊆〉 with γ∞ , λX . γ+(X ∩ Σ×Σ) ∪ γω(X ∩ ⊥∞)

The computational fixpoint definition for the maximal relational semantics is 〈F∞,D∞,⊥∞〉,
where F∞ ∈ ℘(Σ× Σ	) −→ ℘(Σ× Σ	), D∞ , 〈℘(Σ× Σ	),4,g〉 and ⊥∞ are:

• F∞ , λX . {〈σ, σ〉 | σ ∈ τ~1} ∪ τ ◦X

• ⊥∞ , Σ× {	}

• X 4 Y , (X ∩Σ×Σ) ⊆ (Y ∩Σ×Σ)∧ (X ∩⊥∞) ⊇ (Y ∩⊥∞), for everyX,Y ⊆ Σ×Σ	

•
b
X ,

⋃
X∈X (X ∩ Σ×Σ) ∪

⋂
X∈X (X ∩ ⊥∞), for every X ⊆ ℘(Σ×Σ	)

The maximal relational semantics is the least fixpoint, greater than ⊥∞, of F∞, namely:

τ∞= lfp4

⊥∞ F
∞

Also in this case, it is trivial to note that the finite and infinite relational semantics are
abstractions of the maximal relational semantics. Consider the functionsα+

• ∈ ℘(Σ×Σ	) −→
℘(Σ × Σ) and αω• ∈ ℘(Σ × Σ	) −→ ℘(Σ × {	}), defined as α+

• , λX .X ∩ Σ × Σ and
αω• , λX .X∩Σ×{	}. Then we have that τ+ = α+

• (τ∞) and τω = αω• (τ∞). The abstraction
is formalized by the Galois insertions:

〈℘(Σ× Σ	),⊆〉 −−−→−→←−−−−
α+
•

γ+
• 〈℘(Σ× Σ),⊆〉 〈℘(Σ× Σ	),⊆〉 −−−→−→←−−−−

αω•

γω• 〈℘(Σ× {	}),⊆〉

with γ+
• , λX .X ∪ Σ× {	} and γω• , λX .X ∪ Σ× Σ

In [Cousot, 2002], the author showed that the semantic operators computing all the pre-
vious semantics can be obtained by fixpoint transfer, starting from the maximal trace se-
mantics. This is obtained due to the fact that all abstractions function are additive also into
the corresponding computational domain (hence we have Galois insertions also between
all computational domains). In Figure 4.1 we have a graphical representation of (a part
of) the hierarchy, where an arrow from a semantics to another means that the second is an
abstraction of the first.
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4.1.2.1 Extending the Hierarchy

The original hierarchy contains a lot of semantics, but it lacks some important examples of
semantics used in static analysis. For instance, in order to capture safety trace properties, on
finite executions, the partial trace semantics (called prefix semantics in [Cousot and Cousot,
2012]) is the best choice. This latter is τ ~∝ ,

⋃
0<n<ω{σ̄ ∈ τ ~̇n | σ̄0 ∈ Υ} and it models the

finite prefixes of executions (not necessarily terminating), starting from the initial states.
The partial trace semantics τ ~∝ is constructive. Its computational fixpoint definition is

〈F ~∝,D~∝,∅〉, where F ~∝ ∈ ℘(Σ~+) −→ ℘(Σ~+) is defined as F ~∝ , λX .Υ ∪ X _ τ
~̇2 and

D~∝ , 〈℘(Σ~∝),⊆,∪〉. The partial trace semantics is the least fixpoint, greater than ∅, of F ~∝,
namely:

τ ~∝= lfp⊆∅ F
~∝

Remark. Usually, the partial trace semantics can be defined starting from an arbitrary set of
initial states I ⊆ Υ, namely we are interested in the semantics τ ~∝ ∩ {σ̄ ∈ Σ~+ | σ̄0 ∈ I}. This
latter can be easily computed substituting Υ with I in the definition of the operator F ~∝.

The partial trace semantics corresponds to an abstraction of the maximal trace semantics,
adding all the prefixes of finite and infinite computations. Consider the function α~∝ ∈
℘(Σ ~∞) −→ ℘(Σ~+) defined as α~∝ , λX . {σ̄ ∈ Σ~̇n | 0 < n < ω ∧ ∃σ̄′ ∈ Σ ~∞

ε . (σ̄′0 ∈ Υ ∧ σ̄σ̄′ ∈
X)}. Then we have τ ~∝ = α~∝(τ ~∞). The abstraction is formalized by the Galois insertion:

〈℘(Σ ~∞),⊆〉 −−−→−→←−−−−−
α~∝

γ~∝

〈℘(Σ~∝),⊆〉

with γ~∝ , λX . {σ̄ ∈ Σ~̇n | 0 < n < ω ∧ ∃σ̄′ ∈ Σ~+
ε . σ̄

′σ̄ ∈ X}

As done in the classic hierarchy, we can abstract traces to input/output pairs of states,
obtaining the partial relational semantics (called relational invariance/reachability semantics
in [Cousot and Cousot, 2012]) τ∝ , {〈σ̄0, σ̄n−1〉 | 0 < n < ω ∧ ∃σ̄ ∈ Σ~̇n . σ̄0 ∈ Υ}. This se-
mantics provides a relation between an initial state and a state reached during the execution
of the system (current state).

The partial relational semantics corresponds to an abstraction of the partial trace se-
mantics, where intermediate computation states are ignored. Consider the function α∝ ∈
℘(Σ~∝) −→ ℘(Σ× Σ) defined as α∝ , λX . {〈σ̄0, σ̄n−1〉 | 0 < n < ω ∧ σ̄ ∈ Σ~̇n ∩X}. Then we
have τ∝ = α∝(τ ~∝). The abstraction is formalized by the Galois insertion:

〈℘(Σ~∝),⊆〉 −−−→−→←−−−−−
α∝

γ∝

〈℘(Σ× Σ),⊆〉 with γ∝ , λX . {σ̄ ∈ Σ~̇n | 〈σ̄0, σ̄n−1〉 ∈ X}

The partial relational semantics τ∝ is constructive. Its computational fixpoint definition
is 〈F∝,D∝,∅〉, where F∝ ∈ ℘(Σ×Σ) −→ ℘(Σ×Σ) is F∝ , λX . {〈σ, σ〉 | σ ∈ Υ}∪X ◦ τ and
D∝ , 〈℘(Σ×Σ),⊆,∪〉. The partial relational semantics is the least fixpoint, greater than∅,
of F∝, namely:

τ∝= lfp⊆∅ F
∝

Remark. The partial trace and partial relational semantics described here are slightly dif-
ferent from the ones presented in [Cousot and Cousot, 2012]. Indeed, our semantics are
prefix-closed but not suffix-closed, as happens for the cited semantics. This because the
semantics of [Cousot and Cousot, 2012] start from a semantics different from the maximal
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τ ~∞
τ
~+ τ~ω

τ∞
τ+ τω

τ∝

τ∝

τR

traces

relations

states

Figure 4.1: A part of the standard hierarchy of semantics, with extensions (in green).

trace semantics. Nevertheless, this semantics is isomorphic to the maximal trace semantics
and our partial semantics are isomorphic to the one proposed in [Cousot and Cousot, 2012].

Finally, the last important semantics we want to introduce is the state semantics (called in-
variance/reachability semantics in [Cousot and Cousot, 2012]). This latter collects all states
encountered during the execution of the system and it is useful to compute invariants. It is
defined as τR , Υ ∪ {σ ∈ Σ | ∃n ∈ N \ {0} ∃σ̄ ∈ Σ~̇n . σ̄0 ∈ Υ ∧ σ̄n−1 = σ}.

The state semantics corresponds to an abstraction of the partial relational semantics,
collecting only the last states. Consider the function αR ∈ ℘(Σ∝) −→ ℘(Σ) defined as αR ,
λX . {σ′ | 〈σ, σ′〉 ∈ X}. Then we have τR = αR(τ∝). The abstraction is formalized by the
Galois insertion:

〈℘(Σ× Σ),⊆〉 −−−−→−→←−−−−−
αR

γR

〈℘(Σ),⊆〉 with γR , λX . {〈σ, σ′〉 ∈ Σ× Σ | σ′ ∈ X}

As usual, the state semantics τR is constructive. Its computational fixpoint definition
is 〈FR,DR,∅〉, where FR ∈ ℘(Σ) −→ ℘(Σ) is FR , λX .Υ ∪ {σ′ | ∃σ ∈ X .σ τ σ′} and
DR , 〈℘(Σ),⊆,∪〉. The state semantics is the least fixpoint, greater than ∅, of FR, namely:

τR = lfp⊆∅ F
R

All the semantic operators computing the introduced semantics can be obtained by fix-
point transfer, starting from the maximal trace semantics. Again, this is obtained due to
the fact that all abstraction function are additive also into the corresponding computational
domain (hence we have Galois insertions also between all computational domains). In Fig-
ure 4.1 we have a graphical representation of the extended hierarchy, where an arrow from
a semantics to another means that the second is an abstraction of the first.
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4.1.3 The Programming Language
The systems we will take in consideration are computer programs. These latter are written
in a simple deterministic imperative language Imp, whose grammar is the following:

Aexp 3 a ::= x | n | a + a | a− a | a ∗ a | (a)

Bexp 3 b ::= tt | ff | a = a | a 6= a | a < a | a ≤ a | b ∧ b | b ∨ b | ¬b | (b)

Com 3 c ::= skip | x := a | if b then {P } else {P } | while kk b {P } | c kk kk c

Imp 3 P ::= kk c kk

We suppose to have an infinite supply of variables x ∈ Var and labels kk ∈ Lab. A pro-
gram in Imp is just a command in Com attached with an initial and a final label. If P = ii c ff

then we call ii , i.e. the initial label, its entry-point and we call ff , i.e. the final label, its exit-
point. Commands comprise a concatenation construct c ll ll c, a “no-op” construct skip, an
assignment construct x := a, a conditional construct if b then {P } else {P } and an iteration
construct while ll b {P }. Variables range over integer values, hence arithmetic expressions
evaluate to values in Z. Boolean expressions evaluate to boolean values in B , {tt, ff}. The
semantics of the language is given on top of memories, namely maps from variables to val-
ues, and labels, namely program control points. Let Mem , Var −→ Z be the set of programs
memories. Given P ∈ Imp, we denote with VarP and LabP the set of variables and labels
occurring in P, respectively. Similarly, we define the memories of P as those with domain
equal to VarP, namely the set MemP , {m ∈ Mem | dom(m) = VarP}. A program state is a
pair consisting in a label and a memory, hence the set of programs states is Stat , Lab×Mem.
Given a program P, its set of states is StatP , LabP ×MemP.

We define the semantics of a program inductively from its syntax. In particular, it is built
on top of the small-step operational semantics (SOS) of Imp, which is a sort of idealized in-
terpreter of the language. This latter models the execution of programs step by step and
it is specified by a set of inference rules modifying configurations. A not-final configuration
〈s,P〉 ∈ Stat× Imp represents the current state s in which the program P has to be executed.
A final configuration is just a state s ∈ Stat and it represents the fact that the computation
cannot go further. We denote with Conf , Stat× Imp∪Stat the set of not-final and final con-
figurations. The SOS inference rules in Fig. 4.3 describe, by means of the rewriting relation
_⊆ (Stat× Imp)×Conf, how not-final configurations evolve during time, until a final con-
figuration is reached (if ever). We assume that programs are well-labeled. In a well-labeled
program every concatenation of two programs is such that the exit-point of the first must
be equal to the entry-point of the second, namely if P = ii c1

ll kk c2
ff then ll = kk .

Remark. The SOS inference rules can rewrite a well-labeled program into a not well-labeled
program. This is not a concern, because these not well-labeled programs are deliberately
generated, and the rewriting relation _ is able to deal with these particular cases. Indeed,
the SOS needs to generate these not well-labeled programs in order to match the intended
semantics of iteration commands.

The SOS rules rely on the operational semantics for arithmetic expressions ⇓Z and for
boolean expressions ⇓B. These latter are big-step semantics, since we are not interested in
the intermediate steps of computation for expressions. In Fig. 4.2 we have the definition
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of the (big-step) semantics for expressions. We denote with _k the self-composition of the
relation _ a number k > 0 of times, hence 〈s,P〉_k cnf ∈ Conf if there exists a sequence σ
of k+1 configurations such that: σ0 = 〈s,P〉, σk = cnf and ∀i ∈ [0, k[ . σi _ σi+1. We denote
with 〈s,P〉 _∗ cnf the fact that there exists a k > 0 such that 〈s,P〉 _k cnf. A program
P = ii c ff , starting in the state 〈 ii ,m〉, terminates, yielding the state 〈 ff , n〉, if and only if
〈〈 ii ,m〉,P〉 _∗ 〈 ff , n〉. Conversely, it diverges (on 〈 ii ,m〉) if and only if it is possible to
compose _ from 〈〈 ii ,m〉,P〉 infinitely many times. We say that a program P′ is a derivative
of the program P, written P 99K P′, when there exist s, s′ ∈ Stat such that 〈s,P〉_∗ 〈s′,P′〉.

4.1.3.1 Program Standard Semantics

In order to reason (semantically) about programs, we derive from the SOS of Imp the tran-
sition system associated to a given program. The (transition system) state space ΣP of
program P = ii c ff is exactly StatP, its set of initial states ΥP is {〈 ii ,m〉 | m ∈ MemP},
its set of final states ΩP is {〈 ff ,m〉 | m ∈ MemP} and the transition relation τP is the set
{〈s, s′〉 | ∃P′ ∈ Imp .P 99K P′ ∧ 〈s,P〉_ 〈s′,P′〉} ∪ {〈s′, s′′〉 | ∃P′,P′′ ∈ Imp .P 99K P′ ∧ P′ 99K
P′′ ∧ 〈s′,P′〉 _ 〈s′′,P′′〉}. When P is clear from the context we write 〈Σ,Υ,Ω, τ〉 instead of
〈ΣP,ΥP,ΩP, τP〉. As shown in Definition 21, we obtain the maximal trace semantics of P. By
abstraction, we can retrieve all the semantics in the hierarchy of Figure 4.1.

Example 4. Consider the program 00 x := 0 11 11 while 22 (y < x) { 33 y := y − 1 44 } 55 in Imp.
The corresponding transition system is 〈Σ, τ,Υ,Ω〉, where Σ , { 00 , 11 , . . . 55 }× ({x, y} −→
Z), the set of initial states is Υ , { 00 } × ({x, y} −→ Z), the set of final states is Ω , { 55 } ×
({x, y} −→ Z) and the transition relation is (we denote with [n m] the map [x 7→n y 7→m]):

τ , {〈〈 00 , [n m]〉, 〈 11 , [0 m]〉〉 | n,m ∈ Z} ∪ {〈〈 11 , [n m]〉, 〈 22 , [n m]〉〉 | n ∈ Z}∪

{〈〈 22 , [n m]〉, 〈 33 , [n m]〉〉 | m < n} ∪ {〈〈 22 , [n m]〉, 〈 55 , [n m]〉〉 | m ≥ n}∪

{〈〈 33 , [n m]〉, 〈 44 , [n m−1]〉〉 | n,m ∈ Z} ∪ {〈〈 44 , [n m]〉, 〈 22 , [n m]〉〉 | n,m ∈ Z}

Then the maximal trace semantics τ ~∞ of the transition system is:

{〈 55 , [n m]〉 ∈ Σ
~+ | n,m ∈ Z} ∪ {〈 22 , [n m]〉〈 55 , [n m]〉 ∈ Σ

~+ | m ≥ n}∪

{〈 11 , [n m]〉〈 22 , [n m]〉〈 55 , [n m]〉 ∈ Σ
~+ | m ≥ n}∪

{〈 00 , [n m]〉〈 11 , [0 m′]〉〈 22 , [0 m′]〉〈 55 , [0 m′]〉 ∈ Σ
~+ | m′ ≥ 0 ∧ n,m ∈ Z}∪

{〈 44 , [n m]〉〈 22 , [n m]〉〈 55 , [n m]〉 ∈ Σ
~+ | m ≥ n}∪

{〈 33 , [n m+ 1]〉〈 44 , [n m]〉〈 22 , [n m]〉〈 55 , [n m]〉 ∈ Σ
~+ | m ≥ n}∪{

〈 00 , [n m]〉〈 11 , [0 m]〉〈 22 , [0 m]〉〈 33 , [0 m]〉〈 44 , [0 m−1]〉〈 22 , [0 m−1]〉 . . . ∈ Σ~ω
∣∣∣∣ m < 0,
n ∈ Z

}
∪

{〈 11 , [0 m]〉〈 22 , [0 m]〉〈 33 , [0 m]〉〈 44 , [0 m−1]〉〈 22 , [0 m−1]〉 . . . ∈ Σ~ω | m < 0}∪

{〈 22 , [0 m]〉〈 33 , [0 m]〉〈 44 , [0 m−1]〉〈 22 , [0 m−1]〉 . . . ∈ Σ~ω | m < 0}∪

{〈 33 , [0 m]〉〈 44 , [0 m−1]〉〈 22 , [0 m−1]〉 . . . ∈ Σ~ω | m < 0} ∪ . . .

{〈 22 , [n m]〉〈 33 , [n m]〉〈 44 , [n m−1]〉〈 22 , [n m−1]〉 . . . ∈ Σ~ω | n,m ∈ Z}∪

{〈 33 , [n m]〉〈 44 , [n m−1]〉〈 22 , [n m−1]〉 . . . ∈ Σ~ω | n,m ∈ Z} ∪ . . .
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As we can note in Example 4, the maximal trace semantics is suffix-closed. Usually,
such suffixes are not useful and, sometimes, they could also insert misleading information.
Consider the very simple program 00 x := 3 11 11 skip 22 . Its transition system is composed
by Σ , { 00 , 11 , 22 } × ({x} −→ Z), Υ , {〈 00 , [n]〉 | n ∈ Z}, Ω , {〈 22 , [n]〉 | n ∈ Z} and
τ , {〈〈 00 , [n]〉, 〈 11 , [3]〉〉 | n ∈ Z} ∪ {〈〈 11 , [n]〉, 〈 22 , [n]〉〉 | n ∈ Z}4. The the maximal trace
semantics of the transition system is:

τ ~∞ , {〈 22 , [n]〉 | n ∈ Z} ∪ {〈 11 , [n]〉〈 22 , [n]〉 | n ∈ Z} ∪ {〈 00 , [n]〉〈 11 , [3]〉〈 22 , [3]〉 | n ∈ Z}

It is clear that the only useful complete traces are those in {〈 00 , [n]〉〈 11 , [3]〉〈 22 , [3]〉 | n ∈ Z}.
Indeed, the traces in {〈 22 , [n]〉 | n ∈ Z \ {3}} are not even reachable, meaning that it is not
possible to generate them with a real execution of the program. For this reasons, we consider
as maximal traces of a program only those traces starting in an initial state. Hence, from now
on, we consider as maximal trace semantics of a program the set {σ̄ ∈ τ ~∞ | σ̄0 ∈ Υ}.

Transition systems allow us to relate and compare different semantics of programs in
an unique setting, but they are not so useful for verification methods. Indeed, when we
want to prove properties of programs, we need to compute these semantics with a com-
puter. Hence, the semantics of interest should be defined by induction on programs syntax,
without passing from a transition system representation. In the next chapters we will see
how to compute semantics, directly from programs code.

Arithmetic expressions: ⇓Z⊆ (Aexp×Mem)× Z

〈n,m〉 ⇓Z n 〈x,m〉 ⇓Z m(x) 〈(a),m〉 ⇓Z n if 〈a,m〉 ⇓Z n

〈a1 + a2,m〉 ⇓Z n if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and n = n1 + n2

〈a1 − a2,m〉 ⇓Z n if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and n = n1 − n2

〈a1 ∗ a2,m〉 ⇓Z n if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and n = n1 ∗ n2

Boolean expressions: ⇓B⊆ (Bexp×Mem)× B

〈tt,m〉 ⇓B tt 〈ff,m〉 ⇓B ff 〈(b),m〉 ⇓B b if 〈b,m〉 ⇓B b

〈a1 = a2,m〉 ⇓B b if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and b = (n1 = n2 ? tt : ff )

〈a1 6= a2,m〉 ⇓B b if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and b = (n1 6= n2 ? tt : ff )

〈a1 < a2,m〉 ⇓B b if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and b = (n1 < n2 ? tt : ff )

〈a1 ≤ a2,m〉 ⇓B b if 〈a1,m〉 ⇓Z n1 and 〈a2,m〉 ⇓Z n2 and b = (n1 ≤ n2 ? tt : ff )

〈b1 ∧ b2,m〉 ⇓B b if 〈b1,m〉 ⇓B b1 and 〈b2,m〉 ⇓B b2 and b = b1 ∧ b2
〈b1 ∨ b2,m〉 ⇓B b if 〈b1,m〉 ⇓B b1 and 〈b2,m〉 ⇓B b2 and b = b1 ∨ b2
〈¬b,m〉 ⇓B b if 〈b,m〉 ⇓B b′ and b = ¬b′

Figure 4.2: Big-step operational semantics for expressions.

4We denote with [n] the memory [x 7→ n]
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(seq)
〈〈 ii ,m〉, ii c1

ll 〉_ 〈〈 tt , n〉, tt c3
ll 〉

〈〈 ii ,m〉, ii c1
ll kk c2

ff 〉_ 〈〈 tt , n〉, tt c3
ll kk c2

ff 〉
(seq↓)

〈〈 ii ,m〉, ii c1
ll 〉_ 〈 ll , n〉

〈〈 ii ,m〉, ii c1
ll kk c2

ff 〉_ 〈〈 ll , n〉, kk c2
ff 〉

(ass)
〈a,m〉 ⇓Z n

〈〈 ii ,m〉, ii x := a ff 〉_ 〈 ff ,m[x←[ n]〉
(skip)

−

〈〈 ii ,m〉, ii skip ff 〉_ 〈 ff ,m〉

(ifT)
〈b,m〉 ⇓B tt P1 = ll c1

kk

〈〈 ii ,m〉, ii if b then {P1 } else {P2 } ff 〉_ 〈〈 ll ,m〉, ll c1
kk kk skip ff 〉

(ifF)
〈b,m〉 ⇓B ff P2 = ll c2

kk

〈〈 ii ,m〉, ii if b then {P1 } else {P2 } ff 〉_ 〈〈 ll ,m〉, ll c2
kk kk skip ff 〉

(whl)
−

〈〈 ii ,m〉, ii while ll b {P } ff 〉_ 〈〈 ll ,m〉, ii while ll b {P } ff 〉

(whlT)
〈b,m〉 ⇓B tt P = kk c tt

〈〈 ll ,m〉, ii while ll b {P } ff 〉_ 〈〈 kk ,m〉, kk c tt tt skip ll ii while ll b {P } ff 〉

(whlF)
〈b,m〉 ⇓B ff

〈〈 ll ,m〉, ii while ll b {P } ff 〉_ 〈 ff ,m〉

Figure 4.3: Small-step operational semantics of Imp.

4.2 Formalizing Specifications
In Section 4.1 we have fixed systems model and systems behavior. Similarly, in this section
we define which are the specifications we are interested in. We have chosen hyperproperties
[Clarkson and Schneider, 2010], which are the most flexible way for representing systems
specifications, when systems are described by means of sets of executions.

4.2.1 Hyperproperties: Introduction
As introduced in the previous section, we model systems executions as traces of states,
where a state is the most precise information we have about the system in a particular inter-
val of time. We maintain the notation of the previous section, denoting with Σs ⊆ D the state
space of a particular system s, where D is the set of all possible state denotations of all possi-
ble systems. Then, we have a lot of choices for execution denotations. For instance, maximal
traces, input/output relations, states, etc. In this section we reason about specifications, in
a way independent of the choice of executions denotations. Hence, in the following, we de-
note with Den a generic set of executions denotations. For instance, we have that Den = Σ ~∞

if we chose maximal traces. We model systems semantics as set of executions, namely the
semantics domain is ℘(Den). It is clear that, in this settings, a specification is modeled as
a set of sets of executions, namely an element of ℘(℘(Den)). Specifications modeled in this
way are called hyperproperties [Clarkson and Schneider, 2010] in the literature. The authors
of [Clarkson and Schneider, 2010] had to introduce the prefix “hyper”, in order to distin-
guish specifications described as set of sets of executions from specifications described as

4444



Chapter 4. Systems, Semantics and Specifications M. Pasqua

sets of executions. These latter were called improperly systems properties and were used
for decades as the general formalization for systems specifications. The terminology is im-
proper since a set of executions cannot be termed as a property, in the mathematical sense,
of systems. In fact they are properties of executions, since they are defined by means of
a characteristic function with domain Den, instead of ℘(Den). In order to disambiguate,
from now on we call hyperproperties the properties of systems, defined on ℘(℘(Den)), and
we call trace properties the properties of executions, defined on ℘(Den). Finally we will use
“property” in order to denote the general concept of mathematical property. We synthesize
these concepts in the following definitions.

• Given a set X , a (mathematical) property over X is just a subset of X .

• Given a set of systems executions denotations Den, a hyperproperty is just a property
over ℘(Den), namely it is a subset of ℘(Den).

• Given a set of systems executions denotations Den, an trace property is just a property
over Den, namely it is a subset of Den.

Note that hyperproperties generalize trace properties since, as we will see formally later,
these latter are isomorphic to a subset of hyperproperties. From now on, we will denote
specifications as hyperproperties. Recalling Chapter 3, we say that s satisfies an hyperprop-
erty Hp ∈ ℘(℘(Den)), in symbols s |= Hp, when I(s) ∈ Hp. Here I(s) ∈ REPSys , Den is the
semantics of s, namely an element of the hierarchy presented the previous section. Analo-
gously, we can state when a system satisfies a trace property. We use again the same symbol
|= in order to denote the satisfiability relation for trace properties: a system s satisfies a trace
property P ∈ ℘(Den), written s |= P, when I(s) ⊆ P.

It is clear that, being predicates on single executions, trace properties could express
safety requirements like “the system does not go in an error state” but they cannot express,
for instance, confidentiality requirements. These latter need to compare different executions
of the system, hence a predicate on single executions is not sufficient. Hyperproperties, in-
stead, could express relations between executions, since the level of set of sets allows to use
predicates over multiple executions. This difference is depicted in Figure 4.4. More expres-
siveness comes at a cost: the verification of hyperproperties is significantly more complex
than the verification of trace properties, as we will see in the next chapters.

We continuously maintain this parallel between hyperproperties and trace properties
since the majority of works about specifications analysis/verification deal with these latter
only. In the following sections we investigate hyperproperties from a theoretical point of
view. First, by a topological point of view (Subsection 4.2.2) and then from an algebraic
point of view (Subsection 4.2.3). We will exploit these theoretical findings in order to build
verification methods for hyperproperties in Chapters 6, 7 and 8.

It is worth noting that in order to disprove that a system fulfills a trace property it is
necessary to show one trace, which is the counterexample. Analogously, in order to dis-
prove that a system fulfills a hyperproperty is necessary to show a set of traces (potentially
all system traces). Finally, the trace property ∅, written Pfalse, is the one which cannot be
satisfied, by any system, i.e. @s . I(s) ⊆ Pfalse (∅ is not a representation of any system). Du-
ally, the trace property Den, written Ptrue, is the one which is satisfied by every system, i.e.
∀s . I(s) ⊆ Ptrue. Analogously, we can define Hpfalse and Hptrue for hyperproperties as∅ and
℘(Den), respectively.
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Trace properties:
sets of traces

. . .

. . .

“properties” of traces
(error-free executions)

Hyperproperties:
sets of sets of traces

. . .

. . .

“properties” of semantics
(non-interferent executions-sets)

Figure 4.4: Trace properties and hyperproperties.

Remark. In [Clarkson and Schneider, 2010] the authors define Hpfalse as {∅} instead of ∅.
From the point of view of verification, the two definitions are equivalent. In fact, both ∅
and {∅} are unsatisfiable: there is not a system s such that I(s) ∈ ∅ or I(s) ∈ {∅}. We
prefer to use ∅ since, by an algebraic point of view, it is more general (see Section 4.2.3).

Examples of Hyperproperties. As we have already said, information flows are expressible
only with hyperproperties. Now we give other examples of useful specifications, which are
not expressible with trace properties. Processes synchronization requirements are hyperprop-
erties. In a symmetric mutual exclusion protocol, for every pair of mutual exclusive requests
to a critical section the respective grant to enter the section should be answered eventually,
but not at the same time. Service Level Agreements are hyperproperties. For instance, the
average time, over all executions, to respond to requests must be lower than a given thresh-
old. Error resistant codes requirements are hyperproperties. Error resistant codes enable the
transmission of data over noisy channels. A typical model of errors bounds the number of
flipped bits that may happen for a given code word length. Then, error correction coding
schemes must guarantee that all code words have a minimal Hamming distance. This is
an hyperproperty, since for every pair of executions with different input data, the encoder
must produce code words with, at least, a given Hamming distance. Finally, also crypto-
graphic protocols requirements are hyperproperties. For instance, in a secret-sharing scheme
a (secret) sensitive data is divided in k parts and each part is distributed to a distinct agent.
All k of these shares are required to reconstruct the original secret data. In this setting, a
system should not, across all of its executions, output all k parts.

4.2.2 Hyperproperties: Topological Characterization
The aim of this subsection is to give a topological characterization of trace properties and
hyperproperties, parametric on the execution denotations domain. First we deal with trace
properties and then we pass to hyperproperties.

Among all the trace properties, there are some with particular characteristics [Alpern
and Schneider, 1985]. The safety (trace) properties express the fact that “nothing bad hap-
pens”, namely the systems satisfying a safety trace property do not exhibit bad behaviors.
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This means that for every trace that is not in a safety trace property, there exists a finite pre-
fix (the “bad thing”) which cannot be extended to a trace satisfying the property. The most
useful feature of safety trace properties is that to check if the specification does not hold for
an execution, and so for the system, it is sufficient to observe only a finite prefix of the trace.
The liveness (trace) properties express the fact that “something good eventually happens”,
namely the systems satisfying a liveness trace property are those that, eventually, exhibit a
good behavior. This means that a finite trace is part of a liveness trace (a good behavior) if it
can be extended to an infinite trace satisfying the property. It is well known that every trace
property can be defined as the intersection of a safety and a liveness trace property [Alpern
and Schneider, 1985], using topological arguments.

A Primer on Topologies. A topology over a setX consists in a family of subsets ofX which
defines its open sets. OX ⊆ ℘(X) is a family of open sets if and only if it is closed under union
(i.e. ∀Y ⊆ OX .

⋃
Y ∈ OX ), it is closed under binary intersection (i.e. Y1, Y2 ∈ OX ⇒ Y1 ∩

Y2 ∈ OX ) and it coversX (i.e.
⋃
OX = X). The dual of an open set is a closed set, so a family

of open sets defines automatically a family of closed sets, namely CX = {X \ O | O ∈ OX}.
Given Y ⊆ X , the interior of Y , written ι(Y ), is the largest open set contained in Y and the
closure of Y , written ρ(Y ), is the smallest closed set containing Y , i.e.

ρ(Y ) =
⋂
{C ∈ CX | Y ⊆ C} and ι(Y ) =

⋃
{O ∈ OX | O ⊆ Y }

A set D ⊆ X is said dense if and only if ρ(D) = X , so in a topology there is also a family
of dense sets, i.e. DX = {D ⊆ X | ρ(D) = X}. Every element of ℘(X) can be specified
as the intersection of a closed set and a dense set. We have not found any explicit proof in
the literature, so we give a simple one here. Note that the proof also provides a way for
retrieving the closed and the dense sets whose intersection is the given element of ℘(X).

Theorem 8 (Decomposition). ∀Y ∈ ℘(X)∃C ∈ CX , D ∈ DX . Y = C ∩D.

Proof. First, consider the following equalities:

Y = ‖ extensivity of ρ

ρ(Y ) ∩ Y
= ‖ set-theory

(ρ(Y ) ∩ Y ) ∪∅
= ‖ set-theory

(ρ(Y ) ∩ Y ) ∪ (ρ(Y ) ∩ (X \ ρ(Y )))

= ‖ distributivity of ∩

ρ(Y ) ∩ (Y ∪ (X \ ρ(Y )))

Then we can note that ρ(Y ) ∈ CX , i.e. it is a closed set, and Y ∪ (X \ ρ(Y )) ∈ DX , i.e. it is a
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dense set. The first is closed by definition, while for the second we have:

ρ(Y ∪ (X \ ρ(Y )))

⊇ ‖ property of closures

ρ(Y ) ∪ ρ(X \ ρ(Y ))

⊇ ‖ extensivity of ρ

ρ(Y ) ∪ (X \ ρ(Y ))

= X ‖ set-theory

This implies ρ(Y ∪ (X \ ρ(Y ))) = X , since ρ(Z) ⊆ X for every Z ∈ ℘(X).

Definition 22. A function κ ∈ ℘(X) −→ ℘(X) is a Kuratowski Closure Operator, KCO in short,
if and only if all the following hold:

1. κ(∅) = ∅

2. ∀Y ⊆ X .Y ⊆ κ(Y )

3. ∀Y1, Y2 ⊆ X .κ(Y1 ∪ Y2) = κ(Y1) ∪ κ(Y2) [this implies Y1 ⊆ Y2 ⇒ κ(Y1) ⊆ κ(Y2)]

4. ∀Y ⊆ X .κ(κ(Y )) = κ(Y )

A KCO over ℘(X) induces a topology on X where the KCO is the closure of X [Kura-
towski, 1967]. So, in order to define a topology onX , it is sufficient to specify its closed sets,
namely a closure (or a KCO) over ℘(X).

Extra Notation. Limited to this subsection, we define some concepts and notations, in
order to make the presentation more readable. We denote the set Σ~+

ε of non-empty finite
sequences over Σ just as Σ+. Similarly, we denote the set Σ~ωε of non-empty infinite sequences
as Σω and the set Σ ~∞

ε of non-empty sequences (finite or infinite) as Σ∞.
The sequence σ̄ ∈ Σ+ is a prefix of σ̄′′ ∈ Σ∞, in symbols σ̄ ≤pf σ̄′′, if there exists σ̄′ ∈ Σ∞

such that σ̄σ̄′ = σ′′. When we deal with sets of sequences, we can extend the definition of
prefix to sets as follows. A set of sequences X ⊆ Σ+ is a prefixset of Y ⊆ Σ∞, in symbols
X Epf Y , if for all σ̄ ∈ X there exists σ̄′ ∈ Y such that σ̄ ≤pf σ̄′ [Clarkson and Schneider,
2010]. A set of infinite sequences {σ̄0, σ̄1, . . . } converges to the limit sequence σ̄ if the length
of the maximal prefix common to each σ̄k and to σ̄ goes to infinity as k goes to infinity
[Chang, Manna, and Pnueli, 1992].

Example 5. Consider the set of sequences {anbω | n ≥ 0}. It converges to aω , since the
sequence of longest prefixes common to aω and to σk = akbω (i.e. ak) gets increasingly
longer with k.

Given two sets X and Y and a function f ∈ X −→ ℘(Y ), we denote with f � ∈ ℘(X) −→
℘(Y ) the function f � , λZ .

⋃
{f(x) | x ∈ Z}, called the set image-lift of f .
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4.2.2.1 Safety and Liveness Dichotomy

As already mentioned, among all, there are two particular kinds of trace properties: the
safety and the liveness. Informally, the first model the fact that “nothing bad will happen”
and the second model the fact that “something good will eventually happen”. In other
words, a system violates a safety trace property if it eventually performs the “bad thing”
and a system violates a liveness trace property if it never performs the “good thing”. It
is clear that, if a system does not satisfy a safety trace property, the violation must occur
during its execution and hence the violation must arise in a finite amount of time. Due to
this fact, safety trace properties are identified as the ones which can be monitored, i.e. checked
at runtime. For liveness trace properties things are more complicated because the checker
must observe the system execution entirely, hence it needs a, possibly infinite, amount of time.

Finite executions can be seen as particular cases of infinite ones: we can repeat infinitely
many times the final state of a finite execution in order to obtain an infinite execution equiv-
alent to the finite one. This has led researchers to model system executions and trace prop-
erties as set of infinite sequences of systems states. This choice has also two other important
motivations: reasoning about trace properties can be done with well studied formalisms
modeling semantics by considering infinite sequences (like linear temporal logics and Büchi
automata), and it allows us to give a topological characterization of trace properties. It turns
out that safety trace properties correspond to the closed sets in the Cantor topology over in-
finite sequences and liveness trace properties correspond to the dense sets. Hence, by using
the decomposition theorem (Theorem 8), we can specify an arbitrary trace property as the
intersection of a safety and a liveness one. This means that we can reduce the check of a
generic trace property to the check of its safety and liveness parts.

While trace properties over finite sequences can be easily expressed as infinite sequences,
in practice we deal with systems which exhibit finite behaviors. So it is natural to wonder
what happens if we allow finite sequences in trace properties definition. Something in this
direction was already done [Roşu, 2012], but only for safety trace properties. In this section,
we give a trace properties characterization on the following execution domains: only finite
Σ+, only infinite Σω and mixed Σ∞.

Remark. Clearly the concepts of safety and liveness are useful only for execution denota-
tions strictly more precise than I/O traces. Indeed, these properties embody the notion of
computation history, i.e. executions keep track of past states. In a trace composed by just
two elements, or by a single state, the concept of history is not definable.

Safety. Let us start with safety first and denote by Safety+, Safetyω and Safety∞ the safety
trace properties over finite, infinite and mixed executions, respectively. In [Alpern and
Schneider, 1985], the authors define safety trace properties S on Σω in a refutational way:
if σ̄ /∈ S then there exists a finite prefix σ̄′ of σ̄, written σ̄′ ≤pf σ̄, such that σ̄′σ̄′′ /∈ S for
every σ̄′′ ∈ Σω . This means that, if an infinite execution violates the property, then the bad
thing must have occurred in one of its finite prefixes and the violation cannot ever be re-
covered in the future. An alternative, and equivalent, definition due to Roşu [Roşu, 2012] is
the following: for a safety trace property S ∈ ℘(Σω), σ̄ ∈ S if and only if prf(σ̄) ⊆ prf�(S),
where prf ∈ Σ∞ −→ ℘(Σ+) is the function λσ̄ . {σ̄′ | ∃σ̄′′ ∈ Σ∞ . σ̄′σ̄′′ = σ̄} returning the
set of prefixes of a given sequence. Furthermore, Roşu in [Roşu, 2012] discusses the known
definitions of safety trace properties over finite, infinite and mixed executions, and their

4949



M. Pasqua 4.2. Formalizing Specifications

equivalence with the following:

• Safety+ , {S ∈ ℘(Σ+) | S = prf�(S)}

• Safetyω , {S ∈ ℘(Σω) | σ̄ ∈ S ⇔ prf(σ̄) ⊆ prf�(S)}

• Safety∞ , {S ∈ ℘(Σ∞) | σ̄ ∈ S ⇔ prf(σ̄) ⊆ S}

Although safety trace properties essentially capture the fact that, in order to disprove the
property, it is sufficient to show a finite counterexample, the definitions of safety on finite,
infinite and mixed sequences are different. For finite sequences it is sufficient the prefix-
closure, namely a safety on Σ+ must contain all the prefixes of its sequences. The same def-
inition cannot be applied to Σω , indeed none of its prefixes are in the property. In this case
we have to reason “at the limit” and say that a safety on Σω contains all its limit sequences,
namely the infinite sequences which approximate the prefixes. Finally, as expected, the
safety on Σ∞ combines both aspects of finite and infinite sequences.

Liveness. To the best of our knowledge, there are no works reasoning about liveness trace
properties over finite and mixed executions. One can think that it is not meaningful to define
liveness on finite executions, but we believe it is not the case. Take as example termination,
i.e. the set of systems executions which do not run forever. Clearly this trace property is
liveness, where the good thing is exactly termination. We can model this trace property on
finite sequences only, as the set Σ+. So, let us denote with Liveness+, Livenessω and Liveness∞

the liveness trace properties over finite, infinite and mixed executions, respectively. The
original definition of Alpern and Schneider [Alpern and Schneider, 1985] involves infinite
sequences only, and it states that a trace property L ∈ ℘(Σω) is a liveness trace property if
and only if for every finite sequence σ̄ ∈ Σ+ there exists an infinite sequence σ̄′ ∈ Σω such
that σ̄σ̄′ is in L. This means that every finite execution can be extended to an infinite one
satisfying the property. We believe that this intuition can be easily adapted to finite and
mixed sequences as well.

Definition 23. Given y ∈ {+, ω,∞}:

Livenessy , {L ∈ ℘(Σy) | ∀σ̄ ∈ Σ+ ∃σ̄′ ∈ L . σ̄ ≤pf σ̄′}

Liveness trace properties capture the fact that in order to disprove the property it is nec-
essary to show an infinite counterexample. It is worth noting that our definition of liveness
on infinite executions is indeed equivalent to the one of Alpern and Schneider. Moreover,
∀σ̄ ∈ Σ+ ∃σ̄′ ∈ L . σ̄ ≤pf σ̄′ is equivalent to Σ+ ⊆ prf�(L).

Finally, we can note that, as usual, the trace property Pfalse is a safety property for Σ+,
Σω and Σ∞ but it is a liveness trace property for none of them. Analogously, Σ+ ∈ Safety+∩
Liveness+, Σω ∈ Safetyω ∩ Livenessω and Σ∞ ∈ Safety∞ ∩ Liveness∞ (here Σ+, Σω and Σ∞

are the Ptrue trace properties).

4.2.2.2 Hypersafety and Hyperliveness Dichotomy

Similarly, among all hyperproperties, there are some with particular characteristics [Clark-
son and Schneider, 2010]. The safety hyperproperties (or hypersafety) are the lift to sets of
safety trace properties. This means that for every set of traces which is not a member of a
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safety hyperproperty, there exists a finite prefixset of finite traces (the “bad thing”) which
cannot be extended to a set of traces satisfying the hyperproperty. The liveness hyperprop-
erties (or hyperliveness) are the lift to sets of liveness trace properties. This means that a
set of finite traces is a member of a hyperliveness traces-set (the “good thing”) if it can be
extended to a set of infinite traces satisfying the hyperproperty. In [Clarkson and Schneider,
2010] the authors proved that every hyperproperty can be defined as the intersection of a
safety and a liveness hyperproperty (on infinite traces only).

Hypersafety. In their seminal paper [Clarkson and Schneider, 2010], Clarkson and Schnei-
der introduce hyperproperties and they extend the safety/liveness dichotomy on sets of sets
of sequences. Their work, as well as all other works about hyperproperties, deals with in-
finite executions only. In this section, we mimic what we have done for trace properties in
the hyper case.

Let us denote by HyperSafety+, HyperSafetyω and HyperSafety∞ the safety hyperprop-
erties over finite, infinite and mixed executions, respectively. In [Clarkson and Schneider,
2010] the authors define hypersafety in a refutational way: if X /∈ S then there exists a fi-
nite set of finite sequences O Epf X such that every possible X ′ ∈ ℘(Σω) which extends O
(i.e. O Epf X ′) is not in S. This is basically the concept of safety lifted to sets, where the
“bad thing” is exactly the set O. Here we define hypersafety for finite, infinite and mixed
executions, lifting to sets the definitions of safety. The function sprf ∈ ℘(Σ∞) −→ ℘(℘(Σ+))
is λX . {Y | Y Epf X} = λX . {Y | ∀σ̄ ∈ Y ∃σ̄′ ∈ X . σ̄ ≤pf σ̄′} and it returns the set of
prefixsets of X . Note that sprf does not constrain prefixsets to have finite size, indeed in
our definitions we allow the “bad thing” set to be infinite.

• HyperSafety+ , {S ∈ ℘(℘(Σ+)) | S = sprf�(S)}

• HyperSafetyω , {S ∈ ℘(℘(Σω)) | X ∈ S ⇔ sprf(X) ⊆ sprf�(S)}

• HyperSafety∞ , {S ∈ ℘(℘(Σ∞)) | X ∈ S ⇔ sprf(X) ⊆ S}

Hypersafety essentially captures the fact that, in order to disprove the hyperproperty, it
is sufficient to show a counterexample-set of finite traces. Hence, also in the hyper case,
we have the link between safety and the concept of monitorability. In fact, as a safety trace
property can be disproved at runtime observing one execution until the “bad thing” happens,
an hypersafety can be disproved at runtime observing a set of executions until the “bad thing”
happens. Note that, this set can have an unbounded (or infinite) number of elements hence,
in general, the monitorability of an hypersafety is unfeasible. But there are some exceptions.
For k-hypersafety, i.e. safety hyperproperties for which the bad thing never involves more
than k traces (see [Clarkson and Schneider, 2010] for details), the set of traces we need to
monitor can be restricted to k ∈ N (i.e. a finite number of) elements.

In order to characterize hypersafety for finite sequences, it is sufficient the prefixset-
closure, namely an hypersafety on Σ+ must contain all the prefixsets of its sequences. The
same definition cannot be applied to Σω , indeed none of its prefixsets are in the property. In
this case, again, we have to reason “at the limit” and say that an hypersafety on Σω contains
all its sets of limit sequences, namely the sets of infinite sequences which approximate the
prefixsets. Finally, as expected, the hypersafety on Σ∞ combine both aspects of finite and
infinite sequences. Furthermore, it is worth noting that our definition of hypersafety on
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infinite executions is indeed equivalent to the one of Clarkson and Schneider, if we constrain
sprf to collect only finite prefixsets.

Hyperliveness. Let us now denote by HyperLiveness+, HyperLivenessω and HyperLiveness∞

the liveness hyperproperties over finite, infinite and mixed executions, respectively. In
[Clarkson and Schneider, 2010], the original definition states that an hyperproperty L ∈
℘(℘(Σω)) is hyperliveness if and only if for every finite set of finite sequences O ∈ ℘(Σ+)
there exists a set of infinite sequences X ∈ ℘(Σω), which extends O (i.e. O Epf X), such
that X is in L. Also in this case, the definition is basically the concept of liveness lifted to
sets. Here we give an alternative definition, which turns out to be parameterizable on finite,
infinite and mixed executions, as it happens for trace properties case. As we have done for
hypersafety, in our definitions we relax the constraint that the observable O must to be a
finite set.

Definition 24. Given y ∈ {+, ω,∞}:

HyperLivenessy = {L ∈ ℘(℘(Σy)) | ∀O ∈ ℘(Σ+)∃X ∈ L . O Epf X}

Hyperliveness captures the fact that, in order to disprove the hyperproperty, it is neces-
sary to show a set of infinite counterexamples. It is worth noting that our definition of hyper-
liveness on infinite executions is indeed equivalent to the one of Clarkson and Schneider if
we constrain everyO to be finite. Furthermore, the condition ∀O ∈ ℘(Σ+)∃X ∈ L . O Epf X
is equivalent to: ℘(Σ+) ⊆ sprf�(L).

Finally, we can note that, as expected, the hyperproperty Hpfalse is hypersafety for Σ+,
Σω and Σ∞ but it is hyperliveness for none of them. Analogously, ℘(Σ+) ∈ HyperSafety+ ∩
HyperLiveness+, ℘(Σω) ∈ HyperSafetyω ∩ HyperLivenessω and ℘(Σ∞) ∈ HyperSafety∞ ∩
HyperLiveness∞ (here ℘(Σ+), ℘(Σω) and ℘(Σ∞) are the Hptrue hyperproperties).

4.2.2.3 Topologies for Trace Properties and Hyperproperties

When dealing with infinite computations there is a topological interpretation of safety and
liveness, also for the hyper case (see [Clarkson and Schneider, 2010]). In this section, we
give topological characterizations of safety/liveness trace properties and hyperproperties
which take in consideration finite and mixed computations, other than the infinite ones. For
doing so, we define a KCO for each domain (finite, infinite, mixed for trace properties and
finite, infinite, mixed for hyperproperties) and then we prove that safety and liveness are
closed and dense sets, respectively, in the topology induced by the KCO.

Trace Properties. The function PrfCl ∈ ℘(Σ+) −→ ℘(Σ+), defined as PrfCl , λX . prf�(X),
is a closure on ℘(Σ+) (indeed it is a KCO). So we have a topology on Σ+, where:

• CΣ+ = PrfCl�(℘(Σ+)) = {X ⊆ Σ+ | X = PrfCl(X)} are the closed sets

• DΣ+ = {X ⊆ Σ+ | PrfCl(X) = Σ+} are the dense sets

Lemma 1. Safety+ = CΣ+ and Liveness+ = DΣ+ .
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Proof. Since elements X ∈ Safety+ are prefix-closed, i.e. X = prf�(X), Safety+ is equal
to CΣ+ by definition. As we already noted, ∀σ̄ ∈ Σ+ ∃σ̄′ ∈ X . σ̄ ≤pf σ̄′ is equivalent to
Σ+ ⊆ prf�(X). But prf�(X) ⊆ Σ+, for every X ∈ ℘(Σ+). Hence PrfCl(X) = Σ+, i.e.
X ∈ DΣ+ , if and only if X ∈ Liveness+.

Theorem 9. ∀P ∈ ℘(Σ+)∃S ∈ Safety+, L ∈ Liveness+ .P = S ∩ L

Proof. It follows from Lemma 1 and Theorem 8.

Let limω ∈ ℘(Σω) −→ ℘(Σω) be the function λX . {σ̄ ∈ Σω | ∀σ̄′ ∈ Σ+ . (σ̄′ ≤pf σ̄ ⇒ σ̄′ ∈
prf�(X))} returning the set of limit sequences ofX . The function LimCl ∈ ℘(Σω) −→ ℘(Σω),
defined as LimCl , λX . limω (X), is a closure on ℘(Σω) (indeed it is a KCO). So we have a
topology on Σω , where:

• CΣω = LimCl�(℘(Σω)) = {X ⊆ Σω | X = LimCl(X)} are the closed sets

• DΣω = {X ⊆ Σω | LimCl(X) = Σω} are the dense sets

Lemma 2. Safetyω = CΣω and Livenessω = DΣω .

Proof. Our definitions of safety and liveness (on Σω) are equivalent to the one of [Alpern and
Schneider, 1985] and LimCl is the limit operator of [Emerson, 1983], so our characterization
is equivalent to the usual topological definition of safety/liveness trace properties over Σω .

Theorem 10. ∀P ∈ ℘(Σω)∃S ∈ Safetyω, L ∈ Livenessω .P = S ∩ L

Proof. It follows from Lemma 2 and Theorem 8.

Let lim∞ ∈ ℘(Σ∞) −→ ℘(Σ∞), defined as λX .X ∪ {σ̄ ∈ Σω | ∀σ̄′ ∈ Σ+ . (σ̄′ ≤pf σ̄ ⇒ σ̄′ ∈
X)}5, the version on mixed sequences of limω . The function LimPrfCl ∈ ℘(Σ∞) −→ ℘(Σ∞),
defined as LimPrfCl , λX . lim∞ ◦prf�(X), is a closure on ℘(Σ∞) (indeed it is a KCO). So we
can define a topology on Σ∞, where:

• CΣ∞ = LimPrfCl�(℘(Σ∞)) = {X ⊆ Σ∞ | X = LimPrfCl(X)} are the closed sets

• DΣ∞ = {X ⊆ Σ∞ | LimPrfCl(X) = Σ∞} are the dense sets

Lemma 3. Safety∞ = CΣ∞ and Liveness∞ = DΣ∞ .

Proof. The proof can be found in Appendix A.

Theorem 11. ∀P ∈ ℘(Σ∞)∃S ∈ Safety∞, L ∈ Liveness∞ .P = S ∩ L

Proof. It follows from Lemma 3 and Theorem 8.
5lim∞(X) is the Eilenberg-limit [Eilenberg, 1974] of X , i.e. the set {σ̄ ∈ Σω | |prf(σ̄) ∩X| =∞}.
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Hyperproperties. The function SprfCl ∈ ℘(℘(Σ+)) −→ ℘(℘(Σ+)), defined as SprfCl ,
λX . sprf�(X ), is a closure on ℘(℘(Σ+)) (indeed it is a KCO). So we can define a topology
on ℘(Σ+), where:

• C℘(Σ+) = SprfCl�(℘(℘(Σ+))) = {X ⊆ ℘(Σ+) | X = SprfCl(X )} are the closed sets

• D℘(Σ+) = {X ⊆ ℘(Σ+) | SprfCl(X ) = ℘(Σ+)} are the dense sets

Lemma 4. HyperSafety+ = C℘(Σ+) and HyperLiveness+ = D℘(Σ+).

Proof. Elements X ∈ HyperSafety+ are prefixset-closed, i.e. X = sprf�(X ), so HyperSafety+

is equal to C℘(Σ+) by definition. As we already noted, ∀X ∈ ℘(Σ+)∃X ′ ∈ X . X Epf X ′ is
equivalent to ℘(Σ+) ⊆ sprf�(X ). But sprf�(X ) ⊆ ℘(Σ+), for all X ∈ ℘(℘(Σ+)). Hence
SprfCl(X ) = ℘(Σ+), i.e. X ∈ D℘(Σ+), if and only if X ∈ HyperLiveness+.

Theorem 12. ∀Hp ∈ ℘(℘(Σ+)) ∃S ∈ HyperSafety+,L ∈ HyperLiveness+ .Hp = S ∩ L

Proof. It follows from Lemma 4 and Theorem 8.

Let slimω ∈ ℘(℘(Σω)) −→ ℘(℘(Σω)) be λX . {Y ∈ ℘(Σω) | ∀Y ′ ∈ ℘(Σ+) . (Y ′ Epf Y ⇒
Y ′ ⊆ sprf�(X ))}, i.e. the function returning the sets of limit sequences of X . Then the
function SlimCl ∈ ℘(℘(Σω)) −→ ℘(℘(Σω)), defined as SlimCl , λX . slimω (X ), is a closure on
℘(℘(Σω)) (indeed it is a KCO). So we can define a topology on ℘(Σω), where:

• C℘(Σω) = SlimCl�(℘(℘(Σω))) = {X ⊆ ℘(Σω) | X = SlimCl(X )} are the closed sets

• D℘(Σω) = {X ⊆ ℘(Σω) | SlimCl(X ) = ℘(Σω)} are the dense sets

Lemma 5. HyperSafetyω = C℘(Σω) and HyperLivenessω = D℘(Σω).

Proof. The proof can be found in Appendix A.

Theorem 13. ∀Hp ∈ ℘(℘(Σω))∃S ∈ HyperSafetyω,L ∈ HyperLivenessω .Hp = S ∩ L

Proof. It follows from Lemma 5 and Theorem 8.

Let slim∞ ∈ ℘(℘(Σ∞)) −→ ℘(℘(Σ∞)) be λX .X ∪ {Y ∈ ℘(Σ∞) | ∀Y ′ ∈ ℘(Σ+) . (Y ′ Epf

Y ⇒ Y ′ ∈ X )}, i.e. the version on mixed sequences of slimω . Note that here Y is a subset
of finite and infinite sequences, not only infinite ones, so we maintain the power to express
mixed sets. The function SlimSprfCl ∈ ℘(℘(Σ∞)) −→ ℘(℘(Σ∞)), defined as SlimSprfCl ,
λX . slim∞ ◦ sprf�(X ), is a closure on ℘(℘(Σ∞)) (it is a KCO). So we can define a topology
on ℘(Σ∞), where:

• C℘(Σ∞) =SlimSprfCl�(℘(℘(Σ∞)))={X ⊆℘(Σ∞) |X =SlimSprfCl(X )} are the closed sets

• D℘(Σ∞) ={X ⊆ ℘(Σ∞) | SlimSprfCl(X )=℘(Σ∞)} are the dense sets

Lemma 6. HyperSafety∞ = C℘(Σ∞) and HyperLiveness∞ = D℘(Σ∞).

Proof. The proof can be found in Appendix A.

Theorem 14. ∀Hp ∈ ℘(℘(Σ∞))∃S ∈ HyperSafety∞,L ∈ HyperLiveness∞ .Hp = S ∩ L

Proof. It follows from Lemma 6 and Theorem 8.
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4.2.3 Hyperproperties: Algebraic Characterization
As already said, hyperproperties are sets of sets of executions, hence hyperproperties are
in ℘(℘(Den)), for a given execution denotations domain Den. We denote by GENH the set of
all (generic) hyperproperties, namely GENH , ℘(℘(Den)). Setting some constraints on the
algebraic structure of hyperproperties, we can define some subsets of GENH with particular
characteristics. In the next chapters we will show that these restrictions can be useful for
verification purposes. The first is the subset-closure [Clarkson and Schneider, 2010].

Definition 25 (Subset-Closed Hyperproperties). An hyperproperty Hp ∈ GENH is subset-
closed when for every X ∈ ℘(Den) we have that if X is in Hp then every Y ⊆ X is in Hp.

We denote with SSCH the set of all subset-closed hyperproperties, namely SSCH is the set
{Hp ∈ GENH | X ∈ Hp ⇒ (∀Y ⊆ X .Y ∈ Hp)}, with typical elements cHp ∈ SSCH. Basically
subset-closed hyperproperties are downward-closed, w.r.t. ⊆, sets. The second constraint
we add is the closure by unions.

Definition 26 (Trace Hyperproperties). A subset-closed hyperproperty cHp ∈ SSCH is a trace
hyperproperty when it is closed under union, namely for every X ⊆ ℘(Den) we have that if
X is contained in cHp then

⋃
X is in cHp.

We denote with TRCH the set of all trace hyperproperties, namely TRCH is the set {cHp ∈
SSCH | X ⊆ cHp⇒

⋃
X ∈ Hp}, with typical elements tHp ∈ TRCH.

From an algebraic, i.e. structural, point of view these constraints are equivalent to the
following. Without constraints a generic hyperproperty Hp ∈ GENH is identifiable with
just a POSET 〈Hp,⊆〉. Adding subset-closure means that a subset-closed hyperproperty
cHp ∈ SSCH is identifiable with a CPO 〈cHp,⊆,∪,∅〉. Indeed every cHp has a minimum
∅, but not necessarily a maximum and the subset-closure guarantees the existence of the
supremum of ⊆-chains in cHp. Finally, a trace hyperproperty tHp ∈ TRCH is identifiable
with a complete BA 〈tHp,⊆,∪,∩,∅,

⋃
tHp, \〉. Figure 4.7 shows a graphical interpretation

of these results. In this setting, the relation ⊆ is the approximation order between hyper-
properties (see Chapter 3), in fact if a system satisfies Hp1 and Hp1 ⊆ Hp2 we have that the
system satisfies Hp2 as well.

Trace hyperproperties coincide exactly with trace properties. Indeed, let TRCP be the set
of all trace properties, namely it is the set ℘(Den). Then we have an isomorphism between
TRCH and TRCP. This proves that trace properties are particular cases of hyperproperties.

Making a link with the previous subsection, we have that all hypersafety are subset-
closed [Clarkson and Schneider, 2010]. Furthermore, all trace hyperproperties are subset-
closed, so we have that also some hyperliveness are in SSCH. The classic liveness proper-
ties are trace hyperproperties, hence the corresponding liveness trace hyperproperties are
subset-closed. We will see in Chapter 7 that there exists other hyperliveness in SSCH. Hence
we have the diagram in Figure 4.5.

4.2.3.1 Relations between Hyperproperties

Now, we show the relations existing among the notions of hyperproperties we have intro-
duced. Moreover, we describe the algebraic structures of hyperproperties domains. All
these results are independent of the choice of the execution denotations in Den.
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Subset-closed Hp

Trace Hp Hypersafety Hp
“Safety P”

Figure 4.5: Subset-closed hyperproperties.

It is straightforward to note that TRCH ( SSCH ( GENH and that SSCH (hence TRCH) do not
contain∅. Indeed the empty set has no members, so it cannot be subset-closed. In addition,
the unique singleton subset-closed is {∅}. Now let ρT be the function λX . γ℘ ◦α∪(X ), where
α∪ , λX .

⋃
X and γ℘ , λX .℘(X), and let ρS be the function λX . {X | ∃Y ∈ X . X ⊆ Y }.

It is easy to note that they are both upper closure operators of GENH.

Theorem 15. Subset-closed hyperproperties are the fixpoints of ρS and trace hyperproperties are the
fixpoints of ρT, namely SSCH = ρS(GEN

H) and TRCH = ρT(GEN
H).

Proof. SSCH = ρS(GEN
H) is trivial. For what concerns TRCH = ρT(GEN

H), for every X ∈ GENH we
have ρS(X ) ⊆ ρT(X ), hence ρT(GEN

H) ⊆ ρT(GEN
H). This proves that ρT(X ) is subset-closed, for

every X ∈ GENH. Now we have to prove that ρT(X ) is closed under union. If
⋃
Y ⊆ ρT(X ),

then ∀Z ∈ Y . Z ⊆
⋃
X . This latter implies that

⋃
Y ⊆

⋃
X and hence

⋃
Y ∈ ρT(X ).

Corollary. A hyperproperty Hp is a trace hyperproperty if and only if ℘(
⋃
Hp) = Hp.

Note that 〈SSCH,⊆,∪,∩, {∅}, ℘(Den)〉 is a complete lattice, where the bottom is {∅} be-
cause ∅ is contained in every subset-closed set and the top is ℘(Den) because it is the top
of GENH and it is subset-closed. For the same reasons they are the bottom and the top of
the complete lattice 〈TRCH,⊆,∪,∩, {∅}, ℘(Den)〉, which is the sublattice of SSCH (and GENH)
comprising its complete boolean algebras. Finally, it is straightforward to note that TRCH is
isomorphic, through 〈α∪, γ℘〉, to TRCP6. The big picture is depicted by the commutative dia-
gram in Figure 4.6. Recall that the approximation order plays the role of implication. So the
strongest hyperproperty, i.e. the one which implies any other hyperproperty, is ∅ for GENH
and {∅} for SSCH, TRCH. Dually, the weakest hyperproperty, i.e. the one which is implied by
any other one, is ℘(Den) for GENH, SSCH, TRCH. Regarding TRCP, it is isomorphic to TRCH so the
strongest trace property is α∪({∅}) = ∅ and the weakest is α∪(℘(Den)) = Den, as expected.

〈GENH,⊆,∪,∩,∅, ℘(Den)〉 −−−→−→←−−−−
ρS

id 〈SSCH,⊆,∪,∩, {∅}, ℘(Den)〉 −−−→−→←−−−−
ρT

id 〈TRCH,⊆,∪,∩, {∅}, ℘(Den)〉

〈TRCP,⊆,∪,∩,∅,Den〉

−−
→−→

←
−−
−

α∪γ℘

−−−
−−−
−→−→

←−−
−−−
−−−

α∪
γ℘

−−−−−−−→−→

←←−−−−−−−−
γ
℘

α
∪

Figure 4.6: Relations between hyperproperties

6The adjunction 〈α∪, γ℘〉 and its link with systems properties were already introduced in [Assaf et al., 2017]
(their 〈αhpp, γhpp〉) and even before in [Cousot and Cousot, 2012] (their 〈αΘ, γΘ〉).
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4.2.3.2 Trace Decomposition

Finally, we can provide a further characterization of subset-closed hyperproperties as union
of trace hyperproperties.

Proposition 1. Every subset-closed hyperproperty cHp can be decomposed into a disjunction of
trace hyperproperties, namely, given a cHp ∈ SSCH, we have:

cHp =
⋃
Y ∈max⊆(cHp) ℘(Y ) with max⊆(X ) , {X ∈ X | ∀X ′ ∈ X . X ⊆ X ′ ⇒ X = X ′}

where max⊆(X ) is the set of supremum of ⊆-chains in X .

Clearly, for all Y in max⊆(cHp), it holds ℘(
⋃
℘(Y )) = ℘(Y ) so ℘(Y ) is a trace hyperprop-

erty. Hence any subset-closed hyperproperty can be characterized as cHp =
⋃
i∈∆ tHpi. This

implies that, in order to verify cHp, it is sufficient to verify just one of these tHpi. In fact, if
s |= tHpi, i.e. I(s) ∈ tHpi, then I(s) ∈ cHp and hence s |= cHp.

♠ ♣

♠ ♣

♠ ♠ ♣

♠ ♣

F

F
♠ F ♠

GENH = ℘(℘(Den))

Generic hyperproperty Hp

〈Hp,⊆〉 POSET
. . .

♠ ♣

♠ ♣

♠ ♠ ♣

♠ ♣

F

SSCH = {Hp ∈ GENH | X ∈ Hp⇒ ∀Y ⊆ X .Y ∈ Hp}
Subset-closed hyperproperty cHp

〈cHp,⊆,∪,∅〉 CPO
. . .

♠ ♣

♠ ♣

♠

TRCH = {cHp ∈ SSCH | X ⊆ cHp⇒
⋃
X ∈ cHp}

Trace hyperproperty tHp

〈tHp,⊆,∪,∩,∅,
⋃

tHp, \〉 complete BA. . .

Figure 4.7: Hyperproperties algebraic structure.
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Classic Program Analysis
5

In Chapter 3 we have seen the difference between systems verification and analysis, noting
that it is possible to perform verification by using an analyzer. In this chapter we focus on
the problem of program verification of trace properties. Our systems are computer pro-
grams and, given a specification formalized as a trace property, we want to check whether
a program satisfies the specification or not. This is what is done in classic program analy-
sis, in the next chapter we will deal with the problem of program verification of the more
general hyperproperties. In the sake of simplicity, we take Imp, described in Section 4.1.3, as
programming language and, in order to perform verification, we use analysis, as described
in Section 3.2.

In general, the verification problem is undecidable, hence we need to move to approxi-
mate verification. We use abstract interpretation, in order to design sound approximations,
so we need to fix some key concepts. First, we have the standard semantics, which is the most
precise mathematical representation of the program. This is essentially the system model
of Chapter 3 and it is used to retrieve the interpretation I(P) of a system (program) P. In
particular, our standard semantics is the transition system 〈ΣP,ΥP,ΩP, τP〉 associated to the
program P (in turn generated by the SOS of Imp). This choice is not mandatory, we could
choose as standard semantics a function, a graph or other mathematical entities.

Second, we have the collecting semantics, which is the most precise specification that the
program satisfies. This latter is derived from the interpretation I(P) that, in this context, we
call base semantics and it is denoted as SP

base. The collecting semantics, potentially, involves
the loss of some information about the program standard semantics. Indeed, in [Cousot
and Cousot, 1992], the authors say that the collecting semantics is

“a version of the standard semantics reduced to essentials in order to ignore irrelevant
details about program execution.”

In other words, the collecting semantics is the most precise mathematical description of
the program behavior, sufficiently expressive to prove all the possible specifications we are
interested in. Since, in this chapter, we are interested in trace properties, the collecting se-
mantics should be a set of execution denotations, representing every possible execution of
the program. In this context, the hierarchy of semantics introduced in the previous chapter
is very useful. When we set the execution denotations domain, expressing what we are in-
terested in about the program behavior, then the corresponding element in the hierarchy is
the base semantics of a program. Furthermore, since we are interested in trace properties,
we have for free the collecting semantics, which is indeed equal to the base semantics. In
the case of hyperproperties, as we will see in the next chapter, the base semantics and the
collecting semantics do not coincide. Suppose we are interested in trace properties express-
ing a relation between the input and the output of a program (ignoring non-termination),
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SP
collCollecting semantics

〈ΣP,ΥP,ΩP, τP〉Standard semantics

chose Den, hence SP
base ∈ ℘(Den)

trace properties or hyperproperties?
Specifications

definition

−−→←−−α
γ SP

] Abstract semantics

Figure 5.1: Standard, collecting and abstract semantics.

then the execution denotations domain is Den = Σ+. As a consequence, we have that the
base semantics is τ+

P . This latter is also the collecting semantics, since all trace properties
we are interested in are provable using τ+

P . In other words, τ+
P is complete for trace proper-

ties in Σ+. In the following, we will denote the collecting semantics as SP
coll, which coincides

with SP
base, and we refer to the semantics of the hierarchy as collecting semantics as well. The

hierarchy helps us also in proofs. Indeed, when we define a collecting semantics we need
to prove that it exactly computes the trace property we want to verify over the standard
semantics. If the execution denotations domain Den we chose is an abstraction of the most
concrete domain Σ ~∞, then we have also that the collecting semantics in the hierarchy cor-
responding to Den is an abstraction of τ ~∞P . This guarantees that the collecting semantics is
correct, without exhibiting any proof.

Unfortunately, in general, the collecting semantics is not computable. Hence as a last
ingredient, we need the abstract collecting semantics, which is an approximation of the col-
lecting semantics, describing only the computable information we can model about a pro-
gram behavior. Clearly, going abstract we gain computability but we lose precision, namely
the abstract semantics is, in general, not complete. In Figure 5.1 we have a graphical rep-
resentation of the types of semantics we need for program verification. From the standard
semantics we chose how to denote the executions generated by the program, i.e. we set Den.
Then we have the base semantics, which is the interpretation of the program in Den, corre-
sponding to all possible executions of the program. The collecting semantics is retrieved,
depending whether we want to verify trace properties or hyperproperties. Finally, the ver-
ification process is made feasible with a computable abstract collecting semantics.

The verification method we take into account is based on over-approximations, this guar-
antees soundness and, with some assumptions, also decidability. In the chapter, we use the
terms specification and trace property interchangeably.

5.1 The Trace Properties Verification Process
The verification process for trace properties is quite straightforward. Setting the execution
denotations domain Den, everything we need lies in the domain ℘(Den), i.e. the base se-
mantics, the collecting semantics and trace properties are formalized as subsets of Den. In
fact, a trace property is modeled as the set of all executions satisfying it. We denote the set
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of all possible trace properties (over Den) as TRCP , ℘(Den). Then SP
base ∈ ℘(Den) is the base

semantics of P, chosen from the hierarchy of 4.1, and SP
coll = SP

base is its collecting semantics.
This latter is the strongest program trace property of P over Den.

Example 6. Suppose we are interested in invariance trace properties. Then TRCP , ℘(Σ),
where Σ is the set of all possible state denotations, of all programs. Then the base semantics
and the strongest program trace property of P (i.e. its collecting semantics) is exactly τR,
which the most precise invariant satisfied by P.

Examples of trace properties, for Den = Σ ~∞, are termination Term , Σ~+ and Evenx ,
{σ̄ ∈ Σ ~∞ | ∀i > 0 . (σ̄i = 〈 kk ,m〉 ∧ m(x) ∈ 2N)} (saying that variable x is always even after
initialization). Then we have that P satisfies a trace property P ∈ TRCP, as usual written
P |= P, if and only if SP

coll ⊆ P. Hence, by definition, P is fulfilled for a system P if and
only if P is fulfilled for each one of its executions, i.e. P |= P if and only if ∀σ̄ ∈ SP

coll . σ̄ ∈ P
(validation). This is quite useful because in order to disprove that a program fulfills a trace
property we just need one counterexample, i.e. P 6|= P if and only if ∃σ̄ ∈ SP

coll . σ̄ 6∈ P
(confutation). The program in Example 7 satisfies Evenx but not Term, since τ ~∞ ⊆ Evenx,
while τ ~∞ 6⊆ Term.

For practical uses, namely in order to implement a verification mechanism, it is not con-
venient to define the collecting semantics by means of transition systems. Usually, the col-
lecting semantics is defined inductively from programs syntax. A common choice is to
compute the collecting semantics with a denotational semantics (which is compositional by
nature), directly defined on the program’s code. This means to have a semantic operator
JPK ∈ ℘(Den) −→ ℘(Den), possibly involving fixpoint computations, such that JPKI = SP

coll,
for a given I ∈ ℘(Den). We will see an example for the maximal trace semantics in Subsec-
tion 5.1.1 and for the state semantics is Subsection 5.2.1.

Example 7. Consider the following program:

00 x := 4 11 11

if y = 1 then { 22 x := 2 ∗ y 33 }
else {

44 while 55 (tt) { 66 x := 6 77 } 88

} 99

Let us denote memories [x 7→n y 7→m] simply by [n m]. The maximal trace semantics τ ~∞
(of the program) and maximal relational semantics τ∞ (of the program) are:

τ ~∞= {〈 00 ,[n 1]〉〈 11 ,[4 1]〉〈 22 ,[4 1]〉〈 33 ,[2 1]〉〈 99 ,[2 1]〉 | n ∈ Z}∪

∪ {〈 00 ,[n m]〉〈 11 ,[4 m]〉〈 44 ,[4 m]〉〈 55 ,[4 m]〉〈 66 ,[4 m]〉〈 77 ,[6 m]〉〈 88 ,[6 m]〉σ̄ | n,m ∈ Z ∧m 6= 1}

where σ̄ ∈ Σ~ω is 〈 55 ,[6 m]〉〈 66 ,[6 m]〉〈 77 ,[6 m]〉〈 88 ,[6 m]〉〈 55 ,[6 m]〉〈 66 ,[6 m]〉〈 77 ,[6 m]〉〈 88 ,[6 m]〉 . . .

τ∞= {〈〈 00 ,[n 1]〉,〈 99 ,[2 1]〉〉 | n ∈ Z} ∪ {〈〈 00 ,[n m]〉,	〉 | n,m ∈ Z ∧m 6= 0}

Even if we suppose that the collecting semantics is definable starting from program
syntax, in general we cannot compute it. The key factor of static analysis is that it must
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terminate, at some point, and the collecting semantics does not guarantees this constraint.
Furthermore, the collecting semantics is computed over infinite mathematical objects (even
a specification P is, in general, infinite) so it is not even representable in a computer. We
need indeed approximations, in order to make the analysis feasible. Using the theory of
abstract interpretation we can define sound approximations of JPK and, in turn of SP

coll. Re-
calling Chapter 2, suppose we have an abstract domain 〈TRCP] ,⊆]〉 approximating concrete
trace properties, which forms, paired with 〈TRCP,⊆〉 the following Galois connection:

〈TRCP,⊆〉 −−→←−−α
γ
〈TRCP] ,⊆]〉

Remember that the Galois connection states the relative precision between abstract specifi-
cations, which preserves the relative precision of concrete specifications. Mathematically,
we have that P1 ⊆ P2 ⇒ α(P1) ⊆] α(P2) and P]

1 ⊆] P]

2 ⇒ γ(P]

1) ⊆ γ(P]

2). The goal
of the analysis is to derive an abstract collecting semantics SP

] ∈ TRCP] which is sound, i.e.
such that it approximates SP

coll. As we have seen, the collecting semantics is computed by a
semantics operator JPK ∈ TRCP −→ TRCP, potentially involving fixpoint computations. Hence,
suppose that SP

coll = JPKI , for a given I ∈ TRCP. Then, what we need is an abstract operator
JPK] ∈ TRCP] −→ TRCP] , such that, given I ] ∈ TRCP] satisfying the condition I ⊆ γ(I ]):

JPKI ⊆ γ(JPK]I ]) or, equivalently, α(JPKI) ⊆] JPK]I ]

Then the check γ(JPK]I ]) ⊆ P implies P |= P. Note that, in order to be effectively im-
plementable, the verification must be done totally in the abstract domain, using an under-
approximation of P. Formally, assuming γ(P]) ⊆ P, for a given abstract element P], the
check becomes: JPK]I ] ⊆] P] (which implies the verification due to monotonicity of γ).

If the collecting semantics is computed on a domain different than the approximation
domain (as happens for the maximal trace semantics), namely if the semantic operator is
not defined on 〈TRCP,⊆〉, we have a little extra work to do. Indeed, supposing that α is
additive also between 〈TRCP,≤〉, the computational domain, and 〈TRCP] ,⊆]〉, we have that its
left adjoint always exists. It can be defined as γ∗ , α− = λY ] .

∨
{X | α(X) ⊆] Y ]}1. Then

we have the Galois connection:

〈TRCP,≤〉 −−−→←−−−α
γ∗

〈TRCP] ,⊆]〉

Then we can reason as before. Given I ] ∈ TRCP] such that I ≤ γ∗(I ]):

JPKI ≤ γ∗(JPK]I ]) or, equivalently, α(JPKI) ⊆] JPK]I ]

Then the check γ(JPK]I ]) ⊆ P implies again P |= P, in fact:

γ(JPK]I ]) ⊆ P

⇓ ‖ reductivity of αγ∗and monotonicity of γ

γ(αγ∗(JPK]I ])) ⊆ γ(JPK]I ]) ⊆ P

⇓ ‖ soundness of JPK]w.r.t. γ∗and monotonicity of α,γ

γα(JPKI) ⊆ γ(αγ∗(JPK]I ])) ⊆ γ(JPK]I ]) ⊆ P

⇓ ‖ extensivity of γα

JPKI ⊆ γα(JPKI) ⊆ γ(αγ∗(JPK]I ])) ⊆ γ(JPK]I ]) ⊆ P

1Note that we can reason dually, supposing γ co-additive and defining α∗ , γ+ = λX .
⋂
]{Y ] | X v γ(Y ])}.
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The chosen abstract properties must be machine-representable and the (abstract) com-
putation of the abstract collecting semantics must terminate, namely the verification check
is decidable. Galois connection-based abstract interpretations are very useful, from the
point of view of analysis design. Indeed, as seen in Chapter 2, Galois connections com-
pose, namely we can always add an abstraction on top of another, and the result is a Galois
connection. Furthermore, Galois connections allow us to derive the abstract collecting se-
mantics from the concrete collecting semantics. In fact, the best correct approximation is
aways sound. If we have the concrete semantic operator JPK, then its best correct approxi-
mation JPKbca , α◦JPK◦γ is a correct approximation (also if JPK involves fixpoint computa-
tions). In general, even JPKbca is not computable. But it is useful, since it gives us some hints
on how to build the abstract semantics. In any case, once we have derived the abstract se-
mantics JPK], in order to prove soundness we just need to prove that it approximates JPKbca,
namely to prove that JPKbca ⊆̇] JPK].

Note that we do not always have a Galois connection, for instance in the case of the Poly-
hedra abstract domain, for numerical analyses. In these cases, we have to rely on weaker
forms of abstract interpretations, based on concretization functions or on abstraction func-
tions. We lose the ability to retrieve the best abstraction of a given concrete property and
we lose clearly the ability to retrieve the abstract semantics, by derivation, from the concrete
one, exploiting the best correct approximation (which, in general, does not exist). Never-
theless, we still have compositionality.

5.1.1 Computing the Maximal Trace Semantics

As already said, transition systems are very useful from a theoretical point of view but deal-
ing with them in practice is not amenable. So, in order to compute the collecting semantics
of interest, we resort to some semantic operators, defined directly on programs syntax. A
common approach is to compute the collecting semantics with a denotational semantics in-
ductively defined on the program’s code. This is not the only choice, we can use systems of
equations, rewriting systems, etc.

We adopt the denotational semantics approach and we show now how to compute the
collecting semantics over the denotations domain Σ ~∞, namely we show how to compute
the maximal trace semantics of programs.

Consider the semantic operator JPK ~∞ ∈ ℘(Σ ~∞) −→ ℘(Σ ~∞), computing maximal traces
backward, similarly to the general operator F ~∞ defined in Subsection 4.1.1. It is defined for
every P ∈ Imp as follow:

JPK ~∞∅ , ∅ J ii c1
ll kk c2

ff K ~∞X , J ii c1
ll K ~∞◦J kk c2

ff K ~∞X

J ii skip ff K ~∞X , {〈 ii ,m〉〈 ff ,m〉σ̄ | 〈 ff ,m〉σ̄ ∈ X ∧ σ̄ ∈ Σ ~∞
ε }

J ii x := a ff K ~∞X ,
{
〈 ii ,m〉〈 ff ,m[x← [ n]〉σ̄

∣∣∣∣ m ∈ Mem ∧ 〈a,m〉 ⇓Z n∧
〈 ff ,m[x← [ n]〉σ̄ ∈ X ∧ σ̄ ∈ Σ ~∞

ε

}
J ii if b then {P1 } else {P2 } ff K ~∞X ,{
〈 ii ,m〉〈 ll ,m〉σ̄

∣∣∣∣∣ 〈 ll ,m〉σ̄ ∈ JP1K ~∞{〈 kk , n〉〈 ff , n〉σ̄′ | 〈 ff , n〉σ̄ ∈ X ∧ σ̄′ ∈ Σ ~∞
ε }

∧ 〈b,m〉 ⇓B tt ∧ σ̄ ∈ Σ ~∞ ∧ P1 = ll c kk

}
∪
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∪

{
〈 ii ,m〉〈 ll ,m〉σ̄

∣∣∣∣∣ 〈 ll ,m〉σ̄ ∈ JP2K ~∞{〈 kk , n〉〈 ff , n〉σ̄′ | 〈 ff , n〉σ̄ ∈ X ∧ σ̄′ ∈ Σ ~∞
ε }

∧ 〈b,m〉 ⇓B ff ∧ σ̄ ∈ Σ ~∞ ∧ P2 = ll c kk

}
J ii while ll b {P } ff K ~∞X , {〈 ii ,m〉σ̄ | σ̄ ∈ lfpv

Σ~ω
F ~∞} where:

F ~∞(T ) ,

{
〈 ll ,m〉〈 kk ,m〉σ̄

∣∣∣∣∣ 〈 kk ,m〉σ̄ ∈ JPK ~∞{〈 tt , n〉σ̄′ | 〈 ll , n〉σ̄ ∈ T ∧ σ̄′ ∈ Σ ~∞
ε }

∧ 〈b,m〉 ⇓B tt ∧ σ̄ ∈ Σ ~∞ ∧ P = kk c tt

}
∪

∪
{
〈 ll ,m〉〈 ff ,m〉σ̄

∣∣∣ 〈 ff ,m〉σ̄ ∈ X ∧ 〈b,m〉 ⇓B ff ∧ σ̄ ∈ Σ ~∞
}

The function F ~∞ ∈ ℘(Σ ~∞) −→ ℘(Σ ~∞) is monotone on the CPO 〈℘(Σ ~∞),v,t,Σ~ω〉 (the one
defined for τ ~∞ in Subsection 4.1.1), hence its least fixpoint

⊔
n<ω F ~∞

n
(Σ~ω) exists. Indeed,

the maximal trace semantics τ ~∞ of P coincides with JPK ~∞F . Here F is the set {〈 ff ,m〉 | m ∈
MemP}, assuming P = ii c ff . Note that this operator computes the maximal traces seman-
tics without the traces not starting in an initial state, as pointed out at the end of Subsec-
tion 4.1.3. As already pointed out, this semantics is, in general, not implementable: in the
function F ~∞ we have that ω is a transfinite ordinal and hence it is not guaranteed that the
fixpoint is reached in finite time.

5.2 Invariants Verification
In this section, we will go deeper in the definition of a program analysis for trace properties,
based on abstract interpretation. The concepts introduced here are important, since we will
adapt them for the verification of hyperproperties in the next chapter. In the following
example, our focus is on invariance properties, sometimes called state properties, or simply
invariants. These latter are particular trace properties totally dispensing from the execution
history: they are predicates on the reachable states. In the (extended) hierarchy, they are
exactly defined in terms of the state semantics τR ⊆ Σ. Examples of invariance properties
are “there are no division-by-zero errors in the program” or “variable j is always within a
given range” (if j is an index of an array, it is important to check if it could generate array-
out-of-bound errors), etc. As for the maximal trace semantics, we need a way for expressing
this semantics recursively on program syntax.

5.2.1 Computing the State Semantics
Again we use a denotational semantics, in order to compute the state semantics. Consider
the semantic operator JPKR ∈ ℘(Σ) −→ ℘(Σ), computing the reachable states forward, simi-
larly to the general operator FR defined in Subsection 4.1.2. It is defined for every P ∈ Imp
as follow:

JPKR∅ , ∅ J ii c1
ll kk c2

ff KRX , X ∪ J kk c2
ff KR◦J ii c1

ll KRX

J ii skip ff KRX , X ∪ {〈 ff ,m〉 | 〈 ii ,m〉 ∈ X}

J ii x := a ff KRX , X ∪ {〈 ff ,m[x← [ n]〉 | 〈 ii ,m〉 ∧ 〈a,m〉 ⇓Z n}

J ii if b then {P1 } else {P2 } ff KRX , X ∪ Y1 ∪ Y2 ∪ {〈 ff ,m〉 | 〈 tt ,m〉 ∈ Y1 ∪ Y2} with:
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P1 = ll c kk P2 = hh c dd tt ∈ { kk , dd }
Y1 = JP1KR{〈 ll ,m〉 | 〈b,m〉 ⇓B tt ∧ 〈 ii ,m〉 ∈ X}
Y2 = JP2KR{〈 hh ,m〉 | 〈b,m〉 ⇓B ff ∧ 〈 ii ,m〉 ∈ X}

J ii while ll b {P } ff KRX , X ∪ lfp⊆∅ FR ∪ {〈 ff ,m〉 | 〈 ll ,m〉 ∈ lfp⊆∅ FR ∧ 〈b,m〉 ⇓B ff} with:
FR(T ) , {〈 ll ,m〉 | 〈 ii ,m〉 ∈ X} ∪ Y ∪ {〈 ll ,m〉 | 〈 tt ,m〉 ∈ Y } where:

P = kk c tt Y = JPKR{〈 kk ,m〉 | 〈b,m〉 ⇓B tt ∧ 〈 ll ,m〉 ∈ T}

The function FR ∈ ℘(Σ) −→ ℘(Σ) is monotone on the CPO 〈℘(Σ),⊆,∪,∅〉, hence its least
fixpoint

⋃
n<ω FR

n
(∅) exists. Indeed, the state semantics τR of P coincides with JPKRI .

Here I is the set {〈 ii ,m〉 | m ∈ MemP}, assuming P = ii c ff .
In static analysis, very often this semantics is computed in an alternative, yet isomorphic,

form. The state semantics can be isomorphically represented, exploiting the following Ga-
lois isomorphism:

〈℘(Σ),⊆〉 −−−→−→←←−−−−
α`

γ` 〈Lab −→ ℘(Mem), ⊆̇〉
α`(X) , λ ll . {m ∈ Mem | 〈 ll ,m〉 ∈ X} γ`(f) , {〈 ll ,m〉 ∈ Σ | m ∈ f( ll )}

We denote with τR` the state semantics τR` , α`(τ
R). This semantics associates a memory

invariant for every program control point. It could be computed inductively on programs
syntax. Usually it is defined either with a semantic operator JPKR` ∈ (Lab −→ ℘(Mem)) −→
(Lab −→ ℘(Mem)), similar to JPKR, or with a system of equations:(

x kk = Feq
kk

(x 00 , x 11 , . . . x kk , . . . x hh )
)

kk ∈LabP assuming LabP = { 00 , 11 , . . . , hh }

The least solution of the system of equations coincides with JPKR` α`(I) and, in turn, we
have that γ`(JPKR` α`(I)) is equal to JPKRI . Both this ways of computing the state semantics
have to represent in memory the invariant for every program control point, hence they are
computationally expensive. It is then a common practice to use a post-condition semantics
τ ∈ ℘(Mem), computing the invariant only of the last control point. This allows to reduce
the memory space used by the analyzer by a factor |LabP|, but clearly we loose the informa-
tion of the intermediate control points. This is an abstraction of the state semantics, through
the following Galois connection, parametric on the program P = ii c ff :

〈℘(Σ),⊆〉 −−−→←−−−
α ff

γ ff

〈℘(Mem),⊆〉
α ff , λX . {m | 〈 ff ,m〉 ∈ X} γ ff , λX . {〈 ff ,m〉 | m ∈ X} ∪ (LabP \ { ff })×MemP

Then we have that τ = α ff (τR). The semantics can be computed directly on programs
syntax by the operator JPK ∈ ℘(Mem) −→ ℘(Mem), defined for every P ∈ Imp as follow:

JPK ∅ , ∅ J ii c1
ll kk c2

ff K X , J kk c2
ff K ◦J ii c1

ll K X J ii skip ff K X , X

J ii x := a ff K X , {m[x←[ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n}

J ii if b then {P1 } else {P2 } ff K X , JP1K {m∈X | 〈b,m〉 ⇓B tt} ∪ JP2K {m∈X | 〈b,m〉 ⇓B ff}

J ii while ll b {P } ff K X , {m ∈ lfp⊆∅ F | 〈b,m〉 ⇓B ff}where:
F (T ) , X ∪ JPK {m ∈ T | 〈b,m〉 ⇓B tt}
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Again, F ∈ ℘(Mem) −→ ℘(Mem) is monotone on the CPO 〈℘(Mem),⊆,∪,∅〉, hence its least
fixpoint

⋃
n<ω F

n
(∅) exists. It is easy to note that for every program P = ii c ff we have

that JPK {m | 〈 ii ,m〉 ∈ τR} = {m | 〈 ff ,m〉 ∈ τR}. Basically this semantics, given a
pre-condition (on memories) outputs its strongest post-condition (on memories).

The post-condition semantics can be used to compute τR` . Indeed, if a program P =
ii c ff is not a sub-program (of another program), then τR` ( ii ) = MemP, by definition. If
a program P = ii c ff is contained in a bigger program, we have the following cases. If
the containing program is ll c1

kk P, then τR` ( ii ) = τR` ( kk ). If the containing program is
ll if b then {P } else {P2 } kk , then τR` ( ii ) = {m ∈ τR` ( ll ) | 〈b,m〉 ⇓B tt}. If the containing
program is ll if b then {P1 } else {P } kk , then τR` ( ii ) = {m ∈ τR` ( ll ) | 〈b,m〉 ⇓B ff}. Finally,
if the containing program is ll while tt b {P } kk , then τR` ( ii ) = {mτR` ( tt ) ∈ | 〈b,m〉 ⇓B tt}
where τR` ( tt ) = lfp⊆∅ F and F (T ) , τR` ( ll ) ∪ JPK {m ∈ T | 〈b,m〉 ⇓B tt}. In any case,
τR` ( ff ) = JPK τR` ( ii ).

5.2.2 Application: Non-Relational Numerical Analysis
Suppose we are interested in non-relational numerical invariants of variables. For instance,
suppose to be interested in verifying that a variable x is always inside a given range, i.e.
n ≤ m(x) ≤ m, given the numerical bounds n,m ∈ N. Numerical invariants are state
properties of memories, which have to hold for any program label2, hence the execution
denotations domain is Σ (recall that Σ = Lab × Mem). A state property is in ℘(Σ) and
indeed, inv[n,m]

x , {〈 ll ,m〉 | n ≤ m(x) ≤ m} is the property stated before.
In this case the strongest program property of P is the state semantics, τR. This latter is

computable with the semantic operator JPKR (the computational domain 〈℘(Σ),⊆,∪,∅〉 co-
incides with the approximation domain). In order to define the abstract collecting semantics
we proceed as follows.

First, we change the representation of sets of states, as done in the previous section.
Hence, α`(τR) is a map associating a set of memories to every program control point. In-
deed, α`(τR)( ll ) is the most precise (memories) invariant of the program, at label ll . We
could compute α`(τR) inductively on program’s syntax, with the semantic operator JPKR` .
This function can be derived by calculus, approximating the best correct approximation of
JPKR, namely the function α` ◦ JPKR ◦ γ`. We prefer to use an abstract post-conditions se-
mantics and compute the numerical invariant for each program control point as done at the
end of the previous subsection, but in the abstract.

In order to do so, we have to define a numerical abstract domain approximating℘(Mem).
Basically, we need to define a Galois connection (if possible)

〈℘(Mem),⊆〉 −−→←−−α
γ
〈A,4〉

whereA is computer-representable, the test a1 4 a2 is decidable and the (binary) join a1ga2

is computable3. For instance, consider the Intervals domain defined as follow.
2Note that one can define invariants sensitive to programs label. In that case the invariant is a state property of

program states (with labels).
3In reality, in order to define an implementable static analysis, we need other assumptions.
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Definition 27 (Intervals Domain). The domain of Intervals has as carrier set

Intv , {[a, b] | a ∈ Z ∪ {−∞} ∧ b ∈ Z ∪ {+∞} ∧ a ≤ b} ∪ [+∞,−∞]

Consider the usual ordering ≤ between integers, extended with the pairs in {〈−∞, n〉 | n ∈
Z} ∪ {〈n,+∞〉 | n ∈ Z} ∪ {〈−∞,−∞〉, 〈−∞,+∞〉, 〈+∞,+∞〉}. Then the relation vı⊆
Intv × Intv, defined as [a, b] vı [c, d] , (c ≤ a ∧ b ≤ d), is a partial order. The domain has
arbitrary least upper bounds and greatest lower bounds, defined as:⊔ı

{[ai, bi]}i∈∆ , [min{ai}i∈∆,max{bi}i∈∆]

lı
{[ai, bi]}i∈∆ ,

{
[+∞,−∞] if max {ai}i∈∆ ≤ min {bi}i∈∆

[max {ai}i∈∆,min {bi}i∈∆] otherwise

Where maxX = +∞ if and only if +∞ ∈ X , maxX = −∞ if and only if X = {−∞},
minX = −∞ if and only if −∞ ∈ X and minX = +∞ if and only if {+∞}. The domain
has a minimum [+∞,−∞], that we denote ⊥ı, and a maximum [−∞,+∞], that we denote
>ı. The domain is, indeed, a complete lattice.

Remark. The Intervals domain is a complete lattice but it is not ACC. For instance, the in-
creasing chain {[0, n] | n ∈ N} is infinite. This means that an analysis with the Intervals
domain may not terminate in finite time. In order to force convergence, this domain needs
an extrapolation operator, as explained in Chapter 2. For instance, a possible widening for
Intervals [Cousot and Cousot, 1976] is

[a, b] Oı [c, d] , [( a ≤ c? a :−∞ ), ( d ≤ b? b : +∞ )]

⊥ı Oı [a, b] , [a, b] [a, b] Oı ⊥ı , [a, b]

In the following, in order to keep things simple, we avoid the introduction of such an oper-
ator in the abstract semantics.

This domain composes the following Galois connection with ℘(Z), i.e. sets of values:

〈℘(Z),⊆〉 −−−→←−−−αı
γı 〈Intv,vı〉

αı(X) , (X 6= ∅? [minX,maxX] :⊥ı ) γı([a, b]) , {n ∈ Z | a ≤ n ≤ b}

Before to apply the Intervals abstraction we need an intermediate Non-Relational Abstrac-
tion (Section 2.3). This latter abstracts each variable independently, thus forgetting any re-
lation between variables. Let ˙Mem , Var −→ ℘(Z). We have the Galois insertion

〈℘(Mem),⊆〉 −−−−→−→←−−−−−
αnr

γnr 〈 ˙Mem, ⊆̇〉
αnr(X) , λx . {m(x) | m ∈ X} γnr(ṁ) , {m | ∀x ∈ Var .m(x) ∈ ṁ(x)}

Then we can extend the Intervals abstractions to memories. Applying the Pointwise
Construction introduced in Section 2.3, we have that 〈Memı, v̇ı, ṫı, u̇ı,mı

◦,m
ı
•〉 is a complete

lattice, where Memı , Var −→ Intv, mı
◦ , λx .⊥ı and mı

• , λx .>ı. Applying the Pointwise
Abstraction introduced in Section 2.3, we have the following Galois connection:

〈 ˙Mem, ⊆̇〉 −−−→←−−−
α̇ı

γ̇ı 〈Memı, v̇ı〉 α̇ı(ṁ) , λx . αı ◦ ṁ(x) γ̇ı(mı) , λx . γı ◦mı(x)
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Finally, by composition, we have the Galois connection (℘(Mem), αm
ı , γ

m
ı ,Memı), where

αm
ı , α̇ı ◦ αnr and γmı , γnr ◦ γ̇ı. Hence 〈Memı, v̇ı, ṫı, u̇ı,mı

◦,m
ı
•〉 is the abstract domain

of computation, where we define the abstract post-conditions semantics JPKı ∈ Memı −→
Memı. As before, we can derive this function by calculus, approximating the best correct
approximation of JPK , namely the function αm

ı ◦ JPK ◦ γmı .

5.2.2.1 The Abstract Semantics for Intervals

The abstract semantics for Intervals needs two auxiliary functions. First, an abstract non-
relational semantics for arithmetic expressions JaKı ∈ Memı −→ Intv (Figure 5.2), used
for approximating the concrete semantics of assignments. Second, an abstract semantics
for boolean expressions JbKı ∈ Memı −→ Memı, used for approximating the set {m ∈
X | 〈b,m〉 ⇓B tt}, for a given X ⊆ Mem. Defining a precise semantics for boolean ex-
pressions could be quite complex, so we settle for a very simple definition. Furthermore,
we assume that all negations ¬ have been removed using DeMorgan’s laws and usual arith-
metic laws: ¬(b1 ∨ b2) ≡ (¬b1) ∧ (¬b2), ¬(a1 ≤ a2) ≡ (a2 ≤ a1), etc. This allows us to give
the semantics only for the base cases a1 on a2, where on∈ {=, 6=, <,≤}. We can note that
the set {m ∈ X | 〈b,m〉 ⇓B tt} is always a subset of the set X . This means that the identity
function is always sound, namely JbKı mı , mı is a safe, but coarse, choice. We resort to the
identity only in some cases, in order to decrease imprecision. In particular, we define:

let mı(x) = [a, b],mı(y) = [c, d] in
Jx ≤ nKı , ( a ≤ n? mı[x← [ [a,min {b, n}] : mı

◦ )

Jx ≤ yKı , ( a ≤ d? mı[x←[ [a,min {b, d}] y← [ [max {a, c}, d]] : mı
◦ )

For all other cases of the form a1 on a2 we approximate with the identity function. Finally,
for the following cases we can define easily a better abstraction than identity:

JttKı mı , mı JffKı mı , mı
◦ J(b)Kı mı , JbKı mı

Jb1 ∧ b2Kı mı , Jb1Kı mı u̇ı Jb2Kı mı Jb1 ∨ b2Kı mı , Jb1Kı mı ṫı Jb2Kı mı

Remark. To define a precise abstract non-relational semantics for boolean expressions, a
common solution is to use a backward abstract semantics for arithmetic expressions BJaKı ∈
Memı −→ (Intv −→ Memı). The meaning of BJaKı (mı)([a, b]) = nı is that nı is the most abstract
memory less than, or equal to, mı such that JaKı nı = [a, b].

Now we are ready to define the abstract post-conditions semantics JPKı for intervals.
It is derived by calculus from JPK , meaning that the soundness proof (in Appendix A)
is constructive: the derivation of the proof gives us the definition of the abstract seman-
tics. The semantics can be computed directly on program syntax by the semantics operator
JPKı ∈ Memı −→ Memı, defined for every P ∈ Imp as follow:

JPKı mı
◦ , mı

◦ J ii skip ff Kı mı , mı J ii x := a ff Kı mı , mı[x← [ JaKı mı]

J ii c1
ll kk c2

ff Kı mı , J kk c2
ff Kı ◦J ii c1

ll Kı mı

J ii if b then {P1 } else {P2 } ff Kı mı , JP1Kı ◦ JbKı mı ṫı JP2Kı ◦ J¬bKı mı

J ii while ll b {P } ff K mı , J¬bKı
(
lfpv̇

ı

mı◦
Fı
)

where: Fı (nı) , mı ṫı JPKı JbKı nı
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Arithmetic expressions: JaKı ∈ Memı −→ Intv

JnKı mı , [n, n] JxKı mı , mı(x)

Ja1 + a2Kı mı , Ja1Kı mı +ı Ja2Kı mı Ja1 − a2Kı mı , Ja1Kı mı −ı Ja2Kı mı

Ja1 ∗ a2Kı mı , Ja1Kı mı ∗ı Ja2Kı mı J(a)Kı mı , JaKı mı

where abstract arithmetic operators ⊕ı ∈ Intv × Intv −→ Intv, with ⊕ ∈ {+,−, ∗}, are:

[a, b] +ı [c, d] , [a+ c, b+ d] [a, b] −ı [c, d] , [a− d, b− c]

[a, b] ∗ı [c, d] , [min {ac, ad, bc, bd},max {ac, ad, bc, bd}]

Figure 5.2: Abstract Intervals semantics for arithmetic expressions.

The operator Fı is monotone on the CPO 〈Memı, v̇ı, ṫı,mı
◦〉, so its least fixpoint

⊔̇ı
n<ωFı

n
(mı
◦)

exists. Furthermore, we have that the abstract semantics is correct.

Theorem 16. The abstract post-conditions semantics for Intervals is a sound approximation of the
post-conditions semantics, namely:

JPK γmı (mı) ⊆ γmı JPKı mı or, equivalently, αm
ı JPK X v̇ı JPKı α

m
ı (X)

for every P ∈ Imp, mı ∈ Memı and X ∈ ℘(Σ).

Proof (Sketch). We need to prove that JPKı approximates the best correct approximation of
JPK , namely that for every mı ∈ Memı we have αm

ı JPK γmı (mı) v̇ı JPKı mı. The proof is
by structural induction on P and it relies on the soundness of the abstract semantics for
arithmetic and boolean expressions. The first requires {n | ∃m ∈ γmı (mı) . 〈a,m〉 ⇓Z n} ⊆
γıJaKı mı, while the second requires {m | m ∈ γmı (mı) ∧ 〈b,m〉 ⇓B tt} ⊆ γıJbKı mı. As an
example, we show the derivation for the base case of the assignment statement.

αm
ı J ii x := a ff K γmı (mı)

= ‖ definition of J·K

αm
ı ({m[x← [ n] | m ∈ γmı (mı) ∧ 〈a,m〉 ⇓Z n})

= ‖αm
ı =α̇ı◦αnr and definition of αnr

α̇ı ◦ (λy . {m(y) | m ∈ {m[x←[ n] | m ∈ γmı (mı) ∧ 〈a,m〉 ⇓Z n}})
=

α̇ı ◦ (λy . ( y = x ? {n | ∃m ∈ γmı (mı) . 〈a,m〉 ⇓Z n} : {m(y) | m ∈ γmı (mı)} ))

v̇ı ‖ soundness of JaKı

α̇ı ◦ (λy . ( y = x ? γıJaKı mı : {m(y) | m ∈ γmı (mı)} ))

= ‖ definition of α̇ı

λy . ( y = x ?αıγıJaKı mı :αı({m(y) | m ∈ γmı (mı)}) )

= ‖ definition of γm
ı

λy . ( y = x ?αıγıJaKı mı :αıγı(mı(y)) )
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v̇ı ‖ reductivity of αıγı

λy . ( y = x ? JaKı mı : mı(y) )

=

mı[x←[ JaKı mı]

= ‖ definition of J·Kı

J ii x := a ff Kı mı

It is easy to note that for every program P = ii c ff we have that αm
ı ({m | 〈 ff ,m〉 ∈

τR}) v̇ı JPKı αm
ı ({m | 〈 ii ,m〉 ∈ τR}). Basically this semantics, given an abstract pre-

condition (on memories) outputs a correct approximation of the abstract strongest post-
condition (on memories).

Similarly to the concrete case, the abstract post-conditions semantics can be used to com-
pute τ ı` ∈ Lab −→ Memı, which is a sound approximation of τR` . Indeed, if a program
P = ii c ff is not a sub-program (of another program), then τ ı` ( ii ) = αm

ı (Mem) = mı
•, by

definition. If a program P = ii c ff is contained in a bigger program, we have the follow-
ing cases. If the containing program is ll c1

kk P, then τ ı` ( ii ) = τ ı` ( kk ). If the containing
program is ll if b then {P } else {P2 } kk , then τ ı` ( ii ) = JbKı τ ı` ( ll ). If the containing pro-
gram is ll if b then {P1 } else {P } kk , then τ ı` ( ii ) = J¬bKı τ ı` ( ll ). Finally, if the contain-
ing program is ll while tt b {P } kk , then τ ı` ( ii ) = JbKı τ ı` ( tt ) where τ ı` ( tt ) = lfpv̇

ı

mı◦
Fı and

Fı (nı) , τ ı` ( ll ) ṫı JPKı JbKı nı. In any case, τ ı` ( ff ) = JPKı τ ı` ( ii ).

Theorem 17. For each control point kk ∈ Lab, the abstract state semantics τ ı` is sound w.r.t. the
state semantics τR` , namely:

τR` ( kk ) ⊆ γmı ◦ τ ı` ( kk ) or, equivalently αm
ı ◦ τR` ( kk ) v̇ı τ ı` ( kk )

Proof. The proof follows trivially from the soundness of the abstract post-conditions seman-
tics (Theorem 16) and from the definition of τR` and τ ı` .

5.2.2.2 The Verification

With a sound abstract semantics we can approximate the verification check τR ⊆ inv
[n,m]
x in

the abstract domain of Intervals. By isomorphism, we have that the latter check is equivalent
to the following: α`(τR) = τR` ⊆̇ α`(inv

[n,m]
x ). This means that the property is satisfied if

and only if for every kk ∈ Lab we have that τR` ( kk ) ⊆ {m ∈ Mem | n ≤ m(x) ≤ m}. An
under-approximation of {m ∈ Mem | n ≤ m(x) ≤ m} in Memı is the abstract memory
pı , λy . ( y = x ? [n,m] : mı

• ) (indeed, αm
ı ({m ∈ Mem | n ≤ m(x) ≤ m}) is exactly pı). Hence

we can verify the property in the abstract, as stated by the following proposition.

Proposition 2. If for every kk ∈ Lab we have that τ ı` ( kk ) v̇ı pı, then τR ⊆ inv
[n,m]
x holds.
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Proof. We have that τR ⊆ inv
[n,m]
x if and only if for every kk ∈ Lab it holds τR` ( kk ) ⊆ {m ∈

Mem | n ≤ m(x) ≤ m}. Then the proof is given by the following implications.

τ ı` ( kk ) v̇ı pı

⇓ ‖γm
ı (pı)⊆{m∈Mem | n≤m(x)≤m} and monotonicity of γm

ı

γmı (τ ı` ( kk )) ⊆ γmı (pı) ⊆ {m ∈ Mem | n ≤ m(x) ≤ m}
⇓ ‖ soundness of τ ı` (Theorem 17)

τR` ( kk ) ⊆ γmı (τ ı` ( kk )) ⊆ γmı (pı) ⊆ {m ∈ Mem | n ≤ m(x) ≤ m}

As expected we lose completeness, indeed if ∀ kk ∈ Lab . τ ı` ( kk ) v̇ı pı holds then we have
that the program satisfies inv[n,m]

x , but if it does not hold we cannot say anything about the
verification.
Remark. Note that the proposed abstract semantics does not guarantee termination, since
Intervals is not ACC. To enforce termination we need to insert a widening operator into the
semantics of conditional commands.
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Hyper Program Analysis
6

The previous chapter was meant to introduce program verification by abstract interpre-
tation, using trace properties as an example. Now we deal with the general case, where

specifications are modeled as hyperproperties. Again, our systems are computer programs
and, given a specification formalized as a hyperproperty, we want to check whether a pro-
gram satisfies the specification or not.

6.1 Hyper Static Analysis
Similarly to what was done in the previous chapter, we need to fix some key concepts. As
it happens for trace properties, we have to choose the standard semantics, which is the most
precise representation of the behavior of a program. We use as standard semantics the
transition system 〈ΣP,ΥP,ΩP, τP〉 associated to the program P (in turn generated by the
SOS of Imp). Again, this is not a mandatory choice. Second, we have the collecting semantics,
which is the most precise specification that the program satisfies. Since, in this chapter, we
are interested in hyperproperties, the collecting semantics should be a set of sets of execution
denotations, so it is different from the base semantic SP

base of the P (i.e. the interpretation of P
in the execution denotations domain). Indeed, we cannot use the semantics in the hierarchy
as they are, we need some extra work in order to define the collecting semantics.

Third, we need the abstract collecting semantics, which is an approximation of the collect-
ing semantics, describing only the computable information we can model about a program
behaviors. Again, the collecting semantics is, in general, not computable, hence we seek a
(decidable) approximation, usually losing completeness.

6.1.1 The Hyperproperties Verification Issue
Setting the execution denotations domain Den, then programs representations, i.e. the base
semantics, and hyperproperties lie in different domains, the first are in ℘(Den), whilst the
latter are in ℘(℘(Den)). In fact, a hyperproperty is modeled as the set of all programs (repre-
sentations) satisfying it. Suppose that SP

base is an element of the hierarchy of 4.1, correspond-
ing to the execution denotations domain Den. Then the collecting semantics is SP

coll , {SP
base},

which is indeed the strongest program hyperproperty of P. The set of all possible hyper-
properties is GENH , ℘(℘(Den)). Then we have that P satisfies a hyperproperty Hp ∈ GENH,
as usual written P |= Hp, if and only if SP

coll ⊆ P or, equivalently, if and only if SP
base ∈ Hp.

Remark. This is exactly the definition of system interpretations, system specifications and
systems strongest specification, as introduced in Chapter 3. Indeed, hyperproperties are
(mathematical) properties of programs, in the more general sense.
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⊆
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O ⊇ {SPbase}
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Figure 6.1: Over-approximation of trace properties A and hyperproperties B

An example of a (generic) hyperproperty for Den = Σ ~∞ is generalized non-interference
GNI , {X ⊆ Den | ∀σ̄, σ̄′ ∈ X ∃σ̄i ∈ X . (σ̄i` =H σ̄` ∧ σ̄i ≈L σ̄

′)} [Clarkson and Schneider,
2010], stating that, for each pair σ̄, σ̄′ of executions there exists an interleaving one σ̄i which
agrees with σ̄ on private variables (H) in input (`) and with σ̄′ on public variables (L)1. The
program in Example 7 (Chapter 5) does not satisfy GNI, since {τ ~∞} 6⊆ GNI.

In the classic static analysis framework, since SP
coll = SP

base, we can compute a sound over-
approximation O ⊇ SP

base of the base semantics allowing sound verification of trace proper-
ties (Figure 6.1, part A ). This is obtained by means of an abstraction of the concrete domain
TRCP, where the abstract (base) semantics plays the role of the over-approximation. Let P be
a program, TRCP] an abstract domain of TRCP, P ∈ TRCP a trace property and SP

] an abstract
interpretation of SP

base in TRCP] , i.e. SP
base ⊆ γ(SP

] ), then:

〈TRCP,⊆〉 −−→←−−α
γ
〈TRCP] ,⊆]〉 and γ(SP

] ) ⊆ P implies P |= P

Recall that, by under-approximation we can improve decidability of the confutation of a
trace property, since if U ⊆ SP

base and U 6⊆ P then we have that SP
base 6|= P. At this point,

we can note, as expected, that trace hyperproperties can be verified in the classic analysis
framework based on abstract interpretation:

〈TRCP,⊆〉 −−→←−−α
γ
〈TRCP] ,⊆]〉 and γ(SP

] ) ⊆
⋃

tHp implies P |= tHp

Hence, we can still use classic methods based on over-approximation for verifying trace
hyperproperties. Moreover, when dealing with confutation of specifications, also in this
case we can use under-approximations in the usual way, since if we have U ⊆ SP

base and
U 6⊆

⋃
tHp then still we can derive that P 6|= tHp.

Unfortunately, when we do not have restrictions on hyperproperties, the base semantics,
in general, does not provide enough information for approximating verification, since O ⊇
SP

base ∧ O ∈ Hp 6⇒ SP
base ∈ Hp (Figure 6.1, part B on the left). Over-approximations do

not work properly because we are approximating on the wrong domain or, better, we are
approximating the wrong object. Indeed, if we move towards GENH, thenO ⊇ {SP

base} ∧ O ⊆
Hp ⇒ {SP

base} ⊆ Hp, i.e. SP
base ∈ Hp (Figure 6.1, part B on the right). The problem is due

to the fact that the specification is defined on the domain GENH, different from the domain
1Here =H is an equivalence on states while ≈L is on traces.
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TRCP, where the base semantics is computed. The solution is clearly to approximate the
collecting semantics. In this way, we can exploit the abstract interpretation framework even
for approximating hyperproperties verification. Hence, our goal is to define a program P
semantics on the hyperlevel, similar to what has been done in [Assaf et al., 2017], i.e. we
define the hypersemantics SP

coll such that SP
coll = {SP

base}.
An over-approximation of SP

coll clearly leads to a sound verification mechanism for hy-
perproperties. In fact, let P be a program, GENH] be an abstract domain of GENH, Hp ∈ GENH be
a hyperproperty and SP

] be an abstract interpretation of SP
coll in GENH] , i.e. SP

coll ⊆ γH(SP
] ), then:

〈GENH,⊆〉 −−−→←−−−
αH

γH

〈GENH] ,v]〉 and γH(SP
] ) ⊆ Hp imply P |= Hp

Hence, we build a hypersemantics of the program, and then we can over-approximate it in
some abstraction of the domain GENH. This is depicted in Figure 6.2, where in A we have the
classic case and in B the hyper case.

Now we can use abstract interpretation in order to compute sound over-approximations
of the collecting semantics. The problem here is that {SP

base} is hard to define in such a way
that it could fit in the abstract interpretation framework, namely in a constructive way (as
defined in Chapter 2). Classic verification methods for trace properties rely on the fact that
base and collecting semantics coincide. Hence, the fact that we are able, by definition, to
compute the base semantics implies that we are able to compute the collecting semantics as
well. This does not hold for hyperproperties verification. In this case, there is a further layer
of complexity, other than the one of making the computation feasible (i.e. the verification
check decidable). So the first problem is to define the concrete semantics, which will be
abstracted in the approximation phase. Indeed, we can follow different approaches.

The first one, which is the more intuitive, but also the more complicated to follow, is to
try and apply the abstract interpretation “as it is”. This means to find a way to compute SP

coll,
defining this latter on a suitable computational domain. Then we can abstract it as shown
in Chapter 2, in order to make the verification check feasible.

Another approach is to define a hypersemanticsHP, computing at the level of sets of sets
which is not the collecting semantics. In this approach we can follow two paths. The first
is general, and it requires that the hypersemantics is correct, namely that it is an approxi-
mation of the collecting semantics. Formally, SP

coll ⊆ HP. Ideally, we should adapt the base
semantics, lifting its semantic operator to sets of sets. The second is specifications-centric,
and it requires that the hypersemantics is equisatisfying to the collecting semantics, w.r.t. a
given set of specifications. Given a set of hyperproperties {Hpi}i∈∆ ⊆ GENH, we say thatHP

A

abstraction verification of
P ∈ TRCP

〈TRCP,⊆〉

−−→
←
−−α γ

〈TRCP] ,⊆]〉

B

concretization

abstraction

verification of
Hp ∈ GENH

〈TRCP,⊆〉

−−−
−→−→←−−
−−−
α?

γ?

〈GENH,⊆〉
−−−−−−→
←−−−−−−αH

γ H

〈GENH] ,⊆]〉

Figure 6.2: Verification (abstract interpretation) of properties A and hyperproperties B
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is {Hpi}i∈∆ equisatisfying to SP
coll when: ∀i ∈ ∆ .SP

coll ⊆ Hpi ⇔ HP ⊆ Hpi. Then, again, we
can abstract the hypersemantics as shown in Chapter 2, in order to make the verification
check feasible.

Finally, as a last resort, we can use the base semantics, setting again SP
coll = SP

base as for
trace properties, and verify a stronger trace property. Given a hyperproperty Hp, a stronger
trace property is P ∈ TRCP such ℘(P) ⊆ Hp, namely the trace hyperproperty correspond-
ing to P implies Hp. Clearly this method works only for the verification of subset-closed
hyperproperties.

In this chapter we reason about these approaches, in order to distill pros and cons of
each one. In Subsection 6.1.2 we inspect the case of a stronger trace property and in Subsec-
tion 6.1.3 the case of an equisatisfying hyperproperty. Finally, in Subsection 6.1.4, we deal
with correct hypersemantics. Note that, SP

coll is a correct hypersemantics, so we present the
case of computing exactly the collecting semantics as a particular case of correct hyperse-
mantics.

6.1.2 Stronger Trace Property
As sketched just before, we wonder whether we can use classic verification methods for, at
least, a subset of hyperproperties. Recall that a trace hyperproperty tHp ∈ TRCH (see Chap-
ter 4.2) is such that ℘(

⋃
tHp) = tHp. The verification of trace hyperproperties is simplified

as follows:

P |= tHp ∈ TRCH ⇔ {{σ̄} | σ̄ ∈ SP

base} ⊆ tHp ⇔ ∀σ̄ ∈ SP

base . {σ̄} ∈ tHp

This means that, exactly as it happens for trace properties, we can check this kind of hyper-
properties on single executions: if we find at least one execution not satisfying the hyper-
property, then the program does not satisfy it. The hyperproperties we can verify, precisely,
with the base semantics are all and only the trace hyperproperties, as stated by the following
proposition.

Proposition 3. For every hyperproperty Hp:

Hp ∈ TRCH ⇔ ∃P ∈ TRCP ∀P . (P |= P⇔ P |= Hp)

Proof. Trivial, since trace properties TRCP and trace hyperproperties TRCH are isomorphic
(see Chapter 4.2).

For instance, EvenxH , ℘(Evenx) is the trace hyperproperty equivalent to trace property
Evenx of Chapter 5. We can further generalize this restriction, allowing us to preserve the
possibility of verifying hyperproperties on base semantics at least for confutation. It should
be clear that, in the general case, we have to compute the whole semantics SP

base in order to
confute the hyperproperty. However, it is worth noting that there is a particular kind of
hyperproperties that generalizes hypersafety and whose verification test can be simplified.
These are subset-closed hyperproperties (introduced in Section 4.2). Recall that a subset-
closed hyperproperty cHp ∈ SSCH is such that if X ∈ cHp then ∀Y ⊆ X .Y ∈ cHp.

All trace hyperproperties are subset-closed but not vice-versa (one example is observa-
tional determinism [Zdancewic and Myers, 2003], which is subset-closed but not a trace
hyperproperty). In particular, a subset-closed hyperproperty cHp is also a trace hyperprop-
erty if, in addition, it holds: X ⊆ cHp ⇒

⋃
X ∈ cHp. It turns out that lots of interesting
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hyperproperties are subset-closed, e.g. all hypersafety and some hyperliveness. In this case,
validation becomes:

P |= cHp ∈ SSCH ⇔ ℘(SP

base) ⊆ cHp ⇔ ∀X ⊆ SP

base . X ∈ cHp

As observed in Section 4.2, ℘(SP
base) is the strongest subset-closed hyperproperty of P, which

is an approximation of the collecting semantics, through the abstraction ρS = λX . {Y ⊆
X | X ∈ X} of Chapter 4.2. It is clear that this does not change the validation of cHp, but it
may in general simplify the confutation, since we do not need the whole semantics SP

base: it is
sufficient to find aX ⊆ SP

base such thatX 6∈ cHp in order to imply SP
coll 6⊆ cHp. A subset-closed

hyperproperty for Den = Σ∞ which is not a trace hyperproperty is termination insensitive
non-interference TINI , {X ⊆ Den | ∀σ̄, σ̄′ ∈ X . σ̄` =L σ̄

′
` ⇒ (σ̄a =	 ∨σ̄′a =	 ∨σ̄a =L σ̄

′
a)}

[Clarkson and Schneider, 2010], stating that, each pair of executions agreeing on public
variables (L) in input (`), must terminate agreeing on public variables in output (a). The
program in Example 7, with typing Γ(x) = L,Γ(y) = H, satisfies TINI since all terminating
traces provide the same value for x, i.e. τ∞ ∈ TINI. In [Clarkson and Schneider, 2010], the
authors proved that TINI is 2-hypersafety, hence it is subset-closed, and, conversely, they
proved that GNI is not subset-closed.

Finally, recall that subset-closed hyperproperties can be seen as unions of trace hyper-
properties (Section 4.2), namely any cHp ∈ SSCH can be characterized as cHp =

⋃
i∈∆ tHpi.

This implies that, in order to validate cHp on the base semantics it is sufficient to validate just
one of these tHpi. In fact, if P |= tHpi, i.e. SP

base ∈ tHpi, then SP
base ∈ cHp and hence P |= cHp.

6.1.3 Equisatisfying Hyperproperty
Since, as we will se in a moment, the collecting semantics is hard to define in a construc-
tive way, we may use an equisatisfying hypersemantics, easier to define. This latter is spe-
cific to the hyperproperties we want to verify, hence we lose generality. Given a set of hy-
perproperties {Hpi}i∈∆ ⊆ GENH, we say that HP is {Hpi}i∈∆ equisatisfying to SP

coll when:
∀i ∈ ∆ .SP

coll ⊆ Hpi ⇔ HP ⊆ Hpi. The intuition here is that defining a hypersemantics which
works for every hyperproperty is hard. Instead, defining a hypersemantics driven by the
particular hyperproperties we want to verify is easier, clearly losing the capability to verify
other hyperproperties.
Remark. Note that an equisatisfying hypersemantics is a slightly different concept compared
to a collecting semantics. Both are complete verification methods for a particular set of
specifications but the second implies that the set of specifications is an abstraction of GENH
while the first does not.

As the limit case, we have that the set of specifications is a singleton, meaning that the
hypersemantics can be used only for verifying one hyperproperty. In this latter case, we fix
the hyperproperty we want to verify to a given Hp ∈ GENH. Suppose to have a hyperseman-
ticsHP which is {Hp} equisatisfying, namely, such that:

HP ⊆ Hp⇔ SP

coll ⊆ Hp (6.1)

The hypersemantics must be related to the base semantics in some way, so suppose we
have an abstraction function αH ∈ TRCP −→ GENH, such that HP = αH(SP

base). Suppose
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now that the base semantics is computed by means of the computational fixpoint defini-
tion 〈F,O,⊥〉, where O = 〈TRCP,v,t〉, i.e. SP

base = lfpv⊥ F and the hypersemantics by means
of 〈FH,OH,⊥H〉, where OH = 〈GENH,vH,tH〉, i.e. HP = lfpv

H

⊥H
FH. Suppose that αH, F

and FH satisfy the condition of the Kleenian Fixpoint Transfer theorem 6. Then we have
HP = lfpv

H

⊥H
FH = αH(lfpv⊥ F ) = αH(SP

base). The abstraction αH is justified by the fact that
the hypersematics definition is guided by αH. All information for the verification process is
contained in SP

base, the problem is how this information is represented in the base semantics.
The abstraction highlights the relations between traces needed for the verification of Hp.
This could not be done approximating a semantics at the level of sets, but could be done
approximating a semantics at the level of sets of sets. An example of this approach could
be found in [Urban and Müller, 2018], where αH is defined by partitioning the execution
denotations domain Den. Instead, in Chapter 7 we will define a hypersemantics equisatis-
fying w.r.t. particular kinds of subset-closed hyperproperties, simplifying the verification
process.
Remark. Here, the abstraction function is on the computational domains, not on the approxi-
mation domain. Indeed, the only correctness criterion (on the approximation order) needed
is the one of Equation 6.1.

Then, as usual, we can define an abstract hypersemanticsHP
] , approximatingHP, which

is effectively computable. This is done applying the abstract interpretation framework where
the concrete semantics is HP. Indeed, a sound over-approximation of this latter could be
safely used for verifying Hp, namely:

γ(HP

]) ⊆ Hp⇒ SP

coll ⊆ Hp

Example 8. In [Urban and Müller, 2018], the authors define the hyperproperty called input
data usage expressing the fact that the outcome of a program does not depend on part of
its input data. For a program P we can identify two sets of variablesOP and IP identifying
input and output data, respectively. Given a trace σ̄ ∈ Σ ~∞ we denote, as usual, with σ̄` its
initial state and with σ̄a its final state. If σ̄ is infinite then σ̄a =	. The input variables at
the initial states store the values of a program input data and the output variables at the
final states store the values of a program outcome. Following [Urban and Müller, 2018],
we denote with σ(i) the value of the input data stored in the input variable i in the state σ.
Similarly, we denote with σ(o) the value of the outcome stored in the output variable o in
the state σ. The relation 6≈i⊆ Σ×Σ denotes the fact that two states disagree on the value of
the input variable i but agree on the values of all others variables. An input variable i ∈ IP
is unused w.r.t. a program with maximal trace semantics τ ~∞ when:

unusedi(τ ~∞) ,

(
∀σ̄ ∈ τ ~∞, n ∈ Z . σ̄`(i) 6= n⇒
∃σ̄′ ∈ τ ~∞ . σ̄′` 6≈i σ` ∧ σ̄′`(i) = n ∧ σ̄a = σ̄′a

)
(6.2)

This basically means that the outcome of the program does not depend on the initial value
of the input variable i. The input data usage hyperpropertyN can be formally defined as:

IDU , {τ ~∞ ⊆ Σ ~∞ | ∀i ∈ IP .unusedi(τ ~∞)}

IDU expresses the fact that the outcome of a program does not depend on any input data.
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In practice, weaker forms of input data usage hyperproperties could be useful, namely
restricting the check to subsets J ⊆ IP of input variables, namely IDUJ , {τ ~∞ ∈ Σ ~∞ | ∀i ∈
J .unusedi(τ ~∞)}.

In order to verify this hyperproperty with abstract interpretation, in [Urban and Müller,
2018] the authors define a hypersemantics, called outcome semantics, serving as concrete se-
mantics. They derive this semantics abstracting the maximal trace semantics by partition-
ing. Given a partition Q ∈ ℘(℘(Σ ~∞)) of programs traces, the abstraction αQ ∈ ℘(Σ ~∞) −→
℘(℘(Σ ~∞)) is defined as αQ(X) , {X ∩ Y | Y ∈ Q}. In particular, they define the outcome
partition O, parametric in a set of output variables o1, o2, . . . om, as:

O ,
{
{σ̄ ∈ Σ

~+ | ∀k ∈ [0,m] . σ̄a(ok) = vk}
∣∣ v1, v2, . . . vk ∈ Z

}
∪ {Σ~ω}

The partition contains all sets of finite traces that agree on the values of the output variables
in their outcome, and all infinite traces. Then, the outcome abstraction is:

α• , λX .
{
{σ̄ ∈ X ~+ | ∀k ∈ [0,m] . σ̄a(ok) = vk}

∣∣ v1, v2, . . . vk ∈ Z
}
∪ {X~ω}

Finally, the outcome semantics is obtained as abstraction of the maximal trace semantics:
τ • = α•(τ

~∞) ∈ ℘(℘(Σ ~∞)). The authors show also how to compute this semantics in a
constructive way, with a suitable computational fixpoint definition (see [Urban and Müller,
2018] for the details). This latter semantics computes at the level of sets of sets and it is
proven to be complete w.r.t. the input data usage hyperproperty: P |= IDUJ ⇔ τ • ⊆ IDUJ .

Hence, the outcome semantics is an example of an equisatisfying hypersemantics w.r.t.
{IDUJ}: it could be used to verify (precisely) IDU but it cannot be used for other hyper-
properties.

6.1.4 Correct Hypersemantics

A correct hypersemantics2 HP is such that {SP
base} ⊆ HP ⊆ ℘(SP

base), meaning that it can be
used for hyperproperties verification, but it is not guaranteed to be complete. Indeed, if
{SP

base} ( HP we lose completeness in the verification of generic hyperproperties. Still, we
have completeness for subset-closed hyperproperties, since HP ⊆ ℘(SP

base). In the following
we will show how to compute a correct hypersemantics HP = {SP

base} or HP = ℘(SP
base). We

will see an example of a correct hypersemantics different from these two in Chapter 7.
Remark. WhenHP = {SP

base}, it means that we are computing exactly the collecting semantics
of P in GENH. Analogously, whenHP = ℘(SP

base), it means that we are computing the collecting
semantics of P in SSCH.

6.1.4.1 Subset-closed and Generic Hypersemantics

Given a program P, we denote withHP
G

its generic (correct) hypersemantics, i.e.HP
G
, SP

coll =
{SP

base}, which is its strongest generic hyperproperty. Analogously, we denote with HP
S

its
subset-closed (correct) hypersemantics, i.e. HP

S
, ρS(SP

coll) = ℘(SP
base)

3, which is its strongest
subset-closed hyperproperty.

2An example of this kind of hypersemantics was first spelled out in [Assaf et al., 2017].
3Recall that ρS = λX . {Y ⊆ X | X ∈ X} is the upper closure operator defined in Subsection 4.2.3.
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It is worth nothing that, HP
S

and HP
G

do not give us more information on the behavior of
P than SP

base, being isomorphic to this latter. Namely these hypersemantics do not provide
different observables of the program, but only new verification methods for hyperprop-
erties. In particular, over-approximations of hypersemantics, defined on more expressive
semantic levels, provide verification methods for generic and subset-closed hyperproper-
ties. We cannot verify precisely, or sometimes verify at all, these hyperproperties with base
semantics.

Using hypersemantics we are basically computing the base semantics at the hyperlevel:
our aim is to emulate the base semantics computation at the level of sets of sets. In this case
we have to transfer the fixpoint computation from the abstract domain of base semantics,
to the concrete domain of hypersemantics. We can follow two ways: we can just lift the
operator to sets, or we can use the best complete concretization of the base semantic operator.
Basically, we want to find a monotone operator FH ∈ ℘(℘(Den)) −→ ℘(℘(Den)), such that
HP = lfp FH, built on top of the operator F used to compute the base semantics. In order to
achieve this goal we need some preliminary results.

Again on Fixpoint Transfer. When the semantics is constructive, we can derive an approx-
imate semantics by abstraction of the concrete one. The Kleenian Fixpoint Approximation
(Theorem 4) requires abstraction soundness, i.e. α ◦ F v] F ] ◦ α, guaranteeing fixpoint ap-
proximation, i.e. α(lfpv⊥ F ) v] lfpv

]

⊥] F
]. The Kleenian Fixpoint Transfer (Theorem 6) requires

completeness, i.e.α◦F = F ]◦α, guaranteeing the fixpoint transfer from the concrete domain
to the abstract domain, i.e. α(lfpv⊥ F ) = lfpv

]

⊥] F
].

Suppose now we are interested in transferring the fixpoint computation from the ab-
stract level to the concrete one. This is what we want in hyperproperties verification: we
want to transfer a fixpoint semantics, we are able to compute, from the abstract domain TRCP

to the concrete domain GENH. Unfortunately, the completeness requirement observed in the
abstract (backward), i.e. α ◦ F = F ] ◦ α, is not the same as checking completeness in the
concrete (forward), i.e. F ◦γ = γ ◦F ]. In order to transfer fixpoints from abstract to concrete
we need precisely the latter direction. In this case, we provide the forward version of the
Kleenian Fixpoint Transfer theorem.

Let 〈F,O,⊥〉, with O = 〈O,v,t〉, and 〈F ],O],⊥]〉, with O] = 〈O],v],t]〉, be concrete
and abstract computational fixpoint definitions.

Theorem 18 (Forward Kleenian Fixpoint Tranfser). Assume that the strict Scott-continuous
function γ ∈ O] −→ O satisfies the commutation condition F ◦ γ = γ ◦ F ]. Then we have
lfpv⊥ F = γ(lfpv

]

⊥] F
]).

Proof. See the extended version (Theorem 29) in Appendix A.

As happens for the classic Kleenian Fixpoint Transfer theorem, the requirement that γ
must be continuous is sometimes to strong. Indeed, it is sufficient that γ preserves the limit
of increasing iterates, not necessarily every directed set/chain.

Example 9. Suppose to have, for an arbitrary set S, two computational fixpoint definitions
〈F,O, {∅}〉 and 〈F ],O],∅〉, with O = 〈℘(℘(S)),⊆,∪〉 and O] = 〈℘(S),⊆,∪〉. Then let
γ , λX .℘(X). Clearly, γ is not Scott-continuous, since℘(X∪Y ) 6= ℘(X)∪℘(Y ), in general.
Suppose that the iterates of F ] are: F ]0(∅) = ∅, F ](∅) = X , F ](X) = X ∪ Y . In this case,
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they form an increasing (limited) chain and hence F ]0(∅)∪F ]1(∅)∪F ]2(∅) = X∪Y . Now,
γ(F ]0(∅)) = {∅}, γ(F ]1(∅)) = ℘(X), γ(F ]2(∅)) = ℘(X ∪ Y ) form an increasing (limited)
chain as well, since X ⊆ X ∪ Y trivially implies ℘(X) ⊆ ℘(X ∪ Y ). Let F 0({∅}) , {∅},
F 1({∅}) , ℘(X), F 2(℘(X)) , ℘(X ∪Y ). The commutation condition holds and hence we
have: ⋃

n<3 F
n({∅}) = lfp⊆{∅} F = ℘(X ∪ Y ) = γ(lfp⊆∅ F

]) = γ(
⋃
n<3 F

]n(∅))

In a Galois connection-based abstract interpretation, it is well known that the Kleenian
Fixpoint Approximation theorem trivially hold when F ] is the best correct approximation
of F , i.e. F ] = α ◦ F ◦ γ. Hence, we look for a similar characterization in the dual case. In
particular, we look for a systematic way to retrieve a concrete operator which best repre-
sents a given abstract operator. Exploiting the “duality principle” of abstract interpretation
[Cousot and Cousot, 1992] we can obtain the best correct concretization as F , γ ◦ F ] ◦ α.
Then we still trivially have that γ(lfpw

]

⊥] F
]) w lfpw⊥ F and lfpw

]

⊥ F ] w] α(lfpw⊥ F ). Moreover, in a
Galois insertion settings, it is always possible to derive a complete (backward and forward)
concretization, called best complete concretisation, of a given abstract semantics.
Theorem 19 (Best Complete Concretization). Let 〈O,v〉 and 〈O],v]〉 be two POSET such that
〈O,v〉 −−→−→←−−−

α

γ
〈O],v]〉. Let F ] ∈ O] −→ O], monotone, and F bcc , γ ◦ F ] ◦ α. Then O] is both

backward and forward complete for F bcc.
Proof. Due to the fact that the two domains are linked by a Galois insertion, it holds that
α ◦ γ = id on O]. Hence we have:
• α ◦ F bcc = α ◦ γ ◦ F ] ◦ α = F ] ◦ α

• F bcc ◦ γ = γ ◦ F ] ◦ α ◦ γ = γ ◦ F ]

Note that F ] is the bca of F bcc in O]: F bccbca
= α ◦ F bcc ◦ γ = α ◦ γ ◦ F ] ◦ α ◦ γ = F ].

Hence, given an abstract function F ] it is possible to derive a concrete function F , for which
F ] is an approximation, such that α(lfpv⊥ F ) = lfpv

]

⊥] F
] and lfpv⊥ F = γ(lfpv

]

⊥] F
]), assuming γ

Scott-continuous.
Remark. In a Galois connection setting, γ is always co-continuous but not necessarily con-
tinuous. Nevertheless, it is sufficient that γ preserves the least upper bound for the iterates,
as pointed out in Example 9.

Another result we need concerns the possibility to have a canonical concretization of a
given abstract domain, inducing a Galois insertion.
Proposition 4 (Downward Embedding Abstraction). Let 〈O,v,t,u,⊥,>〉 be a complete lat-
tice. Let α∨ ∈ ℘(O) −→ O and γ↓ ∈ O −→ ℘(O) be defined as α∨(X) ,

⊔
X and γ↓(o) ,

{o′ | o′ v o}. Now let ℘↓(O) , {X ⊆ O | o ∈ X ⇒ γ↓(o) ⊆ X} be the set of downward-closed
subsets of O. It is known that 〈℘↓(O),⊆,∪,∩,O, {⊥}〉 is a complete lattice. Then we have the
following Galois insertion:

〈℘↓(O),⊆〉 −−−→−→←−−−−
α∨

γ↓
〈O,v〉

Proof. Trivial, since (℘(O), α∨, γ↓,O) is a Galois insertion.

An example of this kind of abstraction is given by the adjoint functions 〈α∪, γ℘〉 of Chap-
ter 4.2 between 〈SSCH,⊆〉 and 〈TRCP,⊆〉.
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Computing Correct Hypersemantics. Now we are ready to define the hypersemantics.
First, we consider the generic hypersemantics HP

G
. We assume that the base semantics is

constructively defined over 〈F,O,⊥〉, where O = 〈TRCP,v,t〉. These latter may or may not
be equal to the approximation domain for trace properties 〈TRCP,⊆〉. In order to define the
operator on sets of sets, we can try to use the classic lift to sets, namely we can define FG as
the direct image of F . Formally: FG , λX . {F (X) | X ∈ X}. The problem now is to find
a computational order. Trivially, the lift does not guarantee monotonicity for 〈GENH,⊆〉. To
overcome the problem we have some options. As a simple solution, we can compute HP

G
in

the computational domain 〈℘•(TRCP),v• ,t• , {⊥}〉, where ℘•(TRCP) , {X ⊆ TRCP | |X | = 1},
{C} v• {C ′} , (C v C ′) and {C}t• {C ′} , {CtC ′}. The domain is a complete lattice and it
easy to note that the iterates ofFG form an increasingv• -chain: for everyn,Fn(⊥) v Fn+1(⊥)
implies that Fn

G
({⊥}) = {Fn(⊥)} v• {Fn+1(⊥)} = Fn+1

G
({⊥}). Indeed HP

G
is the v• -least

fixpoint of FG greater than {⊥}.
This solution allows us to compute the generic hypersemantics but breaks the link with

hyperproperties. We aim at defining a computational domain whose carrier set is GENH

and hence useful for specifications approximation, i.e. a computational order not restricted
to singletons of ℘(TRCP) only, but defined for arbitrary elements in GENH. A possible way to
follow is to weaken again the algebraic properties of the computational domain. As pointed
out in Chapter 2, abstract interpretation could be defined over preorders, instead of partial
orders. Consider the classic Hoare ordering vH , used for the definition of the powerdomains
in the denotational semantics theory [Plotkin, 1976]. This latter is defined as:

X vH Y , (∀C ∈ X ∃C ′ ∈ Y . C v C ′)

AlthoughvH is just a preorder, it is a partial order for the iterates of FG starting from {⊥},
indeed it coincides with v• for them. We can hence use it as a computational (pre)order
for computing HP

G
, similarly to what is done in [Cousot and Cousot, 1993] in the case of

strictness analysis.
Remark. We could use the Smyth ordering vS or the Egli-Milner ordering vE , in place of the
Hoare ordering. They are defined as

X vS Y , (∀C ′ ∈ Y ∃C ∈ X . C v C ′) and X vE Y , (X vH Y ∧ X vS Y)

For our purposes, all these orderings are equivalent, in the sense that in all cases we have
that they are partial orders for the iterates of FG.

The (partial) least upper bound operator tH is simply defined as the component-wise lift
of t, namely

⊔
H i∈∆Xi , {

⊔
i∈∆Xi | ∀i ∈ ∆ . Xi ∈ Xi}. For every vH -chain it computes

exactly the least upper bound. Hence we have that 〈FG,OG, {⊥}〉, whereOG , 〈GENH,vH ,tH〉 is
a computational fixpoint definition. Indeed we have:

HP

G
= lfp

vH
{⊥} FG =

⊔
H
n<ω

Fn
G

({⊥})

Now, we consider the case of the subset-closed hypersemantics HP
S
. Suppose that the

base semantics is constructively defined over 〈F,O,∅〉, where O = 〈TRCP,⊆,∪〉 coincides
with the approximation order. Applying Proposition 4, we have the Galois insertion

〈SSCH,⊆〉 −−−→−→←−−−−
α∪

γ℘
〈TRCP,⊆〉

α∪ = α∨(X ) =
⋃
X and γ℘ = γ↓(X) = {Y | Y ⊆ X}
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due to the fact that SSCH = ℘
↓
(TRCP). Now consider the following computational fixpoint

definition 〈FS,OS, {∅}〉, where FS = γ℘ ◦ F ◦ α∪ and OS , 〈SSCH,⊆,∪〉. The concretization
γ℘ is not continuous, but it preserves the join for the iterates of F (see Example 9). Hence,
we can still apply Theorem 19 considering FS as the best complete concretization of F . The
commutation condition holds by definition, so we have that γ℘(lfp⊆∅ F ) = lfp⊆{∅} FS, namely:

lfp⊆{∅} FS = γ℘(lfp⊆∅ F ) = γ℘(SP

base) = ℘(SP

base) = HP

S

Indeed FS is ⊆-monotone and F 0
S

({∅}) = {∅} ⊆ F 1
S

({∅}) = ℘(F (∅)) ⊆ F 2
S

({∅}) =
℘(F 2(∅)) ⊆ . . . Fn

S
({∅}) = ℘(Fn(∅)) since, for every n, Fn(∅) ⊆ Fn+1(∅). The opera-

tor FS reaches a fixpoint at the same ordinal as F , namely:

HP

S
= lfp⊆{∅} FS =

⋃
n<ω

Fn
S

({∅})

When the computational domain of the base semantics is different from the approxima-
tion order, things are more complicated. Suppose that the base semantics is constructively
defined over 〈F,O,⊥〉, where O = 〈TRCP,v,t〉. In this case, applying Proposition 4, we
obtain γ↓(SP

base) = {X | X v SP
base} which is different from ℘(SP

base). Hence, also in this case,
we have to weaken the algebraic properties of the computational domain, similarly to what
we have done for the generic hypersemantics. The solution consists in setting the computa-
tional fixpoint definition to 〈FS,OS, {⊥}〉, where FS = γ℘ ◦F ◦α∪ andOS , 〈GENH,vH ,∪〉. The
partial least upper bound operator is given by the best correct approximation of t, i.e.⋃{

Xi
}
i∈∆
, γ℘(

⊔
{α∪(Xi)}i∈∆) = ℘(

⊔
{
⋃
Xi}i∈∆)

The operator FS is vH -monotone (and increasing) and its iterates from {⊥} stabilize at the
same ordinal of F , namely

HP

S
= lfp

vH
{⊥} FS =

⋃
n<ωF

n
S

({⊥})

Remark. In this case, we had to use GENH, instead of SSCH, as the carrier set for the com-
putational fixpoint definition since the set {⊥}, i.e. the starting point of the iterates, is not
subset-closed, hence {⊥} /∈ SSCH.

A Three Dimensions Hierarchy of Semantics. Up to now, we simply reasoned on single
semantics. Finally, we can show that the whole hierarchy of base semantics can be trans-
lated at the hyperlevel, preserving all the abstraction relations between semantics. In the
classic hierarchy, τ ~∞, τ ~+ and τ~ω (and hence all their relational abstractions) are backward
semantics in the sense that they are suffix-closed [Cousot and Cousot, 2001]. This means
that they represent systems executions with complete traces and all their suffixes. Instead,
the semantics τ ~∝ (and its abstraction) is forward in the sense that it is prefix-closed [Cousot
and Cousot, 2012]. This means that it represents systems executions with all partial com-
putations starting from initial states (i.e. trace prefixes).

All the semantics in the classic hierarchy are abstractions of τ ~∞. Analogously, every
generic hypersemantics is an abstraction of τ ~∞

G
and every subset-closed hypersemantics is

an abstraction of τ ~∞
S

.
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τ ~∞
τ
~+ τ~ω
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τ+
� τω�
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τ∝�

τR�

Base level Hyper level

� ∈ {S, G}

Figure 6.3: A part of the classic hierarchy of semantics with its hyper counterpart.

Proposition 5. Let~ ∈ { ~∞, ~+, ~ω,∞,+, ω, ~∝,∝,R}, letα be such that τ~ = α(τ ~∞) in the classic
hierarchy of semantics, and let α̂ its direct image, then:

τ~
G

= α̂(τ ~∞
G

) and τ~
S

= α̂(τ ~∞
S

)

Proof.

α̂(τ ~∞
G

) = α({τ ~∞}) = {α(τ ~∞)} = {τ~} = τ~
G

α̂(τ ~∞
S

) = α̂(℘(τ ~∞)) = {α(X) | X ⊆ τ ~∞} = {X | X ⊆ α(τ ~∞)} = ℘(τ~) = τ~
S

So, lifting to sets the abstraction function used to go from a semantics to another seman-
tics, in the classic hierarchy, results in an abstraction between the respective hypersemantics
at the hyperlevel. Furthermore, generic and subset-closed hypersemantics are isomorphic
to the base ones.
Proposition 6. Let ~ ∈ { ~∞, ~+, ~ω,∞,+, ω, ~∝,∝,R}, ιyS T , α∪, ιyT S , γ℘, ιyG S , ρS and ιyS G ,
λX . {

⋃
X}, then:

τ~ = ιyS T(τ~S ) = ιyS T ◦ ιyG S(τ~G ) and τ~
G

= ιyS G(τ~S ) = ιyS G ◦ ιyT S(τ~)

The isomorphism is between single semantics, not between the domains: SSCH is strictly
more expressive than TRCP and GENH is strictly more expressive than SSCH. Even if the hy-
persemantics are isomorphic to base ones, they allows us, with the same information, to
gain expressiveness in verification. Propositions 5, 6 justify Figure 6.3, where an arrow be-
tween semantics means that there is an abstraction relation, while a double arrow means
that the semantics are isomorphic. On the left we have the base level, corresponding to the
(extended) classic hierarchy, and on the right the hyper level, corresponding to hyperse-
mantics.
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6.1.4.2 Post/Pre Hypersemantics

In the previous sections we have seen two intuitive ways for extending base semantics to
sets of sets. Clearly, there are a lot of other possibilities and, in this section, we see how to
define hypersemantics useful for partial verification. In particular, we define the post and
pre hypersemantics for the more concrete cases where Den = Σ ~∞, for backward semantics,
and Den = Σ~∝, for forward semantics. The Post hypersemantics τ ~∞post is defined as:

τ ~∞post ,
{{⋃

n>0 τ
~n
X ∪ τ~ω

} ∣∣∣ X ⊆ Ω
}

where τ~nX , {σ ∈ τ~n | σn−1 ∈ X}

The Pre hypersemantics τ ~∝pre is defined as:

τ ~∝pre ,
{{⋃

n>0 τ
~̇n
X

} ∣∣∣ X ⊆ Υ ∧X 6= ∅
}

where τ ~̇nX , {σ ∈ τ ~̇n | σ0 ∈ X}

The first collects the sets of terminating computations partitioned by all possible sets of final
states, plus the infinite computations of course. This is a backward semantics and intuitively
says which initial states we need to take in order to reach some given final states. The second
does the opposite, namely it collects the sets of partial (finite) computations partitioned by
all the possible sets of initial states. This is a forward semantics and intuitively says which
partial computations we obtain starting from some given initial states.

Example 10. As example, consider the transition system with:

• Σ = {a, b, c, d, e};

• τ = {〈a, b〉, 〈a, c〉, 〈b, d〉, 〈c, c〉, 〈e, b〉, 〈e, e〉};

• Υ = {a, e};

• Ω = {d}.

Then the maximal trace semantics and the partial trace semantics are

τ ~∞ = {d, bd, abd} ∪ {enbd | n ≥ 1} ∪ {cω, acω, eω}
τ ~∝ = {a, ab, abd} ∪ {acn | n ≥ 1} ∪ {en | n ≥ 1} ∪ {enb | n ≥ 1} ∪ {enbd | n ≥ 1}

The hyper versions are

τ ~∞post =
{
τ ~∞, {cω, acω, eω}

}
τ ~∝pre =

{
τ ~∝, {a, ab, abd} ∪ {acn | n ≥ 1}, {en | n ≥ 1} ∪ {enb | n ≥ 1} ∪ {enbd | n ≥ 1}

}
being ℘(Ω) =

{
{d},∅

}
and ℘(Υ) \ {∅} =

{
{a, e}, {a}, {e}

}
.

These hypersemantics can be used for partially verifying hyperproperties, since they provide
the semantics parametrically on the subsets of blocking/initial states. Suppose that, instead
of checking whether a program fulfills a hyperpropertyHp, we want to check when a program
fulfills it. The problem boils down to analyze the intersection τ ~∞post ∩Hp [or τ ~∝pre ∩Hp]. If the
intersection is ∅ then the answer is “never”, if the answer is τ ~∞post [or τ ~∝pre] then P |= Hp,
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otherwise we have that for particular final states [initial states] the system satisfies the hy-
perproperty. Hence we have a form of partial satisfiability. This is useful, for example when
we want to know under what conditions we can still use an unsafe system.

Computing Post/Pre Hypersemantics. As for the other semantics, also pre and post hy-
persemantics are constructive, hence we give now their computational fixpoint definitions.
For the post hypersemantics we have 〈F ~∞

post,O, {⊥ ~∞}〉, where O , 〈GENH,vH , t̃〉 and4

F ~∞
post , λX .

{
X ∪ Σ~ω

∣∣ X ⊆ Ω
}
t̃
{
X t τ~̇2 _ X

∣∣ X ∈ X}
The partial least upper bound operator is defined, for every non-empty X ,Y ∈ GENH, as:

X t̃ Y , {X t Y | X ∈ X ∧ Y ∈ Y ∧ (X v Y ∨ Y v X)}∪
{X ∈ X | ∀Y ∈ Y . X 6v Y ∧ Y 6v X} ∪ {Y ∈ Y | ∀X ∈ X . Y 6v X ∧X 6v Y }

It basically makes the union of the elements ofX andY which are in relationv, and adds all
other elements of both sets, as they are. For the pre hypersemantics we have 〈F ~∝

pre,O, {∅}〉,
where O , 〈GENH,⊆H , ∪̃〉 and

F ~∝
pre , λX . {X ⊆ Υ | X 6= ∅} ∪̃

{
X ∪X _ τ

~̇2
∣∣ X ∈ X}

The partial least upper bound operator is defined, for every non-empty X ,Y ∈ GENH, as:

X ∪̃ Y , {X ∪ Y | X ∈ X ∧ Y ∈ Y ∧ (X ⊆ Y ∨ Y ⊆ X)}∪
{X ∈ X | ∀Y ∈ Y . X 6⊆ Y ∧ Y 6⊆ X} ∪ {Y ∈ Y | ∀X ∈ X . Y 6⊆ X ∧X 6⊆ Y }

It follows the same intuition as the operator for the post hypersemantics. For the iterates
of F ~∞

post and F ~∝
pre we have that vH and ⊆H are partial orders and the iterates are increasing.

Furthermore, both operators stabilize in at most a countable number of steps, indeed:

τ ~∞post = lfp
vH
{⊥ ~∞} F

~∝
post =

⊔̃
n<ω

F ~∞
post

n
({⊥ ~∞}) and τ ~∝pre = lfp

⊆H
{∅} F

~∝
pre =

⋃̃
n<ω

F ~∝
pre

n
({∅})

Analyzing Analyses. Pre and Post hypersemantics do not only allow us to provide weaker
forms of satisfiability, but they provide a promising methodology allowing us to lift static
analyses (for hyperproperties) directly at the hyper level. We believe that this approach
could provide a deep insight and useful formal tools also for tackling the problem of an-
alyzing analyzers, aiming at systematically analyzing static analyses [Giacobazzi, Logozzo,
and Ranzato, 2015; Cousot, Giacobazzi, and Ranzato, 2019].

A static analysis for invariants can be seen as the characterization, potentially approxi-
mated, of the set of reachable states τR from the initial states in Υ, which provides a, po-
tentially approximated, invariant of the program. Very often, we are interested in a re-
stricted invariant, namely on the reachable states τR|I originated from a subset I ⊆ Υ
of initial states. The most common static analyzers compute this information by a sys-
tem of equations associating each control point with a set of memories (the invariant), as

4Here t is the least upper bound operator used to compute the maximal trace semantics τ ~∞.
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we have seen in Chapter 5. This means that they compute the state semantics in its form
τR` ∈ Lab −→ ℘(Mem), or τR` |I if it is restricted to initial states in I .

We can observe that the semantics of an (abstract) interpreter of a program P is an ab-
straction of the hypersemantics of P. We have already seen that τR is an abstraction of
τ ~∝, through the function αR ◦ α∝ (see Section 4.1.2). Then, by isomorphism, τR` is also
an abstraction of τ ~∝, through the function α? , α` ◦ αR ◦ α∝. Analogously, the seman-
tics of an (abstract) interpreter, associating with each possible subset I of initial states, the
corresponding reachable states τR` |I , is an abstraction of τ ~∝pre. As usual, we obtain abstract in-
variants in the abstract domain A exploiting a Galois connection 〈℘(Mem),⊆〉 −−→←−−α

γ
〈A,4〉,

extended to labels, namely:

〈Lab −→ ℘(Mem), ⊆̇〉 −−→←−−
α̇

γ̇
〈Lab −→ A, 4̇〉

Proposition 7. The semantics of the abstract interpreter, applied on a given program P, computing
abstract invariants in A, is ˆ̇α ◦ α̂?(τ ~∝pre), i.e. it is an abstraction of the Pre hypersemantics τ ~∝pre of P.

We recall that ·̂ indicates the direct image lift, namely ˆ̇α◦ α̂? = λX . {α̇◦α?(X) | X ∈ X}.
The meaning of the proposition is that if we specialize, in the sense of partial evaluation, a
static analyzer on a given program P then the semantics of the specialized program is an
abstraction of the Pre hypersemantics of P. Hence, analyzing τ ~∝pre we can, indirectly, obtain
information about the analyzer.

6.2 Hyper Abstract Domains
Once we have lifted the base semantics, obtaining a constructive, possibly approximated,
versionHPof the collecting semantics SP

coll, in order to perform verification we need to com-
pute this latter on an abstract domain, namely we have to compute the abstract collecting
semantics. As already observed, in the classic framework of abstract interpretation we can
compute a sound over-approximationO ⊇ SP

base of a program base semantics allowing sound
verification of trace properties. This is obtained by means of an abstraction of the concrete
domain, where the abstract semantics plays the role of the over-approximation.

Similarly, an over-approximation O ⊇ HP leads to a sound verification mechanism for
hyperproperties. Let GENH] (with partial orderv]) be an abstract domain of GENH, forming the
Galois connection (〈GENH,⊆〉, α, γ, 〈GENH] ,v]〉). Let Hp ∈ GENH be a hyperproperty andHP

] be
an abstract interpretation ofHP on GENH] , i.e.HP ⊆ γ(HP

]), then γ(HP
]) ⊆ Hp implies P |= Hp.

Hence, at this point, we wonder how we can define abstract domains at the hyperlevel, i.e. on
sets of sets, in order to approximate hypersemantics, i.e. semantics lifted to the hyperlevel.

6.2.1 The Compositional Nature of Hyper Abstract Domains
A hyper abstract domain, or hyperdomain, can be decomposed basically into two parts: an
inner abstraction and an outer abstraction. Note that we are not talking about a generic
abstract domain on sets of sets: our focus is on the verification of hyperproperties, hence
we need domains, on sets of sets, which represent information concerning programs, whose
base semantics is on sets. Let us consider Non-Interference (NI) introduced in Chapter 3 as
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running example, in order to provide the intuition beyond these concepts. Non-Interference
requires that, for each set of two computations agreeing on low inputs, the low output is
constant.

The inner abstraction approximates sets of denotations in Den, namely it says which infor-
mation about program executions should be observed. In NI (supposing to have only two
variables, one H and one L), for each set of computations we are interested in the constant
analysis on the low variable, i.e. each set of computations (starting from states agreeing on
the low variable) should be contained in a set of the form Cl , {σ̄σ | σ|H ∈ Z ∧ σ|L = l},
where l ∈ Z is a fixed integer number.

The outer abstraction approximates sets of sets of denotations, namely it says which infor-
mation about programs base semantics is interesting, in other words, which is the desired
invariant among all the sets of computations collected. In the example, we require that all
the possible resulting sets are constant in the initial or final value of low variable, hence they
are a set in ℘({Cl | l ∈ Z}).

It should be clear that, the outer abstraction is defined at the hyperlevel and therefore
in order to compose it with the inner one, defined at the base level ℘(Den), we need to lift
the inner abstraction to ℘(℘(Den)). In this case, the lifting function just leverages the domain
at level of sets of sets. In the case of hyperdomains, lifting a domain does not introduce
computability problems, hence we can always use the additive lift. Formally, suppose the
inner abstraction in A is given by the Galois connection

〈℘(Den),⊆〉 −−−→←−−−αi

γi 〈A,4〉

The lifting transformer L is an operator lifting functions on sets to functions on sets of sets,
namely L , λf . λX . {f(X) | X ∈ X}. Let us consider the dual transformer G defined as
G , λf . λY . {X | f(X) ∈ Y }. Due to Elementwise Set Abstraction (Section 2.3), we have
that L(αi) and G(αi) form a Galois connection, in particular we have

〈℘(℘(Den)),⊆〉 −−−−−→←−−−−−
L(αi)

G(αi)
〈℘(A),⊆〉

We obtained so far, starting form the inner abstraction defined on the base level and apply-
ing the additive lift, the hyperdomain where we can define the outer abstraction. In other
words, the outer abstraction is a further abstraction of℘(A) given by some Galois connection

〈℘(A),⊆〉 −−−→←−−−αo

γo 〈Ah,4h〉

This outer abstraction captures the information that must be invariant among all the col-
lected sets of executions (abstracted in A), looking, by construction, for invariants among
elements of A. Finally, by composition, we have that

〈℘(℘(Den)),⊆〉 −−−−−−−→←−−−−−−−
αo◦L(αi)

G(αi)◦γo
〈Ah,4h〉

In Figure 6.4 we have a graphical representation of how a hyperdomain works. Note that,
it is not mandatory, for the inner abstraction in A, to form a Galois connection. Indeed, in
order to apply the lifting transformer, the abstraction function αi may also fail additivity (it
may even fail monotonicity). This implies that we can build and hyperdomain starting from
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αi

αi

αi

L(αi)℘(℘(Den))

℘(A)

αo Ah

Figure 6.4: Three layers abstraction.

a base analysis formalized with just an abstraction function or a concretization function.
In the first case we have just to apply the lifting method explained above. If we have a
concretization-based abstract interpretation, we have to use the lifting function L on the
concretization instead of the abstraction. Suppose to have a concretization γ ∈ A −→ ℘(Den),
then the function L(γ) , λX . {γ(a) | a ∈ X} is co-additive. Indeed:

L(γ)(
⋂
i∈∆Xi) = {γ(a) | a ∈

⋂
i∈∆Xi} =

= {γ(a) |
∧
i∈∆ a ∈ Xi} =

=
⋂
i∈∆{γ(a) | a ∈ Xi} =

⋂
i∈∆ L(γ)(Xi)

Then we have that its adjoint L(γ)+ exists and hence we have the Galois connection

〈℘(℘(Den)),⊆〉 −−−−−→←−−−−−
L(γ)+

L(γ)
〈℘(A),⊆〉

Example 11. The abstract domains defined in [Assaf et al., 2017] are instances of the pattern
proposed here. For example, the cardinality abstraction crdval ∈ ℘(Z) −→ [0,∞] (which
is not continuous) corresponds to our inner abstraction, while αmax ∈ ℘([0,∞]) −→ [0,∞]
computing the least upper bound, i.e. αmax(X) , maxX , is the outer abstraction. The
resulting abstraction is obtained by lifting the inner one and composing it with the outer
one, i.e. αcrdval ∈ ℘(℘(Z)) −→ [0,∞] coincides with αmax ◦ L(crdval), which is the process
we have generalized above.

In the following, we give some constructions useful to define hyperdomains, starting
from initial known abstractions on sets.

6.2.1.1 Dealing with Constants Propagation

Suppose to define a hyperanalysis on the concrete domain ℘(℘(Z)), and to be interested in
hyper constant propagation. Hence, the goal is to verify that all the sets of computations
provide constant results. This corresponds intuitively to an inner abstraction which is the
classic constant propagation (lifted as shown before), and an outer abstraction retrieving
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information about the constant analysis at base level. The classic domain of constants C ,
Z ∪ {⊥,>} is defined by the Galois insertion (〈℘(Z),⊆〉, αc, γc, 〈C,�〉) where c1 � c2 ,
(c1 = ⊥ ∨ c1 = c2 ∨ c2 = >) and

αc , λX .


⊥ if X = ∅
n if X = {n}
> otherwise

γc , λc .


∅ if c = ⊥
{n} if c = n

Z otherwise

In order to get an abstract domain on sets of sets we rely on the lifting transformer, obtaining
the following Galois insertion

〈℘(℘(Z)),⊆〉 −−−−−→−→←−−−−−−
L(αc)

G(αc)
〈℘(C),⊆〉

Now, we can naively apply the same construction used for constant propagation on sets
again, namely on sets of sets, obtaining the domain {{c} | c ∈ C} ∪ {∅, C}, ordered by
set inclusion. Clearly this domain does not give us useful information about a program.
Indeed, to look for constant invariants at the hyperlevel, namely in the outer abstraction,
means to check that all the collected sets of values are constants. Hence, we need to retrieve
information about what there is inside the analysis at base level. This is obtained by using
the Galois insertion

〈℘(C),⊆〉 −−−→−→←−−−−
αc

γc 〈℘(Z) ∪ {C},⊆〉where αc(X) ,

{
X if X ⊆ Z
C otherwise

γc , id

Obtaining, by composition, the insertion

〈℘(℘(Z)),⊆〉 −−−−−−−→−→←−−−−−−−−−
αc◦L(αc)

G(αc)◦γc
〈℘(Z) ∪ {C},⊆〉) (6.3)

In this example, we have an outer abstraction that simply checks whether all the collected
sets of computations satisfy the constant property for numerical variables, namely all the
sets of computations produce constant values. We can generalize the same idea to any inner
abstraction, namely we can build an outer abstraction checking whether all the collected sets
of computations constantly satisfy an abstract property, fixed by the inner abstraction. We
call this hyperdomain hyper (abstract) constant propagation of an inner abstraction.

Hyper (Abstract) Constant Propagation. Consider a lattice 〈A,4,g,f,>A,⊥A〉, forming
the Galois connection (〈℘(C),⊆〉, α, γ, 〈A,4〉). The set of atoms AtmA of A is the set of its
elements covering the bottom, i.e. AtmA , {a ∈ A | ∀a′ ∈ A . a′ 4 a⇒ (a′ = ⊥A ∨ a′ = a)}.
We assume that the concrete domain is a powerset since this is the challenging case. If the
domain is not a powerset then we can just apply the constant propagation construction to
the element of the domain instead of numbers.

In order to build hyper abstract constant propagation we require that the set of atoms
forms a partition, by means of α, of C, meaning that for each element c ∈ C we have that
α({c}) ∈ AtmA. This constraint is fulfilled by domains which are partitioning [Hunt and
Mastroeni, 2005]. In [Hunt and Mastroeni, 2005] the authors prove that any abstract domain
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...
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...
...
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...

Atoms

Figure 6.5: Hyper (abstract) constants domain construction.

can be made partitioning. This is actually true for domains forming a Galois insertion with
℘(C). This is not a concern, since we can always reduce a connection to an injection. This
basically means that we can always apply the following construction.

As an example, consider the abstract domain Sgn , {∅,Z<0, {0},Z>0,Z≥0,Z} ⊆ ℘(Z),
where Z<0 , {n ∈ Z | n < 0} and the others are similarly defined. The set of its atoms is
AtmSgn = {Z<0, {0},Z>0}, which is a partition of Z. In order to perform hyper constants on
A we consider the set of its atoms because these latter precisely identify the properties of
concrete values observed in A (in Sgn the sign of any value). The idea is to check whether
these abstract values remain constant during computations. For instance, we aim at check-
ing whether all the computations starting from inputs with the same sign, keep constant the
value sign during execution. If we want to perform constants on ℘(Sgn), we cannot allow a
set to be abstracted in Z≥0 because if Sgn(X) = Z≥0 then the values in X do not have the
same property, i.e. they are not constant, w.r.t. Sgn. At this point, we can define the hyper
(abstract) constant domain for A as Ahc , ℘(AtmA) ∪ {A}, forming the following Galois
insertion:

〈℘(A),⊆〉 −−−−→−→←−−−−−
αhc

γhc

〈Ahc,⊆〉 where αhc(X) ,

{
X if X ⊆ AtmA

A otherwise
γhc , id

Then, applying the lifting transformer and composing, we have

〈℘(℘(C)),⊆〉 −−−−→←−−−−
L(α)

G(α)
〈℘(A),⊆〉 〈℘(℘(C)),⊆〉 −−−−−−−−→←−−−−−−−−

αhc◦L(α)

G(α)◦γhc

〈Ahc,⊆〉 (6.4)

Back to the example where C = Z andA = Sgn, we have that Sgnhc , ℘({∅,Z<0, {0},Z>0})∪
{Sgn} is the hyperdomain, abstraction of ℘(℘(Z)), for hyper (abstract) Sgn-constants. In Fig-
ure 6.5 we have a graphical representation of the hyperlevel constants construction.

6.2.1.2 Dealing with Intervals.

Suppose now to be interested in a hyper intervals analysis. The classic abstract domain of
Intervals, as introduced in Section 5.2.2 is defined over numerical values, but the intervals
construction can be easily generalized [Cousot and Cousot, 1979b]. Given a complete lattice
〈C,4,g,f,>,⊥〉, we can define the C-Intervals domain as follows.

Definition 28 (C-Interval Domain). The domain of C-Intervals has a carrier set:

IntvC , {[a, b] | a ∈ C \ {>} ∧ b ∈ C \ {⊥} ∧ a 4 b} ∪ {[>,⊥]}
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αIntv
ı γIntv

ı

Figure 6.6: Abstraction and concretization of an Interval of Intervals.

Then the relation vıC ⊆ IntvC × IntvC, defined as [a, b] vıC [c, d] , (c 4 a ∧ b 4 d), is a partial
order. The domain has arbitrary least upper bounds and greatest lower bounds, defined as:

Cbı{[ai, bi]}i∈∆ , [
c
{ai}i∈∆,

b
{ai}i∈∆]

C

c
ı{[ai, bi]}i∈∆ ,

{
[>,⊥] if

b
{ai}i∈∆ 4

c
{ai}i∈∆b

{ai}i∈∆,
c
{ai}i∈∆ otherwise

The domain has a minimum [>,⊥], that we denote ⊥ıC, and a maximum [⊥,>], that we
denote >ıC. The domain is, indeed, a complete lattice.

The corresponding Galois connection between (the powerset of) the concrete domain C
and its intervals domain is

〈℘(C),⊆〉 −−−→←−−−
αCı

γCı 〈IntvC,vıC〉 where αCı (X) , [
c
X,

b
X] and γCı ([a, b]) , {c ∈ C | a 4 c 4 b}

An instance of this pattern is the classic domain of Intervals over integers, where the
initial domain is the complete lattice of Integers. This latter has a carrier set Z∪{−∞,+∞},
max as a supremum, min as a infimum, −∞ as a minimum and +∞ as a maximum.

We can use the intervals construction for an inner abstraction when we aim at charac-
terizing invariants of intervals of computations. In this case we use the lift L and then we
compose it with an outer abstraction determining the desired invariants. But, we can use
this construction also for an outer abstraction by defining it on an domain A already ob-
tained by an inner abstraction. In this case we characterize interval invariants of an inner
abstract domain, abstraction of ℘(A). For instance, if the inner abstraction is Pos, then we
would characterize the sign properties of interval bounds.

In Figure 6.6 we have a graphical representation of the interval abstraction applied to the
interval domain itself. A set of intervals is abstracted into a higher-order interval. The con-
cretization is the set of all intervals comprised, w.r.t. the partial order of the classic Interval
domain, between the left and the right interval bounds.

Example: Intervals-Parity Analysis. Consider the classic domain of Intervals on integers.
Now, we can lift it at hyper level, obtaining the following Galois connection:

〈℘(℘(Z)),⊆,∩,∪, ℘(Z),∅〉 −−−−−→←−−−−−
L(αı)

G(αı)
〈℘(Intv),⊆,∪,∩, Intv,∅〉
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From a set of intervals we can forget the exact relation between the bounds, instead we can
collect together the information of the left bounds and the right bounds. In order to get
the Intervals-Parity domain we need an intermediate abstraction. A set of intervals can be
seen as a set of pairs, hence we can exploit the abstraction from sets of pairs to pairs of sets
(a slightly modified version of the Componentwise Abstraction introduced in Section 2.3).
This is formalized by the following Galois connection, where Z∞ , Z ∪ {−∞,+∞}:

〈℘(Intv),⊆,∪,∩, Intv,∅〉 −−−→←−−−
α×ı

γ×ı 〈℘(Z∞)2,⊆2,∪2,∩2, 〈Z∞,Z∞〉, 〈∅,∅〉〉

α×(X) , 〈{a | [a, b] ∈ X}, {b | [a, b] ∈ X}〉

γ×(〈X,Y 〉) ,

{
{[a, b] | a ∈ X, b ∈ Y, a ≤ b} ∪ {⊥ı} if +∞ ∈ X ∧ −∞ ∈ Y
{[a, b] | a ∈ X, b ∈ Y, a ≤ b} otherwise

The intervals-parity analysis retrieves the parity of the left and right bounds of a set of
intervals. The Parity domain of Z∞ has as carrier set Par , {⊥,Even,Odd,>}. The relation
6⊆ Par× Par, defined as 6, {〈⊥, p〉 | p ∈ Par} ∪ {〈p,>〉 | p ∈ Par}, is a partial order. The
domain has binary infimum and supremum, trivially defined. The minimum is ⊥ and the
maximum is >. Then we have the following Galois connection:

〈℘(Z∞),⊆,∪,∩,Z∞,∅〉 −−−−→←−−−−
αPar

γPar 〈Par,6,Y,Z,>,⊥〉

αPar(X) ,


⊥ if X = ∅
Even if X ⊆ 2Z
Odd if X ⊆ 2Z+1

> otherwise

γPar(p) ,


∅ if p = ⊥
2Z if p = Even

2Z+1 if p = Odd

Z∞ otherwise

Now, we can apply this abstraction componentwise to ℘(Z∞), obtaining the following Ga-
lois connection:

〈℘(Z∞)2,⊆2,∪2,∩2, 〈Z∞,Z∞〉, 〈∅,∅〉〉 −−−−→←−−−−
α2
Par

γ2
Par 〈Par2,62,Y2,Z2, 〈>,>〉, 〈⊥,⊥〉〉

α2
Par(〈X,Y 〉) , 〈αPar(X), αPar(Y )〉 γ2

Par(〈p1, p2〉) , 〈γPar(p1), γPar(p2)〉

Due to the fact that Galois connections are closed by composition we finally have the ab-
straction from the concrete domain and the domain for the Intervals-Parity analysis:

〈℘(℘(Z)),⊆,∪,∩, ℘(Z),∅〉 −−−−→←−−−−
αıPar

γıPar 〈Par2,62,Y2,Z2, 〈>,>〉, 〈⊥,⊥〉〉

αıPar , α
2
Par ◦ α× ◦ L(αı) γıPar , G(αı) ◦ γ× ◦ γ2

Par

Example 12. The set of sets of integers X = {{1, 2, 3}, {1, 4}} is abstracted as follows:

αıPar(X ) = α2
Par ◦ α×({[1, 3], [1, 4]}) = α2

Par(〈{1}, {3, 4}〉) = 〈Odd,>〉

In this case, we have that the left bounds are all even, instead the right bounds do not agree
on parity.
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Note that, also this hyperdomain follows the pattern described in Subsection 6.2.1. The
inner abstraction is αı, then we have the additive lift L and, finally, the outer abstraction is
α2
Par ◦ α×.

Example: Bound-Stability Analysis. The Bound-Stability analysis is very similar to the
Intervals-Parity analysis, but it checks if the bounds of a set of intervals are stable (i.e. have
constant values) instead of checking their parity. The Constants domain ofZ∞ has as carrier
set Cst , {n | n ∈ Z} ∪ {⊥,>}. The relation 6⊆ Cst × Cst, defined as 6, {〈⊥, c〉 | c ∈
Cst}∪{〈c,>〉 | c ∈ Cst}, is a partial order. The domain has binary infimum and supremum,
trivially defined. The minimum is ⊥ and the maximum is >. Then we have the following
Galois connection:

〈℘(Z∞),⊆,∪,∩,Z∞,∅〉 −−−−→←−−−−
αCst

γCst 〈Cst,6,Y,Z,>,⊥〉

αCst(X) ,


⊥ if X = ∅
n if X = {n}
> otherwise

γCst(c) ,


∅ if c = ⊥
{n} if c = n

Z∞ otherwise

Now, we can apply this abstraction componentwise to ℘(Z∞), obtaining the following Ga-
lois connection:

〈℘(Z∞)2,⊆2,∪2,∩2, 〈Z∞,Z∞〉, 〈∅,∅〉〉 −−−−→←−−−−
α2
Cst

γ2
Cst 〈Cst2,62,Y2,Z2, 〈>,>〉, 〈⊥,⊥〉〉

α2
Cst(〈X,Y 〉) , 〈αCst(X), αCst(Y )〉 γ2

Cst(〈c1, c2〉) , 〈γCst(c1), γCst(c2)〉

Due to the fact that Galois connections are closed by composition we finally have the ab-
straction from the concrete domain and the domain for the Bound-Stability analysis:

〈℘(℘(Z)),⊆,∪,∩, ℘(Z),∅〉 −−−−→←−−−−
αıCst

γıCst 〈Cst2,62,Y2,Z2, 〈>,>〉, 〈⊥,⊥〉〉

αıCst , α
2
Cst ◦ α× ◦ L(αı) γıCst , G(αı) ◦ γ× ◦ γ2

Cst

Example 13. The set of sets of integers X = {{1, 2, 3}, {1, 4}} is abstracted as follows:

αıCst(X ) = α2
Cst ◦ α×({[1, 3], [1, 4]}) = α2

Cst(〈{1}, {3, 4}〉) = 〈1,>〉

In this case, we have that the left bound is stable, i.e. it is always 1, whilst the right bound
it is not.

Also this hyperdomain follows the pattern describe in Subsection 6.2.1. The inner abstrac-
tion is αı, then we have the additive lift L and, finally, the outer abstraction is α2

Cst ◦ α×.

Again on Analyzing Analyses. The design patterns introduced in this section are not use-
ful for hyperproperties verification only. Indeed they can also be used in the context of the
analysis of analyses, as introduced at the end of Section 6.1. For instance, suppose to have
an analyzer for the Intervals domain, that we call first level analysis. Then, collecting the
Intervals subsequently generated by this static analyzer, we can infer whether the Intervals
bounds are stable (indeed, we approximate this information), applying the Bound-Stability
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analysis. We call this latter second level analysis and it builds on top of the semantics of the
first order analyzer. If a bound is not stable we can apply a widening or other optimizations,
in order to speed-up the (first level) analysis. As noted at the end of Section 6.1, the anal-
ysis with the Bound-Stability domain is applied on the partial evaluation of the first level
analyzer on the target program.
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Bounded Subset-Closed Hyperproperties
7

Subset-closed hyperproperties, introduced in Chapter 4.2, are particular hyperproperties
containing only downward closed elements. In the previous chapter we have seen that

these specifications are simpler to verify, indeed they are in between, for what concerns
verification difficulty, generic hyperproperties and trace hyperproperties. Now we consider
particular subset-closed hyperproperties, for which the verification is simplified, still not as
simple as the one for trace properties.

7.1 Bounded Subset-Closed Hyperproperties
Recall that the set of subset-closed hyperproperties SSCH, with typical elements cHp ∈ SSCH,
is defined as:

SSCH ,
{
Hp ∈ GENH

∣∣ X ∈ Hp⇒ (∀Y ⊆ X .Y ∈ Hp)
}

where GENH is the set of all generic hyperproperties over the execution denotations domain
Den, namely GENH , ℘(℘(Den)). The strongest subset-closed hyperproperty for a program
P is ℘(SP

base), meaning that these hyperproperties can be refuted by means of a single subset
of the base semantics, which is a witness of refutation.

Now, we define a stronger notion of subset-closed hyperproperty, allowing us to further
restrict the set of possible refuting witnesses.

Definition 29 (k-Bounded Subset-Closed Hyperproperties). Given an ordinal k < ω, the
set of k-bounded subset-closed hyperproperties is:

SSCHk , {cHp ∈ SSCH | X /∈ cHp⇔ (∃Tk ⊆ X . (|Tk| ≤ k ∧ Tk /∈ cHp))}

The set Tk is the witness of refutation, namely a set of traces of cardinality at most k vio-
lating the specification. In other words, in a k-bounded subset-closed hyperproperty, every
set of traces not satisfying the hyperproperty has a refuting witness with at most k traces.
This means that, in order to refute the hyperproperty, we need to exhibit a counterexample
consisting in at most k traces. Formally, suppose cHp ∈ SSCHk, if we find {σ̄1, σ̄2, . . . σ̄k} ⊆ X
such that {σ̄1, σ̄2, . . . σ̄k} /∈ cHp, then we imply that X /∈ cHp. Hence X |= cHp if and only
if {{σ̄1, σ̄2, . . . σ̄k} | σ̄1, σ̄2, . . . σ̄k ∈ X} ⊆ cHp. The if and only if here is crucial: in order
to refute the hyperproperty we can show just a counterexample set of cardinality k, namely
∃{σ̄1, σ̄2, . . . σ̄k} ⊆ X . {σ̄1, σ̄2, . . . σ̄k} /∈ cHp implies X 6|= cHp.

A subset-closed hyperproperty is unbounded when k = ω, meaning that the witnesses of
refutation could be infinite. It is clear that, the union of all the k-bounded and unbounded
subset-closed hyperproperties is precisely the set of all the subset-closed hyperproperties.
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Proposition 8. It holds that SSCH =
⋃
k<ω+1 SSC

H
k.

For every cHp ∈ SSCH we can define a refuting setRcHp, namely a set of sets of traces rep-
resenting the witnesses for refuting the specification. These sets are similar to the prefixes
representing the “bad thing” in safety (hyper)properties. It is possible to define different
refuting sets for a given subset-closed hyperproperty, since when a set satisfies X /∈ cHp
then we have that X ∪ Y /∈ cHp, by subset-closure. A SSCH hyperproperty cHp is violated if
and only if the given set of traces is a superset of an element in RcHp. So cHp ∈ SSCH can be
characterized as:

∀X ∈ ℘(Den) . (∃Tr ∈ RcHp . Tr ⊆ X)⇔ X /∈ cHp (7.1)

If, in addition, cHp ∈ SSCHk, with k < ω, then we can define the minimal refuting set Rmin
cHp

(i.e. the one containing the sets with minimal cardinality) characterizing the hyperproperty.
The set is minimal in the sense that ∀Tr, T ′r ∈ Rmin

cHp . T
′
r 6⊆ Tr ∨ |T ′r| ≥ |Tr| (namely, T ′r ⊆ Tr

implies T ′r = Tr). This means that for every set violating the hyperproperty, Rmin
cHp contains

only its minimal representative. In particular, every element in Rmin
cHp has cardinality k.

Example 14. Let Mem = Var −→ Z and Den = Mem ×Mem. Non-Interference, parametric
on a security variables typing Γ ∈ Var −→ {L,H}, is:

NI , {X ∈ ℘(Den) | ∀σ̄, σ̄′ ∈ X . (σ̄` =L σ̄
′
` ⇒ σ̄a =L σ̄

′
a)}

where σ̄` and σ̄a are the projections on the first and last element of the pair σ̄, respectively.
The equivalence =L holds for memories agreeing on the values of public (L) variables. NI
is in SSCH2, namely X |= NI if and only if {{σ̄, σ̄′} | σ̄, σ̄′ ∈ X} ⊆ NI. Hence, if we find a
pair of interfering executions, i.e. {σ̄, σ̄′} 6∈ NI, then we proved that X 6|= NI. Indeed, the
minimal refuting set for Non-Interference is:

Rmin
NI ,

{
{σ̄, σ̄′} ∈ ℘(Den)

∣∣ σ̄` =L σ̄
′
` ∧ σ̄a 6=L σ̄

′
a
}

Remark. By substituting ⊆ with the prefix-set relation 61 in (7.1) we obtain the minimal
refuting set for an k-hypersafety.

In the rest of the work, when we say bounded hyperproperty, we mean a k-bounded
subset-closed hyperproperty, for some k < ω. It is worth noting, that we can restate the
satisfiability for bounded hyperproperties.

Proposition 9. A program P, with base semantics SP
base satisfies a k-bounded subset-closed hyper-

property cHp if and only if {X ⊆ SP
base | |X| = k} ⊆ cHp.

We can then approximate {X ⊆ SP
base | |X| = k} in order to verify the hyperproperty.

The set {X ⊆ SP
base | |X| = k} is not a correct hypersemantics, since it does not contain SP

base.
Nevertheless, it is equisatisfying to the collecting semantics {SP

base} w.r.t. SSCHk. We will see
how to exploit this fact in a moment.

Note that a k-bounded subset-closed hyperproperty with k = ω is not simpler to verify
than an arbitrary subset-closed hyperproperty. Indeed, simplifications occur, as always,
when from infinite objects we move to finite ones.

1Here X 6 Y if and only if for every σ̄ ∈ X exists σ̄′ ∈ Y such that σ̄ is a prefix of σ̄′ (see Section 4.2).
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7.1.1 Expressiveness
In the context of trace properties, a particular kind of properties are the safety ones [Alpern
and Schneider, 1985], expressing the fact that “nothing bad happens”. These properties
are interesting because they depend only on the history of single executions, meaning that
safety properties are dynamically monitorable [Alpern and Schneider, 1985]. Similarly,
safety hyperproperties (or hypersafety) are the lift to sets of safety properties. This means
that, for each set of executions that is not in a safety hyperproperty, there exists a finite
prefix-set of finite executions (the “bad thing”) which cannot be extended to satisfy the
property. Dually, liveness (trace) properties express the fact that “something good eventu-
ally happens”, namely the systems satisfying a liveness property are those that, eventually,
exhibit a good behavior. Again, liveness hyperproperties (or hyperliveness) are the lift to sets
of liveness properties. This means that a set of finite traces can be extended to a set of infi-
nite traces satisfying the property. An interesting aspect of the safety/liveness dichotomy
is that every trace property can be expressed as the intersection of a safety and a liveness
one. This also holds for hyperproperties, i.e. every hyperproperty can be expressed as the
intersection of a hypersafety and a hyperliveness one, as we explained in Section 4.2.

Another particular class of hyperproperties are the ones formed by the k-safety hyperprop-
erties (or k-hypersafety). They are safety hyperproperties in which the “bad thing” never
involves more than k executions [Clarkson and Schneider, 2010]. This means that it is pos-
sible to check the violation of a k-hypersafety just observing a set of k executions (note that
1-hypersafety are exactly safety properties). This is important for verification, in fact, it is
possible to reduce the verification of a k-hypersafety on a system S to the verification of a
safety on the self-composed system Sk [Clarkson and Schneider, 2010].

It turns out that all hypersafety are subset-closed [Clarkson and Schneider, 2010]. Also
some hyperliveness are subset-closed, in fact every trace hyperproperty is subset-closed and
hence every liveness property, which is an hyperliveness, is in SSCH. Every k-hypersafety is
k-bounded and every liveness is a 1-bounded subset-closed hyperproperty. But there are
other hyperliveness which are bounded, as we can see in the next example.

Example 15. Suppose now that executions denotations are infinite sequences of states,
namely Den = Memω . Suppose also that the systems of interest can receive requests and
can provide responses to these requests. We denote with the predicate Req(d, i) the fact
that a system, in the execution d, has received a request at time i, namely in the state di.
Analogously, we denote with the predicate Resp(d, i, j) the fact that the system has pro-
vided a response at time j to the request received at time i. Then we can define a policy
saying that if the executions of a system receive a request at time i then they have to pro-
vide a response at time j, meaning that if they receive a request at the same time then they
have to respond at the same time. Formally:

SyncR ,

{
X ⊆ Memω

∣∣∣∣ ∀d, d′ ∈ X ∀i ∈ N . (Req(d, i) ∧ Req(d′, i))⇒
∃j ∈ N . (Resp(d, i, j) ∧ Resp(d′, i, j))

}
It is easy to note that SyncR is subset-closed but it is not an hypersafety. Indeed it is an
hyperliveness, but it is also a bounded subset-closed hyperproperty. In particular, it is
in SSCH2: in order to refute it, it is sufficient to look for sets of (infinite) sequences with
cardinality 2.
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HL HSL S k-HS

SyncR Trace hyperproperties

Bounded SSC hyperproperties

HS: hypersafety
k-HS: k-hypersafety
S: safety (1-hypersafety)
HL: hyperliveness
L: liveness

Figure 7.1: Bounded subset-closed hyperproperties.

Example 15 proves that there are hyperproperties which are not k-hypersafety but are
k-bounded subset-closed (other than the trivial liveness properties). In Fig. 7.1 we have a
graphical representation of how we can classify hyperproperties, w.r.t. the safety/liveness
dichotomy and subset-closure.

Remark. Bounded hyperproperties give a characterization of some useful hyperproperties.
Non-Interference is widely characterized (most of the times) as a 2-hypersafety, but it is not
the case for the classic definition of NI, as defined in Example 14. Indeed, when execution
denotations are just (I/O) pairs, we cannot introduce the concept of history of the compu-
tation and hence of “safety”: it does not make sense to define prefixes of pairs (they are just
the first elements or the whole pair). Nevertheless, we can define the subset-closure, and
say that NI is 2-bounded.

7.2 Verification of Bounded Subset-Closed Hyperproperties

We have introduced so far k-bounded subset-closed hyperproperties, namely hyperprop-
erties cHp such that, in order to prove that X /∈ cHp we just need to exhibit a counter-
example Tk ⊆ X consisting in k elements. Formally, X ∈ cHp ⇒ ∀Y ⊆ X .Y ∈ cHp and
X /∈ Hp⇔ (∃Tk ⊆ X . (|Tk| ≤ k∧Tk /∈ cHp)). In this section, for simplicity of exposition, we
denote with S the base semantics of a given system. For instance, with S we could mean the
base semantics SP

base of a given program P, for a given execution denotations domain Den. In
this setting, a system, with base semantics S ∈ ℘(Den), satisfies a k-bounded subset-closed
hyperproperty cHp if and only if S |k , {X ⊆ S | |X| = k} ⊆ cHp (Proposition 9). In the
following we explain how it is possible to simplify the verification process even further, for
particular bounded hyperproperties. Hence we have that S |k is an equisatisfying hyperse-
mantics w.r.t. SSCHk: {S} 6⊆ S |k, but for every cHp ∈ SSCHk we have that P |= cHp if and only
if S |k ⊆ cHp.

7.2.1 Partitions-Driven Verification
We can observe that for particular bounded hyperproperties the verification can be split
into several parts, simplifying the process. For a given bounded hyperproperty cHp ∈ SSCHk,
let cHp|k be the set {X ∈ cHp | |X| = k}. Then we have that the semantics S satisfies cHp if
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and only if S |k ⊆ cHp|k. A finite partition P of cHp|k is a non-empty subset of ℘(cHp|k) such
that:

|P| ∈ N and
⋃
P = cHp|k and ∀X ,Y ∈ P .X ∩ Y = ∅

Suppose to have a family of partitioning functions {fi}i∈∆ for cHp|k, indexed, by an arbitrary
finite set ∆, namely fi ∈ ℘(℘(Den)) −→ ℘(℘(Den)), for every i ∈ ∆, and {fi(cHp|k) | i ∈ ∆}
is a finite partition2 of cHp|k. Note that the functions fi can be freely applied to S |k, but
applying {fi}i∈∆ to S |k, in general, does not result in a partition of S |k. Then we can divide
the verification process w.r.t. the partitions generated by {fi}i∈∆, as stated by the following
definition.

Definition 30 (Partitionable Hyperproperty). Given a k-bounded subset-closed hyperprop-
erty cHp, we say that cHp is partitionable if there exists a family, indexed by a finite set ∆, of
partitioning functions {fi}i∈∆ such that for every S ∈ ℘(Den) we have that:

S |k ⊆ cHp|k ⇔ ∀i ∈ ∆ . fi(S |k) ⊆ fi(cHp|k)

The definition says that for some bounded hyperproperties we can make the verification
on a set of simpler hyperproperties, as we can see in the next example.

Example 16. Non-Interference, as introduced in Example 14, is a partitionable 2-bounded
hyperproperty. Given the set {L,¬L}, the family of partitioning functions is composed by:

fL , λX .
{
{〈m1,m

′
1〉, 〈m2,m

′
2〉} ∈ X

∣∣ m1
L
= m2

}
f¬L , λX .

{
{〈m1,m

′
1〉, 〈m2,m

′
2〉} ∈ X

∣∣ m1 6
L
= m2

}
We have that {fL(NI|2), f¬L(NI|2)} is clearly a partition of NI|2. Then S ∈ ℘(Den), where
Den = Mem×Mem, satisfies NI if and only if :

fL(S |2) = {{〈m1,m
′
1〉, 〈m2,m

′
2〉} ⊆ S | m1

L
= m2}

⊆

fL(NI|2) = {{〈m1,m
′
1〉, 〈m2,m

′
2〉} ⊆ Den | m1

L
= m2 ∧m′1

L
= m′2}

and

f¬L(S |2) = {{〈m1,m
′
1〉, 〈m2,m

′
2〉} ⊆ S | m1 6

L
= m2}

⊆

f¬L(NI|2) = {{〈m1,m
′
1〉, 〈m2,m

′
2〉 ⊆ Den} | m1 6

L
= m2}

Due to the definition of Non-Interference, fL(NI|2) contains only sets {〈m1,m
′
1〉, 〈m2,m

′
2〉}

such that m′1
L
= m′2, so we have to check if fL(S |2) is contained in {{〈m1,m

′
1〉, 〈m2,m

′
2〉} ⊆

Den | m1
L
= m2 ∧m′1

L
= m′2}. Furthermore, again due to the definition of Non-Interference,

the check f¬L(S |2) ⊆ f¬L(NI|2) is not necessary, since the inclusion always holds.
2Usually a partition ofX is given by means of a partitioning function f ∈ X −→ ℘(X), but it can be equivalently

defined by a family of functions {fi ∈ ℘(X) −→ ℘(X)}.
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7.2.2 Not-Relational Verification
Suppose now that systems execution denotations have the form of pairs, namely we are
interested in a relation between the inputs and the outputs of a system (this is the case for
Non-Interference). In this setting, given an element σ̄ ∈ Den , Σ × Σ (Σ arbitrary set
representing system state denotations) we denote with σ̄` its projection on the first element
of the pair and with σ̄a its projection on the second element. Hyperproperties are in℘(℘(Σ×
Σ)) and it is natural to wonder whether we can build a verification mechanism on simpler
domains as ℘(℘(Σ) × ℘(Σ)) or ℘(℘(Σ)) × ℘(℘(Σ)). Hence, consider the abstraction αst ∈
℘(℘(Σ× Σ)) −→ ℘(℘(Σ)× ℘(Σ)) defined as αst , λX .

{
〈{σ̄` | σ̄ ∈ X}, {σ̄a | σ̄ ∈ X}〉

∣∣ X ∈
X
}

, and the further abstraction αs̃t ∈ ℘(℘(Σ) × ℘(Σ)) −→ ℘(℘(Σ)) × ℘(℘(Σ)), defined as
αs̃t , λX . 〈{A | 〈A,B〉 ∈ X}, {B | 〈A,B〉 ∈ X}〉.

Example 17. Suppose again that Den is the domain Mem ×Mem of input/output memo-
ries, and consider the set X = {{〈ma,mb〉, 〈ma,mc〉}, {〈ma,md〉, 〈md,me〉}} ∈ ℘(℘(Den)).
Thenαst(X ) is the setX = {〈{ma}, {mb,mc}〉, 〈{ma,md}, {md,me}〉} andαs̃t(X) is the pair
〈{{ma}, {ma,md}}, {{mb,mc}, {md,me}}〉.

By using αst and αnd , αs̃t ◦ αst, which both trivially form a Galois connection with
℘(℘(Den)), we can define the following particular hyperproperties.

Definition 31 (Not-Relational Hyperproperty). A k-bounded subset-closed hyperproperty
cHp is first order not-relational when for each S ∈ ℘(Den):

S |k ⊆ cHp|k ⇔ αst(S |k) ⊆ αst(cHp|k)

and it is second order not-relational when for each S ∈ ℘(Den):

S |k ⊆ cHp|k ⇔ αnd(S |k) ⊆2 αnd(cHp
|k)

Here ⊆2 is the product (or component-wise) order {〈〈X ,Y〉, 〈X ′,Y ′〉〉 | X ⊆ X ′ ∧ Y ⊆
Y ′}. A hyperproperty which is not first order nor second order not-relational, is called rela-
tional. A relational hyperproperty expresses a relation between input and output elements
of traces (Fig. 7.2 green solid lines on the left). Instead, a first order not-relational hyper-
property expresses a relation between sets of inputs and sets of outputs elements (Fig. 7.2
green solid lines on the center). Finally, a second order not-relational hyperproperty ex-
presses a relation between sets of sets of input and sets of sets of output elements (Fig. 7.2
green solid line on the right). The dotted lines in Fig. 7.2 are examples of spurious traces
added by approximating a relational hyperproperty with αst (on the center) and αnd (on the
right). The definition gives us other ways for simplifying the verification process for some
particular hyperproperties, as we can see in the following example.

Example 18. Non-Interference, as introduced in Example 14, is a first order not-relational
2-bounded hyperproperty. For every set {〈m1,m

′
1〉, 〈m2,m

′
2〉} ∈ S |2 we need to check only

if m1
L
= m2 and m′1

L
= m′2: we do not need to know if m′1 results from the computation

started in m1. Non-Interference is not second order, in fact knowing that m′1 6
L
= m′2 is not

sufficient for verification, since this set could be obtained by a set such that m1
L
= m2.
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1st order 2nd order

Figure 7.2: Relational and not-relational hyperproperties.

The ideal case is the one of second order not-relational hyperproperties: these latter can
be verified computing on℘(℘(Σ)). Fortunately, even if an hyperproperty is not second order
but just first order, when it is partitionable then we can still use a verification mechanism
on ℘(℘(Σ)). Indeed we have the following proposition.
Proposition 10. If a k-bounded hyperproperty cHp is partitionable, by the partitioning functions
{fi}i∈∆, and it is first order not-relational, then there exists a family of second order not-relational
hyperproperties {cHpi}i∈∆ such that for every S ∈ ℘(Den) we have:

S |k ∈ cHp|k ⇔ ∀i ∈ ∆ . αnd(fi(S |k)) ⊆2 αnd(fi(cHp
|k
i ))

Again we use Non-Interference as a running example, in order to show the application
of the proposition.

Example 19. We can partition Non-Interference, as introduced in Example 14, in two sec-
ond order not-relational hyperproperties:

NI|2L , {X ⊆ Mem×Mem | X = {〈m1,m
′
1〉, 〈m2,m

′
2〉} ∧m1

L
= m2 ∧m′1

L
= m′2}

NI|2¬L , {X ⊆ Mem×Mem | X = {〈m1,m
′
1〉, 〈m2,m

′
2〉} ∧m1 6

L
= m2}

It is easy to see that both NI|2L and NI|2¬L are second order not-relational hyperproperties.
Furthermore, consider the partitioning functions of Example 16, we have that S satisfies
NI if and only if αnd(fL(S |2)) ⊆2 αnd(fL(NI|2L )) and αnd(f¬L(S |2)) ⊆2 αnd(f¬L(NI|2¬L)). Since
f¬L(NI|2¬L) is always satisfied, we can skip the second verification check. Hence we have
simplified a lot the verification process.

7.2.3 Example: Verifying Abstract Non-Interference
In this subsection we show how the verification for Abstract Non-Interference, can be made
simpler, applying the results of the previous subsections. Non-Interference requires that
any change of private data should not be revealed through the observation of the public one,
but any real system are intended to leak some kind of information. Hence, a weakening of
Non-Interference is necessary.

Among all formal methods for weakening Non-Interference, we adopt the one proposed
in [Giacobazzi and Mastroeni, 2004], which is based on abstract interpretation. Abstract
Non-Interference considers dependencies between properties of values. In particular, it al-
lows some (property of) the confidential information to flow and it considers weaker attack-
ers, i.e. attackers with a restricted observation power of public data. This naturally deals
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with declassification: sometimes it is necessary to release some confidential information in
order to make a system useful (selective dependencies of [Cohen, 1977]). Hence, Abstract
Non-Interference makes Non-Interference parametric on two properties, each one modeling
different aspects of the information flow: what the attacker can observe and what informa-
tion is allowed/not allowed to flow. In general, we can suppose that the attacker may not
have the same constraints in observing inputs and outputs but, in the following, we assume
that the attacker’s observation precision is the same, both in input and in output.

The attacker is characterized as a property ρ representing what can be observed about
the public input/output of programs. An abstraction is a property of data, hence an at-
tacker can distinguish data up to particular properties (for instance, an attacker could be
able to distinguish the parity of variables but not their sign). As far as declassification is
concerned, we suppose to specify what private information is allowed to flow. Let φ be the
input property representing the input property that may flow in output, without violating
the information flow policy: we check (abstract) non-interference only for those private in-
puts agreeing on the property φ. This models the information that may flow, since it is not
interesting to check whether its variation is visible through the output.

Formally, variables take values in Z hence data properties are modeled as upper closure
operators on the complete lattice 〈℘(Z),⊆,∪,∩,∅,Z〉 [Giacobazzi and Mastroeni, 2018]. We
denote with uco(℘(Z)) the set of all upper closure operators on 〈℘(Z),⊆,∪,∩,∅,Z〉 and we
use, from now on, Greek lowercase letters in order to denote its elements. Let ι , λX .X
and τ , λX .Z be the bottom closure (representing the most concrete property) and the top
closure (representing the most abstract property) on℘(Z), respectively. Now we introduce a
notation allowing us to compactly compare memories, w.r.t. an abstraction ρ on L variables
and an abstraction φ on H variables. Given a typing environment Γ ∈ Var −→ {L,H} and two
upper closure operators ρ, φ ∈ uco(℘(Z)), we define3 νρ×φ ∈ Mem −→ (Var −→ ℘(Z)) as:

νρ×φ(m) , λx .

{
ρ({m(x)}) if Γ(x) = L

φ({m(x)}) if Γ(x) = H

Hence νρ×φ(m) = νρ×φ(m′) denotes the fact that memories m,m′ agree on public variables,
up to the abstraction ρ (denoting that the attacker is observing the same public input prop-
erty), and agree on private variables, up to the abstraction φ (denoting that the variations
indistinguishable by φ may be revealed).

Using this notation, we can elegantly generalize the definition of Non-Interference w.r.t.
a property φ ∈ uco(℘(Z)) of input private variables which may flow and an observable
property ρ ∈ uco(℘(Z)) of input/output public variables. A program is (abstract) non-
interferent if and only if whenever it starts its computation from memories m1,m2, such
that νρ×φ(m1) = νρ×φ(m2), then it ends its computation in memories m′1,m

′
2 such that

νρ×τ (m′1) = νρ×τ (m′2). This hyperproperty is defined as:

ANIρφ , {X ∈ ℘(Den) | ∀σ̄, σ̄′ ∈ X . νρ×φ(σ̄`) = νρ×φ(σ̄′`)⇒ νρ×τ (σ̄a) = νρ×τ (σ̄′a)}

Proposition 11. For any ρ, φ ∈ uco(℘(Z)), we have that ANIρφ is a partitionable first order not-
relational 2-bounded subset-closed hyperproperty.

3We take in consideration the two-levels security lattice for classic Non-Interference, but it is straightforward to
generalize the definition for arbitrary multi-levels lattices.
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Proof. The partitioning functions, indexed by ∆,{=, 6=}, for ANIρφ, ANI in short, are:

f= , λX .
{
{〈m1,m

′
1〉, 〈m2,m

′
2〉} ∈ X

∣∣ νρ×φ(m1) = νρ×φ(m2)
}

f6= , λX .
{
{〈m1,m

′
1〉, 〈m2,m

′
2〉} ∈ X

∣∣ νρ×φ(m1) 6= νρ×φ(m2)
}

Clearly, {f=(ANI), f6=(ANI)} is a partition of ANI|2. Furthermore, we have that αst(ANI|2) is:{
〈{m1,m2 | νρ×φ(m1) = νρ

×φ(m2)}, {m′1,m′2 | νρ
×φ(m′1) = νρ

×φ(m′2)}〉
∣∣ 〈m1,m

′
1〉, 〈m2,m

′
2〉 ∈ Den

}
∪
{
〈{m1,m2 | νρ×φ(m1) 6= νρ

×φ(m2)}, {m′1,m′2}〉
∣∣ 〈m1,m

′
1〉, 〈m2,m

′
2〉 ∈ Den

}
It is clear that a system S satisfies ANI if and only if αst(S |2) ⊆ αst(ANI|2). In fact, this
later inclusion means that for every pair of executions of S, either the executions start in
memories equivalent, modulo 〈φ, ρ〉, and end in memories equivalent modulo 〈φ, ρ〉 or the
executions start in memories not equivalent (which is the definition of ANI).

Due to Propositions 11 and 10, there exists two second order not-relational hyperprop-
erties ANI|2= and ANI|26= such that S ∈ ANI if and only if αnd(f=(S |2)) ⊆2 αnd(f=(ANI|2=)) and
αnd(f 6=(S |2)) ⊆2 αnd(f6=(ANI|26=)). These two hyperproperties are:

ANI|2= ,

{
X ⊆ Mem×Mem

∣∣∣∣ X = {〈m1,m
′
1〉, 〈m2,m

′
2〉} ∧

νρ×φ(m1) = νρ×φ(m2) ∧ νρ×τ (m′1) = νρ×τ (m′2)

}
ANI|26= ,

{
X ⊆ Mem×Mem

∣∣ X = {〈m1,m
′
1〉, 〈m2,m

′
2〉} ∧ νρ

×φ(m1) 6= νρ×φ(m2)
}

The verification is then reduced to the check αnd(f=(S |2)) ⊆2 αnd(f=(ANI|2=)) since, as ex-
pected, αnd(f 6=(S |2)) ⊆2 αnd(f 6=(ANI|26=)) is, by definition, always true.

Now we can show how to exploit this fact in order to verify ANIρφ. Given the base se-
mantics S ∈ ℘(Den) of a program, for the set of execution denotations domain Den ,
Mem × Mem, its collecting semantics, i.e. it strongest hyperproperty, for Den is {S}. We
have that the program satisfies ANI if and only if S ∈ ANI or, equivalently, if and only if
{S} ⊆ ANI. This boils down to check whether αnd(f=(S |2)) ⊆2 αnd(f=(ANI|2=)) holds or
not. Assume that αnd(f=(S |2)) is the pair 〈X ,Y〉 and αnd(f=(ANI|2=)) is the pair 〈X ′,Y ′〉,
then we have, by definition, X ⊆ X ′. This means that the verification process for Abstract
Non-Interference is reduced to the check Y ⊆ Y ′, namely to check whether Y contains only
sets of memories which agree on L variables, modulo the abstraction ρ. So, basically, we
can verify Abstract Non-Interference just checking whether αnd(f=(S |2))a satisfies a hyper-
property on the set of execution denotations Mem, as stated by the following proposition.

Proposition 12. A program, with base semantics S, satisfies ANIρφ ∈ ℘(℘(Mem ×Mem)) if and
only if αnd(f=(S |2))a ⊆ equiv

ρ
L , where equivρL ∈ ℘(℘(Mem)) is:

equivρ
L
,
{
X ⊆ Mem

∣∣ ∀m,m′ ∈ X . νρ×τ (m) = νρ×τ (m′)
}

This simplifies the verification process for Abstract Non-Interference: We can build a
verification method computing on ℘(℘(Mem)) instead of ℘(℘(Mem×Mem)).
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7.3 Hypersemantics for Subset-Closed Hyperproperties
As we have observed, in order to verify hyperproperties, we may need to move program
semantics into the hyperlevel. Until now, we described the links between base and hyperse-
mantics of a transition system. In this section, we show how to lift a given semantic operator,
defined on a program P syntax, computing SP

base. We lift this operator, defined on sets, in or-
der to obtain a corresponding operator, defined on sets of sets, suitable for hyperproperties
verification. In the following, we consider denotational semantics, as introduced in Chap-
ter 5, as a base semantics, but the whole framework can be generalized to other types of
semantics.

Consider, as a simple example, the post-conditions semantics JPK ∈ ℘(Mem) −→ ℘(Mem),
introduced in Subsection 5.2.1, of a given program in Imp. Recall that this semantics com-
putes the strongest memory invariant on the last control point of P, obtained by the exe-
cution of the program starting in a given set of memories. Basically it computes a relation
between input and output (memory) invariants of P.

In order to simplify the presentation, consider the operator JbK ∈ ℘(Mem) −→ ℘(Mem)
filtering memories, namely JbK X , {m ∈ X | 〈b,m〉 ⇓B tt}. Hence, we can express more
compactly the post-conditions semantics as follows:

JPK ∅ , ∅ J ii c1
ll kk c2

ff K X , J kk c2
ff K ◦J ii c1

ll K X J ii skip ff K X , X

J ii x := a ff K X , {m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n}

J ii if b then {P1 } else {P2 } ff K X , JP1K JbK X ∪ JP2K J¬bK X

J ii while ll b {P } ff K X , J¬bK
(
lfp⊆∅ F

)
where F (T ) , X ∪ JPK JbK T

At this point, we have to move base semantics towards sets of sets, namely on℘(℘(Mem)),
namely, we need to define a semantic operator LPM ∈ ℘(℘(Mem)) −→ ℘(℘(Mem)) comput-
ing it. In this case, we have to lift the base semantic operator, as explained in the previ-
ous chapter. Problems arise mainly when we have a fixpoint computation, since for not-
recursive statements operators the direct image lift suffices. Suppose then to have a filter-
ing function LbM ∈ ℘(℘(Mem)) −→ ℘(℘(Mem)) for boolean expressions, defined as LbM X ,
{JbK X | X ∈ X} \ {∅}4. The definition of the hypersemantics is just the direct image lift
(to sets of sets) of JPK for every statement, except for the while case (and for sequencing,
which is by functions composition). Indeed, we can observe that, at hyperlevel, the semantic
operator LPM for the while statements does not coincide with the direct image lift of JPK ,
which would be L ii while kk b {P } ff M X , L¬bM (lfp⊆∅ H ) with H , λT .X ∪ LPM LbM T .
Since in the while statement we have a fixpoint computation, this latter solution does not
lead to a correct hypersemantics: i.e. {JPK I} 6⊆ LPM {I}.

Example 20. Let P = 00 while 11 (x < 4) { 22 x := x + 1 33 } 44 . Since P has only one variable,
we denote [x 7→ v] just by v and the set of functions {[x 7→ v1], . . . [x 7→ vn]} by {v1, . . . vn}.
The base semantics, from I , {2, 5}, is JPK {2, 5} = {4, 5}, computed as {2, 5} F−→ {4, 5}

4We need to remove∅ for technical reasons. This is also coherent with our initial choice to the define∅ instead
of {∅} as the false hyperproperty.
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where
F

0
= ∅; F

1
= {2, 5}; F

2
= {2, 3, 5}; F

3
= {2, 3, 4, 5}

The naive lift of the while base semantics would be LPM {{2, 5}} = {∅, {4}, {5}}, com-
puted as {{2, 5}} H−→ {∅, {4}, {5}}where

H
0

= ∅ H
1

= {{2, 5}} H
2

= {{3}, {2, 5}} H
3

= {{3}, {4}, {2, 5}}

H
4

= {∅, {3}, {4}, {2, 5}}

From the iterates of F and H we can observe the monotonicity (and the extensivity) of F
and H , but the hypersemantics is not correct, because JPK {2, 5} = {4, 5} 6∈ {∅, {4}, {5}} =
LPM {{2, 5}}.

In order to lift the while semantics, we can use one of the solutions proposed in the pre-
vious chapter. For instance, changing the computational domain, we can obtain the generic
hypersemantics operator for while statements:

L ii while kk b {P } ff M X , L¬bM (lfp
⊆H
{∅} H

G
) where: H

G
(T ) , X ∪H {JPK JbK T | T ∈ T }

The iterates of this operator, instantiated to Example 20, are:

F
G

0
= {∅}; F

G

1
= {{2, 5}}; F

G

2
= {{2, 3, 5}}; F

G

3
= {{2, 3, 4, 5}}

Then
⋃
H

0≤n≤3F
G

n
({∅}) = {{2, 3, 4, 5}} and, finally, L4 ≤ xM {{2, 3, 4, 5}} = {{4, 5}}, which

is exactly {JPK {2, 5}}. Of course, we can also consider the best correct approximation,
obtaining the subset-closed hypersemantics operator for while statements:

L ii while kk b {P } ff M X , L¬bM (lfp⊆{∅} H
S
) where: H

S
(T ) , ℘(

⋃
X ∪ JPK JbK

⋃
T )

The iterates of this operator, instantiated to Example 20, are:

F
S

0
= {∅}; F

S

1
= ℘({2, 5}); F

S

2
= ℘({2, 3, 5}); F

S

3
= ℘({2, 3, 4, 5})

Then
⋃

0≤n≤3 F
S

n
({∅}) = ℘({2, 3, 4, 5}) and, finally, L4 ≤ xM ℘({2, 3, 4, 5}) = ℘({4, 5}),

which is exactly ℘(JPK {2, 5}). Finally, without changing the computational order, we can
define two hypersemantics operator for while statements which are in between the generic
and the subset-closed versions, namely they strictly contain the first and they are strictly
contained in the second. They are defined as L ii while kk b {P } ff M X , L¬bM (lfp⊆∅ H�),
with � ∈ {I,M}, where:

Inner lift HI , λT . {∅} ∪ (X ∪H LPM LbM T )

Mixed lift HM , λT .X ∪ {JPK JbK T ∪ J¬bK T | T ∈ T }

The Mixed lift is the instantiation of the hypercollecting semantics of [Assaf et al., 2017] to
the denotations domain Mem. Both operators H� are monotone functions over the complete
lattice 〈℘(℘(Mem)),⊆,∪,∩, ℘(Mem),∅〉, hence their least fixpoint exists.
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Example 21. Consider P of Example 20. The Inner lift hypersemantics is LPM {{2, 5}} =

{∅, {5}, {4, 5}}, computed as {{2, 5}} HI−→ {∅, {5}, {4, 5}}where

HI

0
= ∅ HI

1
= {∅, {2, 5}} HI

2
= {∅, {2, 5}, {2, 3, 5}}

HI

3
= {∅, {2, 5}, {2, 3, 5}, {2, 3, 4, 5}}

The Mixed lift hypersemantics is LPM {{2, 5}} = {{5}, {4, 5}}, computed as {{2, 5}} HM−→
{{5}, {4, 5}}where

HM

0
= ∅ HM

1
= {{2, 5}} HM

2
= {{2, 5}, {3, 5}} HM

3
= {{2, 5}, {3, 5}, {4, 5}}

From the iterates of H� , with � ∈ {I,M}, we can observe the monotonicity (and the exten-
sivity) of H� . Both hypersemantics are correct, because JPK {2, 5} ∈ LPM {{2, 5}}.

Let LPMI and LPMM be the hypersemantics defined in terms of the Inner and Mixed lifts, re-
spectively, for the while case, and in terms of the direct image lift for all the other statements
(again, for sequencing, they are defined by functions composition). The generic and subset-
closed hypersemantics, that we denote LPM

G
and LPM

S
, respectively, are clearly correct: the

first computes exactly the strongest program (generic) hyperproperty and the second the
strongest program subset-closed hyperproperty. It turns out that also the other two hyper-
semantics introduced are correct.
Theorem 20 (Correctness). For every X ∈ ℘(Mem) we have

{JPK X} ⊆ LPMI {X} and {JPK X} ⊆ LPMM{X}

Proof. The proof can be found in Appendix A.

This result tells us that these hypersemantics can be soundly used for the verification of
hyperproperties of P, unfortunately adding some further spurious information not directly
due to approximation, i.e. spurious elements of ℘(℘(Mem)). Luckily, for subset-closed hy-
perproperties this is not a real concern. In fact when cHp ∈ SSCH, we have that P |= cHp if
and only if ℘(JPK I) ⊆ cHp. Furthermore, the two hypersemantics introduced above, are
related as follows.
Proposition 13. ∀X ∈ ℘(℘(Mem)): LPMMX ⊆ LPM

S
X and LPMI X ⊆ LPM

S
X .

Hence we can state that all the proposed hypersemantics are complete verification meth-
ods for subset-closed hyperproperties.
Theorem 21 (Completeness). Let Hp ∈ SSCH, then:

P |= Hp ⇔ LPMI {I} ⊆ Hp ⇔ LPMM{I} ⊆ Hp

Proof. The theorem follows from Proposition 13, from the fact that LPM
S
X ⊆ ℘(JP K

⋃
X )

for every X in ℘(℘(Mem)) and by correctness (Theorem 20).

Hence the theorem says that even if the hypersemantics insert spurious information, that
information do not lowers the precision of the analysis, when we deal with subset-closed
hyperproperties. Note that LPM

G
is complete for generic hyperproperties, not only for the

subset-closed one.
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A More Complex Example: Partial Trace Semantics. The constructions presented above
can be applied also to more complex base semantics. For instance, we show now how we
can compute the partial trace semantics τ ~∝ of a program and how to lift it to the hyperlevel.
The partial trace semantics is a complete verification method for safety trace properties on
finite executions. First, consider the following semantic operator JPK~∝ ∈ ℘(Σ~∝) −→ ℘(Σ~∝),
defined for every P ∈ Imp as follow:

JPK~∝∅ , ∅ J ii c1
ll kk c2

ff K~∝X , X ∪ J kk c2
ff K~∝◦J ii c1

ll K~∝X

J ii skip ff K~∝X , X ∪ {σ̄〈 ii ,m〉〈 ff ,m〉 | σ̄〈 ii ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝
ε }

J ii x := a ff K~∝X , X ∪ {σ̄〈 ii ,m〉〈 ff ,m[x←[ n]〉 | σ̄〈 ii ,m〉 ∈ X ∧ 〈a,m〉 ⇓Z n ∧ σ̄ ∈ Σ~∝
ε }

J ii if b then {P1 } else {P2 } ff K~∝X ,
X ∪ Y1 ∪ Y2 ∪
{σ̄〈 tt ,m〉〈 ff ,m〉 | σ̄〈 tt ,m〉 ∈ Y1 ∪ Y2 ∧ σ̄ ∈ Σ~∝

ε }

with: P1 = ll c1
kk P2 = hh c2

dd tt ∈ { kk , dd }
Y1 = JP1K~∝{σ̄〈 ii ,m〉〈 ll ,m〉 | 〈b,m〉 ⇓B tt ∧ σ̄〈 ii ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝

ε }
Y2 = JP2K~∝{σ̄〈 ii ,m〉〈 hh ,m〉 | 〈b,m〉 ⇓B ff ∧ σ̄〈 ii ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝

ε }

J ii while ll b {P } ff K~∝X ,
X ∪ lfp⊆∅ F~∝ ∪
{σ̄〈 ll ,m〉〈 ff ,m〉 | σ̄〈 ll ,m〉 ∈ lfp⊆∅ FR ∧ 〈b,m〉 ⇓B ff ∧ σ̄ ∈ Σ~∝

ε }

with: P = kk c tt Y = JPK~∝{σ̄〈 ll ,m〉〈 kk ,m〉 | 〈b,m〉 ⇓B tt ∧ σ̄〈 ll ,m〉 ∈ T ∧ σ̄ ∈ Σ~∝
ε }

F~∝(T ) ,
{σ̄〈 ii ,m〉〈 ll ,m〉 | σ̄〈 ii ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝

ε } ∪ Y ∪
{σ̄〈 tt ,m〉〈 ll ,m〉 | σ̄〈 tt ,m〉 ∈ Y ∧ σ̄ ∈ Σ~∝

ε }

The function F~∝ ∈ ℘(Σ~∝) −→ ℘(Σ~∝) is monotone on the CPO 〈℘(Σ~∝),⊆,∪,∅〉, hence its
least fixpoint

⋃
n<ω F~∝

n
(∅) exists. Indeed, the partial trace semantics τ ~∝ of P coincides

with JPK~∝I . Here I is the set {〈 ii ,m〉 | m ∈ MemP}, assuming P = ii c ff . As an example,
we define the semantics computing {τ ~∝}. Consider the following semantic operator LPM~∝ ∈
℘(℘(Σ~∝)) −→ ℘(℘(Σ~∝)), defined for every P ∈ Imp as follow:

LPM~∝∅ , ∅ L ii c1
ll kk c2

ff M~∝X , {J ii c1
ll kk c2

ff K~∝X | X ∈ X}

L ii skip ff M~∝X , {J ii skip ff K~∝X | X ∈ X}

L ii x := a ff M~∝X , {J ii x := a ff K~∝X | X ∈ X}

L ii if b then {P1 } else {P2 } ff M~∝X , {J ii if b then {P1 } else {P2 } ff K~∝X | X ∈ X}

L ii while ll b {P } ff M~∝X ,
X ∪H lfp

⊆H
{∅}F

~∝
G
∪H{{

σ̄〈 ll ,m〉〈 ff ,m〉
∣∣∣∣ σ̄〈 ll ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝

ε

∧ 〈b,m〉 ⇓B ff

}∣∣∣∣X ∈ lfp
⊆H
{∅} F~∝

G

}
with: P = kk c tt

Y = {JPK~∝{σ̄〈 ll ,m〉〈 kk ,m〉 | 〈b,m〉 ⇓B tt ∧ σ̄〈 ll ,m〉 ∈ T ∧ σ̄ ∈ Σ~∝
ε } | T ∈ T }

F~∝
G

(T ) ,
{{σ̄〈 ii ,m〉〈 ll ,m〉 | σ̄〈 ii ,m〉 ∈ X ∧ σ̄ ∈ Σ~∝

ε } | X ∈ X} ∪H Y ∪H
{{σ̄〈 tt ,m〉〈 ll ,m〉 | σ̄〈 tt ,m〉 ∈ Y ∧ σ̄ ∈ Σ~∝

ε } | Y ∈ Y}
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The partial trace generic hypersemantics τ ~∝
G

of P coincides with LPM~∝{I}, where I is the set
{〈 ii ,m〉 | m ∈ MemP}, assuming P = ii c ff .

7.3.1 On Bounded Hyperproperties
We have already seen that for a k-bounded subset-closed hyperproperty cHp the verifica-
tion concerns the subsets of the base semantics with cardinality k. Suppose that the base
semantics is τ , namely the post-conditions semantics. This means that P |= cHp if and
only if {X ⊆ τ | |X| = k} ⊆ cHp. But this boils down to check JPK X ∈ cHp, for every
X ⊆ I such that |X| = k. Now consider the set I |k , {X ⊆ I | |X| = k}. The following
theorem tells us how we can use the post-conditions hypersemantics for verifying bounded
hyperproperties.

Theorem 22. Given cHp ∈ SSCHk, we have that P |= cHp if and only if LPM I |k ⊆ cHp.

Proof. By correctness (Theorem 20) and completeness (Theorem 21), for subset-closed hy-
perproperties, of the post-conditions hypersemantics, we have that {JPK X | X ∈ I |k} ⊆
LPM I |k. Then, recalling that we are in a deterministic setting, we have that {JPK X | X ∈
I |k} = {X ⊆ JPK I | |X| = k}. Due to Proposition 9 the theorem follows.

In the next chapter we will see how to apply Theorem 22 in order to verify information
flow specifications, which are formalized as 2-bounded hyperproperties.
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Application: Verification of Information Flows
8

Until now we have seen how to define hypersemantics and hyperdomains. In this chap-
ter we give an example of application of the theoretical results presented. We take in

consideration information flows, hence the goal of this chapter is to define a verification
mechanism for (Abstract) Non-Interference. In particular we define an abstract semantics
approximating the hypersemantics presented at the end of Chapter 7.

The original formulation of Non-Interference [Cohen, 1977] takes in consideration only
two security levels: private (H), i.e. information that have to be kept secret, and public (L), i.e.
information that could be freely released. A program is said non-interferent if there are no in-
formation flows from private (input) variables to public (output) variables, and it is said in-
terferent otherwise. In the following, we define the classic notion of Non-Interference for pro-
grams in Imp. A program P = ii c ff is non-interferent if and only if for every pair of memo-
ries m1,m2, such that m1

L
= m2, 〈〈 ii ,m1〉,P〉_∗ 〈 ff ,m′1〉 and 〈〈 ii ,m2〉,P〉_∗ 〈 ff ,m′2〉, we

have m′1
L
= m′2. As usual, the relation L

= says that two memories are equal modulo public
variables, namely m

L
= m′ if and only if ∀x .Γ(x) = L ⇒ m(x) = m′(x). This specification

checks the input/output relation between executions, so we represent programs compu-
tations with just the initial and the final states. Furthermore, it is termination insensitive,
hence we ignore divergent computations. The denotations domain is Den , Σ+ = Σ × Σ,
where we recall that Σ = Lab×Mem.

Remark. We could have defined Non-Interference on the more concrete denotations domain
Σ ~∞ and retrieve the definition of the specification on Σ+ by abstraction, but this is only a
conceptual step, since Σ+ is the most abstract domain sufficiently precise to express Non-
Interference.

Non-Interference is an hyperproperty, hence we need to define it on ℘(℘(Σ× Σ)).

Definition 32 (Non-Interference for Imp). The classic notion of Non-Interference, NI in short,
for programs in Imp is defined as:

NI ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ× Σ

∣∣∣∣∣ ∀〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉 ∈ X .

m1
L
= m2 ⇒ m′1

L
= m′2

}

Basically, the definition says that a program is non-interferent when its execution starting
from two arbitrary memories L-equivalent yields two memories L-equivalent. The defini-
tion, is implicitly parametric on a typing environment Γ, which is supposed to be defined
for every variable.
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Weakening Non-Interference. The limitation of the above notion is that it is extremely
restrictive. Indeed, Non-Interference requires that any change of private data has not to be
revealed through the observation of the public one, but any real system is intended to leak
some kind of information (one classic example is the form for passwords check). Hence, a
weakening of Non-Interference is necessary.

As already highlighted, we adopt Abstract Non-Interference [Giacobazzi and Mastroeni,
2004], as a formal method to weak Non-Interference. Abstract Non-Interference makes Non-
Interference parametric on two properties, each one modeling different aspects of the infor-
mation flow: what the attacker can observe and what information is allowed/not allowed to
flow. In general, we can suppose that the attacker may not have the same constraints in ob-
serving inputs and outputs but, in the following, we assume that the attacker’s observation
precision is the same, both in input and in output.

The attacker is characterized as a property ρ representing what can be observed about
the public input/output of programs. An abstraction is a property of data, hence an at-
tacker can distinguish data up to particular properties (for instance, an attacker could be
able to distinguish the parity of variables but not their sign). As far as declassification is
concerned, we suppose to specify what private information is allowed to flow. Let φ be the
input property that may flow in output, without violating the information flow policy: we
check (abstract) non-interference only for those private inputs agreeing on the property φ.
This models the information that may flow, since it is not interesting to check whether its
variation is visible through the output.

Using the notation introduced in Subsection 7.2.2, we can elegantly generalize the defi-
nition of Non-Interference w.r.t. a property φ ∈ uco(℘(Z)) of input private variables which
may flow and an observable property ρ ∈ uco(℘(Z)) of input/output public variables. A
program P = ii c ff is abstract non-interferent if and only if for every pair of memories
m1,m2, such that νρ×φ(m1) = νρ×φ(m2), 〈〈 ii ,m1〉,P〉 _∗ 〈 ff ,m′1〉 and 〈〈 ii ,m2〉,P〉 _∗
〈 ff ,m′2〉, we have νρ×τ (m′1) = νρ×τ (m′2).

Again, the denotations domain is Den , Σ+, hence Abstract Non-Interference is the
following hyperproperty on ℘(℘(Σ× Σ)).

Definition 33 (Abstract Non-Interference). Let φ ∈ uco(℘(Z)) be the property of input
private variables which may flow and ρ ∈ uco(℘(Z)) be the observable property of in-
put/output public variables. Abstract Non-Interference w.r.t. φ and ρ, ANIρφ for short, is

ANIρφ ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ×Σ

∣∣∣∣ ∀〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉 ∈ X .
νρ×φ(m1) = νρ×φ(m2)⇒ νρ×τ (m′1) = νρ×τ (m′2)

}

This means that a program P satisfies Abstract Non-Interference relatively to a public
input/output observation ρ and a private input property φ that may flow if, whenever the
public input values have the same property ρ and the private input values have the same
property φ, then the execution of P leads to ρ-indistinguishable public values. It is worth
noting that Non-Interference is an instance of ANI, with ρ = ι, since NI deals with all-power
observers, namely attackers observing values in the most precise way, and φ = τ , meaning
that no declassification is allowed since all values have the property τ . Hence, NI = ANIιτ .
In other words, since input/output L variables need to have the property “to be equal”, we
model ρ as the identity abstraction ι. Dually, in NI there is no declassification, hence we have
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φ = τ , meaning that we need to check the dependence for every combination of H inputs
(in fact τ({n}) = τ({n′}), for every pair of elements n, n′ ∈ Z).

8.1 Abstract Hypersemantics for Abstract Non-Interference
Since ANI is parametric on the property to be checked, an unique verifier is not possible. In
this section we give a hypersemantics and a parametric abstract semantics for the verification
of Abstract Non-Interference. This means that we give one hypersemantics, whose abstract
versions, parametric on the ANI properties to check, are useful for ANI verification. In Sec-
tion 8.2 we go deeply in the details of a verifier for Non-Interference. A prototype analyzer
has been written in order to test the abstract semantics.

For doing so, we follow the construction introduced in Section 7.2 for k-bounded subset-
closed hyperproperties (indeed ANI is 2-bounded). First, we give the definition of the hy-
persemantics, computing at the level of sets of sets. Then we instantiate the hyperlevel
constants domain of Section 6.2 to Abstract Non-Interference. The latter, in its original for-
mulation, may be not machine-representable (it may have an uncountable set of elements).
This depends on the structure of the domain ρ. For such cases we show how to approximate
the hyperlevel constants domain, in order to make its implementation feasible. Finally we
show how to design the abstract semantics.

8.1.1 The Hypersemantics
Since Abstract Non-Interference is 2-bounded, it is equisatisfiable to the hyperproperty
(ANIρφ)|2 , {X ⊆ ANIρφ | |X| = 2}. Furthermore, as we have seen in Sec. 7.2, we can
verify Abstract Non-Interference in a simpler domain, namely we can collect states instead
of input/output traces of states. We can partition ANI in two simpler hyperproperties:

(ANIρφ)= ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ×Σ

∣∣∣∣ X = {〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉} ∧
νρ×φ(m1) = νρ×φ(m2) ∧ νρ×τ (m′1) = νρ×τ (m′2)

}

(ANIρφ)6= ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ×Σ

∣∣∣∣ X = {〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉} ∧
νρ×φ(m1) 6= νρ×φ(m2)

}
Then we can skip the check for (ANIρφ)6= since it is always satisfied, by every program. Fur-
thermore, we can note that (ANIρφ)= is a second-order not-relational hyperproperty, mean-
ing that it is equivalent to the hyperproperty 〈X ,Y〉 ∈ ℘(℘(Σ))× ℘(℘(Σ)), defined as:

X ,
⋃

ii ∈Lab

{X ⊆ Σ | X = {〈 ii ,m1〉, 〈 ii ,m2〉} ∧ νρ×φ(m1) = νρ×φ(m2)}

Y ,
⋃

ff ∈Lab

{X ⊆ Σ | X = {〈 ff ,m′1〉, 〈 ff ,m′2〉} ∧ νρ
×τ (m′1) = νρ×τ (m′2)}

In the definition above, control points are totally irrelevant, indeed we have that 〈X ,Y〉 is
isomorphic to 〈X ′,Y ′〉, where:

X ′ , {X ⊆ Mem | X = {m1,m2} ∧ νρ×φ(m1) = νρ×φ(m2)}
Y ′ , {X ⊆ Mem | X = {m′1,m′2} ∧ νρ

×τ (m′1) = νρ×τ (m′2)}
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This basically means that it suffices to check whether JPK X ∈ Y ′, for everyX ∈ X ′. We can
verify this at once using a post-conditions hypersemantics LPM , namely checking whether
LPM X ′ = Y ′. This observations induce the following proposition.

Proposition 14. P |= ANIρφ if and only if LPM I2
ρ,φ ⊆ equiv

ρ
L , where:

I2

ρ,φ , {{m,m′} ⊆ MemP | νρ×φ(m) = νρ×φ(m)}
equivρ

L
, {X ⊆ Mem | ∀m,m′ ∈ X . νρ×τ (m) = νρ×τ (m′)}

As we have seen in Chapter 7, we can have different correct post-conditions hyperseman-
tics, depending on how we define the semantics for loops. We chose to adopt the following
solution. The post-conditions hypersemantics LPM ∈ ℘(℘(Mem)) −→ ℘(℘(Mem)) is:

LPM ∅ , ∅ L ii c3
ll kk c2

ff M X , L kk c2
ff M ◦L ii c1

ll M X L ii skip ff M X , X

L ii x := a ff M X , {{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ X}

L ii if b then {P1 } else {P2 } ff M X , {JP1K JbK X ∪ JP2K J¬bK X | X ∈ X}

L ii while ll b {P } ff M X , L¬bM
(
lfp⊆∅ H

)
where:

H (T ) , X ∪ {JPK JbK T ∪ J¬bK T | T ∈ T }

This semantics is very simple (we do not even need to change the computational domain)
and yet it is complete for subset-closed hyperproperties (Theorem 21), as Abstract Non-
Interference.

8.1.2 Towards Abstraction
Unfortunately, LPM I2

ρ,φ and equiv
ρ
L are not computable in general, hence we need approx-

imations. In order to compute a sound approximation of LPM I2
ρ,φ, we rely on abstract in-

terpretation. The first step is to define the abstract domain used to verify Abstract Non-
Interference.

8.1.2.1 The Abstract Domain for Abstract Non-Interference.

The domain is an instance of the hyperlevel (abstract) constants (Section 6.2), and it checks
whether a set of sets of values contains constant sets modulo ρ. Namely it contains only
sets of values indistinguishable by ρ. In the following, all abstractions α are continuous (i.e.
they preserve the least upper bound of chains), so their left adjoint α− always exists1.

The domain is an abstraction of℘(℘(Z)). We have seen that a hyperdomain, i.e. a domain
suitable for the verification of hyperproperties, can be decomposed in an inner abstraction,
approximating traces, and in an outer abstraction, approximating properties of traces. Fol-
lowing this idea, we use as inner abstraction just ρ. Instead, the outer abstraction checks
whether the inner abstraction always returns (atomic) constant values, not necessarily the
same. For instance, suppose ρ can distinguish values up-to their sign, then {{1}, {−1,−3}}
contains only (atomic) constant sets, instead {{1}, {2,−3}} contains also a not-constant set
(in this case ρ maps {2,−3} to Z).

1This is a sufficient condition in order to form a Galois connection.
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Given a upper closure operator ρ ∈ uco(℘(Z)), we denote with Atmρ the set of its atoms,
namely the set Atmρ , {X ∈ ρ(℘(Z)) | ∀Y ∈ ρ(℘(Z)) . Y ⊆ X ⇒ (Y = ∅ ∨ Y = X)}2 of
elements covering the bottom (∅ in this case). As explained in Section 6.2, we assume that
Atmρ forms a partition of Z. In order to perform hyperlevel constants on ρ we consider the
set of its atoms: these latter precisely identify the properties of concrete values observed
in ρ. The hyperlevel (abstract) constants domain for ρ is ρhc , ℘(Atmρ) ∪ {ρ(℘(Z))}. The
abstraction function αhc ∈ ℘(℘(Z)) −→ ρhc is αhc(X ) , ∅ if X = ∅, αhc(X ) , {ρ(X) | X ∈
X} if {ρ(X) | X ∈ X} ⊆ Atmρ and αhc(X ) , ρ(℘(Z)) otherwise. Its left adjoint is the
identity function, namely γhc , α−hc = id. Then we have the Galois insertion:

〈℘(℘(Z)),⊆〉 −−−−→−→←−−−−−
αhc

γhc

〈ρhc,⊆〉

Example 22. Let ρ be the upper closure operator distinguishing the sign of integers, namely
ρ = Sgn defined in Section 6.2. The set of its atoms is AtmSgn = {Z<0,Z=0,Z>0}. The
hyperlevel Sgn-constants domain is Sgnhc , ℘(AtmSgn)∪ {Sgn(℘(Z))}, and αhc(X ) , X if,
X = ∅ or ∀X ∈ X .Sgn(X) ∈ AtmSgn, and αhc(X ) = Sgn(℘(Z)) otherwise.

The set of sets X = {{−1,−2}, {3, 5, 4}} is abstracted in {Z<0,Z>0}, meaning that
the set is constant w.r.t. Sgn. Instead, Y = {{−1, 3}, {2, 4, 9}} is abstracted to Sgn(℘(Z))
since there are no atoms approximating Sgn({−1, 3}) = Z, meaning that Y is not con-
stant. Suppose now that X ,Y are the sets of possible sets of values a variable x may take;
αhc(X ) ⊆ AtmSgn means that ∀X ∈ X and ∀n, n′ ∈ X . Sgn({n}) = Sgn({n′}), i.e. the vari-
able x is constant w.r.t. Sgn. Conversely, αhc(Y) = Sgn(℘(Z)) means that ∃Y ∈ Y such that
∃n, n′ ∈ Y .Sgn({n}) 6= Sgn({n′}), i.e. the variable x is not constant w.r.t. Sgn.

This domain is sufficient for Abstract Non-Interference verification, as we will prove in
Theorem 23 but it may be not machine-representable. We solve the problem approximating
the domain with a finite version.

In the Case of Uncountable Domains. In the presentation of ρhc we used an upper closure
operator to describe the abstract domain. In an implementation of this latter one would use
a machine-representable description of the domain, isomorphic to ρhc, defining all lattice
operators accordingly. If Atmρ is finite, no problems arise since ℘(Atmρ) is still finite (this
is the case, for ρ = Sgn). If Atmρ is infinite, we have that ℘(Atmρ) is uncountable and
hence we need to define a simpler domain, which is machine-representable but still able
to verify Abstract Non-Interference (this is the case, for instance, when ρ is the domain for
constants propagation: its set of atoms is isomorphic to Z). The solution we adopt is to
abstract precisely the singletons of atoms and to lose precision on other elements of the
poweset.

Let Atm
ρ be a set isomorphic to Atmρ, aiming at representing sets containing only one

singleton, i.e. of the form {a}, given a ∈ Atmρ, which is the information we want to observe
precisely, and let ¯ ∈ Atmρ −→ Atm

ρ a bijection. Furthermore, we denote by Aρ the abstract
element representing the set of all atoms. Then we define Cρ , {ā | a ∈ Atmρ}∪{⊥,>,Aρ},
with the partial order E⊆ Cρ × Cρ defined as c1 E c2 , (c1 = ⊥ ∨ c1 = c2 ∨ (c1 = ā ∧

2We use the fact that an upper closure operator can be identified with the set of its fixpoints ρ(℘(Z)) = {X ∈
℘(Z) | ρ(X) = X}.
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c2 = Aρ) ∨ c2 = >). Now consider the abstraction αCρ ∈ ρhc −→ Cρ and the concretization
γCρ ∈ Cρ −→ ρhc:

αCρ(X ) ,


⊥ if X = ∅
ā if X = {a}
Aρ if X ⊆ Atmρ ∧ |X | > 1

> otherwise

γCρ(c) ,


∅ if c = ⊥
{a} if c = ā

Atmρ if c = Aρ

ρ(℘(Z)) otherwise

Then we have the Galois insertion (ρhc, αCρ , γCρ , C
ρ). The domain 〈Cρ,E,Y,Z,⊥,>〉 is a com-

plete lattice where Y,Z ∈ Cρ × Cρ −→ Cρ are:

c1 Y c2 ,


> if c1 = > ∨ c2 = >
⊥ if c1 = ⊥ ∧ c2 = ⊥
ā if (c1 = ⊥ ∧ c2 = ā) ∨ (c1 = ā ∧ c2 = ⊥) ∨ (c1 = ā ∧ c2 = ā)

Aρ otherwise

c1 Z c2 ,


> if c1 = > ∧ c2 = >
⊥ if c1 = ⊥ ∨ c2 = ⊥ ∨ (c1 = ā1 6= ā2 = c2)

ā if (c1 = ā ∧ c2 ∈ {Aρ,>}) ∨ (c2 = ā ∧ c1 ∈ {Aρ,>})
Aρ otherwise

By composition, αhρ , αCρ ◦ αhc and γhρ , γhc ◦ γCρ form the Galois insertion:

〈℘(℘(Z)),⊆〉 −−−−→−→←−−−−−
αhρ

γhρ 〈Cρ,E〉

Example 23. The classic domain for constants propagation is given by the upper closure
operator Cprp, defined as Cprp(X) , X if X ∈ {{n} | n ∈ Z} ∪ {∅} and Cprp(X) , Z
otherwise. The set of its atoms is AtmCprp = {{n} | n ∈ Z}, which is isomorphic to Z and
hence it is (countably) infinite. In this case, we can define CCprp as the set Z ∪ {⊥,>,ACprp}
and αCCprp ∈ Cprphc −→ CCprp as: αCCprp(X ) , ⊥ if X = ∅; αCCprp(X ) , n if X = {{n}};
αCCprp(X ) , ACprp if X ⊆ AtmCprp ∧ |X | > 1; αCCprp(X ) = > otherwise. Note that, in this case,
Atm

Cprp
= Z and the bijection ¯ maps sets {n} ∈ AtmCprp to integers n ∈ Z.

Memories Point-Wise Lift. Once we define the abstract domain for (sets of sets of) values,
as usual in static analysis we need to extend it to (sets of sets of) memories. From now
on, for simplicity, we use 〈Cρ,E,Y,Z,⊥,>〉 as the values-domain for ANI. Note that the
construction given in the previous paragraph can be applied also to domains ρhc already
machine-representable.

First of all, consider a “double” non-relational abstraction for sets of sets of memories,
since we do not need to track relations between different variables. In classic static analysis,
a non-relational abstraction for memories abstracts each program variable independently,
thus forgetting any relation between variables. We can apply this concept to any functional
space, meaning that given a set of functions we are not interested in the relations between
objects and their images through the functions, as we do in the Non-Relational Abstraction
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of Chapter 2.3. The Non-Relational Abstraction of a set of memories is an abstract domain
of ℘(Mem). We can can lift this abstraction to sets of sets, as shown in Section 6.2. The inner
abstraction is αnr ∈ ℘(Mem) −→ ˙Mem, where we recall that ˙Mem , Var −→ ℘(Z). Then, we
lift this latter to sets obtaining the Galois insertion:

〈℘(℘(Mem)),⊆〉 −−−−−−→−→←−−−−−−−
L(αnr)

G(αnr)
〈℘( ˙Mem),⊆〉

Now we can apply again the Non-Relational Abstraction of Section 2.3 to ℘( ˙Mem), namely
we have the Galois insertion, where ¨Mem , Var −→ ℘(℘(Z)):

〈℘( ˙Mem),⊆〉 −−−−→−→←−−−−−
α̇nr

γ̇nr 〈 ¨Mem, ⊆̈〉

α̇nr(X) , λx . {ṁ(x) | ṁ ∈ X} γ̇nr(m̈) , {ṁ | ∀x ∈ Var . ṁ(x) ∈ m̈(x)}

By composition, we have the abstraction between ℘(℘(Mem)) and ¨Mem, formalized by the
Galois insertion:

〈℘(℘(Mem)),⊆〉 −−−−−→−→←−−−−−−
αnnr

γnnr 〈 ¨Mem, ⊆̇〉
αnnr(X ) , α̇nr ◦ L(αnr)(X ) = λx . {{m(x) | m ∈ X} | X ∈ X}

γnnr(m̈) , G(αnr) ◦ γ̇nr(m̈) = {X | ∀x ∈ Var . {m(x) | m ∈ X} ∈ m̈(x)}

Applying the Pointwise Construction introduced in Section 2.3, we obtain the complete
lattice 〈Var −→ Cρ, Ė, Ẏ, Ż, λx .⊥, λx .>〉. Then, applying the Pointwise Abstraction of Sec-
tion 2.3, we have the following Galois connection:

〈 ¨Mem, ⊆̇〉 −−−−→←−−−−
˙αhρ

˙γhρ 〈Var −→ Cρ, Ė〉

˙αhρ(m̈) , λx . αhρ ◦ m̈(x) ˙γhρ(m) , λx . γhρ ◦m(x)

Finally, by composition, we obtain the Galois connection (℘(℘(Mem)), αm, γm,Var −→ Cρ)
where αm , ˙αhρ ◦αnnr and γm , γnnr ◦ ˙γhρ . We denote with Memρ the set Var −→ Cρ and we
call its elements m abstract memories. In order to simplify the notation, we let v , Ė, t , Ẏ,
u , Ż, m⊥ , λx .⊥ and m> , λx .>.

Example 24. Let us show how this abstraction works. Let ma = [x 7→ 0 y 7→ 0],mb = [x 7→
0 y 7→ 1],mc = [x 7→ 1 y 7→ 0],md = [x 7→ 1 y 7→ 1] programs memories. Then we have:
αm({{ma,mb}, {mc,md}}) = [x 7→ αhρ({{0}, {1}}) y 7→ αhρ({{0, 1}})] = [x 7→ Aρ y 7→ >].
Indeed ma,mb both assign 0 to x and mc,md both provide 1 to x, while ma,mb provide both
0 and 1 to y and mc,md provide both 0 and 1 to y.

It is worth noting that, given X ⊆ equiv
ρ
L , then every set in X contains L-equivalent mem-

ories, modulo ρ. This implies αm(X )(x) E Aρ, for each L variable x. So, the Abstract Non-
Interference check LPM I2

ρ,φ ⊆ equiv
ρ
L becomes equivalent to checking, for each L variable

x, whether αm(LPM I2
ρ,φ)(x) E Aρ holds or not.

Finally, we can show how the abstract domain Memρ can be used for Abstract Non-
Interference verification, with the following theorem.

Theorem 23. Let mρ ∈ Memρ be the abstract memory defined as mρ(x) , Aρ if Γ(x) = L and
mρ(x) , > otherwise. Then P |= ANIρφ if and only if αm(LPM I2

ρ,φ) v mρ.
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Proof. By definition of Galois connection: αm(LPM I2
ρ,φ) v mρ if and only if LPM I2

ρ,φ ⊆
γm(mρ). It is clear that γm(mρ) ⊆ equiv

ρ
L , since the concretization ofmρ contains L-equivalent

memories, modulo ρ, by construction. Hence, due to Prop. 14, the theorem is proved.

Theorem 23 does not dispense us from computing the concrete hypersemantics hence, as
usual in abstract interpretation, we define an abstract semantics computing on the abstract
domain, i.e. a function in Memρ −→ Memρ. Unfortunately, the constraint to have the same
domain in input and output (of the abstract semantics) and the fact that our abstract domain
maps to τ every H variable, do not allow us to verify ANI with declassification. The abstract
semantics presented in the next subsection cannot keep in consideration the declassification
φ. Indeed, it verifies the hyperproperty ANIρτ (without declassification), which implies any-
way ANIρφ, for any possible φ [Giacobazzi and Mastroeni, 2018]. Clearly this is a limitation,
we planned to extend the presented approach, in order to deal with declassification, as a
future work.

8.1.3 The Parametric Abstract Semantics
Now we have to show how to compute a program’s hypersemantics, parametric on the ob-
servation level ρ, on the proposed abstract domain. The abstract semantics for programs
relies on the abstract semantics for boolean and arithmetic expressions, given in Figure 8.1.
The abstract semantics for arithmetic expressions LaMρ ∈ Memρ −→ Cρ evaluates to an ab-
stract value and it relies on the abstract mathematical operations given in Figure 8.1. This
semantics must be such that abstract assignments are sound approximations of the con-
crete ones. Since we are in a (double) non-relational setting the soundness requirement
is: {{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈ γm(m)} ⊆ γhρLaMρm. The proof of soundness
for arithmetic expressions can be found in Appendix A. This latter assumes that abstract
mathematical operations ⊕ρ ∈ Cρ × Cρ −→ Cρ are defined such that they are sound w.r.t.
the concrete ones ⊕, with ⊕ ∈ {+,−, ∗}. This technically means that they must satisfy the
following constraint3:

{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ γhρ(c1) ∧ Y ∈ γhρ(c2)} ⊆ γhρ(c1 ⊕ρ c2)

The constraint basically requires that every possible result obtained applying the concrete
operation is contained in the concretization of the application of the abstract operator. We
cannot give further details since the abstract operations depend on the chosen abstraction ρ.
In Section 8.2 we will show a more detailed example, when we explain the abstract semantics
for Non-Interference.

The abstract semantics for boolean expressions LbMρ ∈ Memρ −→ Memρ is an abstract
filtering function, and it relies on the abstract logical operations given in Fig. 8.1. To sim-
plify, we assume that all negations ¬ have been removed using De Morgan’s laws and usual
arithmetic laws: ¬(b1 ∨ b2) ≡ (¬b1) ∧ (¬b2), ¬(a1 < a2) ≡ (a2 ≤ a1), etc. This semantics
must be sound w.r.t. the concrete hypersemantics for booleans, namely {{m ∈ X | 〈b,m〉 ⇓B

tt} | X ∈ γm(m)} = LbM γm(m) ⊆ γmLbMρm. The proof of soundness for boolean expres-
sions can be found in Appendix A.

3Recall that our abstract semantics is built after the double non-relational abstraction αnnr , hence it abstracts
¨Mem = Var −→ ℘(℘(Z)).
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Arithmetic expressions: LaMρ ∈ Memρ −→ Cρ with ⊕ ∈ {+,−, ∗}

LnMρm , αhρ({{n}}) LxMρm , m(x) L(a)Mρm , LaMρm

La1 ⊕ a2 Mρm , La1 Mρm⊕ρ La2 Mρm

Boolean expressions: LbMρ ∈ Memρ −→ Memρ with on∈ {=, 6=, <,≤}

LttMρm , m Lff Mρ , ⊥\ L(b)Mρm , LbM]m Lb1 ∧ b2 Mρm , Lb1 Mρm u Lb2 Mρm

Lb1 ∨ b2 Mρm ,
let n = Lb1 Mρm t Lb2 Mρm in
λx . (m(x) = > ∧ x ∈ vars(b1) ∪ vars(b2) ?> : n(x) )

La1 on a2 Mρm ,
let 〈c1, c2〉 = La1 Mρm onρ La2 Mρm in⊔
{n v m | La1 Mρn E c1} u

⊔
{n v m | La2 Mρn E c2}

Figure 8.1: Abstract semantics for expressions.

Remark. In this case we cannot rely, as in the standard case of classic program verification for
trace properties, on the identity function as a sound approximation: LbM is not reductive.
The only trivial correct approximation is λx .>.

In order to obtain a sound semantics, we need to define the abstract comparators onρ∈
Cρ×Cρ −→ Cρ×Cρ such that they are sound w.r.t. the concrete oneson, withon∈ {=, 6=, <,≤}.
This technically means that they must satisfy the following constraint:

let X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ γhρ(c1) ∧ Y ∈ γhρ(c2)} in
〈{{n | 〈n,m〉 ∈ X} | X ∈ X}, {{m | 〈n,m〉 ∈ X} | X ∈ X}〉 ⊆2 γhρ(c1 onρ c2)

The constraint requires that every possible pair of values making true the concrete com-
parator is contained in the concretization of the application of the abstract comparator. In
Figure 8.1, the memory

⊔
{n v m | LaMρn E c} can be approximated with a backward ab-

stract semantics for arithmetic expressions BLaMρ ∈ Memρ −→ (Cρ −→ Memρ). The meaning
of BLaMρ(m)(c) = m′ is that m′ is a refinement of m, i.e. m′ v m, such that LaMρm′ E c.

Finally, we need two auxiliary functions vars>m(b) and vars:=(P), returning the set of vari-
ables occurring in b having value >when evaluated in m and the set of modified variables in
P, respectively. The first is straightforward to compute: vars>m(b) , {x ∈ vars(b) | m(x) = >}
and vars(b) is just a syntactic check. The second involves semantic information, hence it is
not trivial to compute. Naively, we can use a simple syntactic approach for approximat-
ing the set of variables which may be modified during P executions. Indeed, the function
vars:=(P) returns the set of variables occurring in P on the left-hand side of an assignment,
which is easy implementable as a syntactic check. Now we have all the ingredients needed
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to define the abstract hypersemantics LPMρ ∈ Memρ −→ Memρ, which is4:

LPMρm⊥ , m⊥ L ii c1
ll kk c2

ff Mρm , L kk c2
ff MρL

ii c1
ll Mρm L ii skip ff Mρm , m

L ii x := a ff Mρm , m[x←[ LaMρm]

L ii if b then {P1 } else {P2 } ff Mρm , w where
let n = LP1 MρLbMρm t LP2 MρL¬bMρm in

w = λx .

{
n(x) if x /∈ vars:=(P1) ∪ vars:=(P2) ∨ n(x) E Aρ ∨ vars>m(b) = ∅
> otherwise

L ii while kk b {P } ff Mρm , L¬bMρ
(
lfpvm⊥ λn .m t L ii if b then {P } else { hh skip hh } ff Mρn

)
with hh fresh label (it is indeed not necessary, since the post-conditions hypersemantics does
not take into account labels). The abstract semantics is quite standard for all statements,
except for conditionals. We will explain here only this latter, which exploits the following
idea. For every variable, we compute the join between its value resulting after the execution
of the true branch and its value resulting after the execution of the false branch. This is done
in order to track the forbidden flows (implicit or explicit) generated inside the two branches.
In fact, a L variable has value > after the join if in at least one of the branches it has value >
(meaning that there is a forbidden flow). After this check we need to take in consideration
the implicit flows generated by the conditional statement itself. Indeed, first we suppose
that if there is at least one variable with value > before the boolean guard is evaluated, then
all variables modified in the conditional branches have a forbidden flow (a variable has
value > only if it is a H variable or if it has been “influenced” by a H variable). This is done
setting to > all modified variables. Note that if, for some reasons, a H variable is not >
during this check, the flow is correctly not set. This procedure is sound but not so precise.
In order to enhance precision, we exploit our abstract domain. In particular, we do not set to
> the variables which have the same constant value ā in both branches (this is the condition
n(x) E Aρ) because this means that at the end of the conditional statement the variable has
always a constant value, modulo ρ. If there are no >-valued variables into the guard b (this
is the condition vars>m(b) = ∅), then no variables are set to >: the resulting flows are those
generated into the two branches of the conditional.

We can prove that our abstract semantics (parametric on the observation ρ) is sound
w.r.t. the concrete hypersemantics, and that it can be used for Abstract Non-Interference
verification. This is stated in the following two theorems.

Theorem 24 (Soundness). The abstract hypersemantics is sound w.r.t. the concrete hyperseman-
tics: for every m ∈ Memρ we have LPM γm(m) ⊆ γmLPMρm.

Sketch. We just have to prove that the abstract hypersemantics approximates the best cor-
rect approximation of the concrete hypersemantics in Memρ, namely αm ◦ LPM ◦γm v̇ LPMρ .
The proof relies on the soundness of the abstract semantics for arithmetic and boolean ex-
pressions and it is for structural induction. We omit here the full proof, we just show, as

4In the definition of the conditional statement, E denotes the strict version of E.
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example, the case for programs sequences (the full proof can be found in Appendix A).

αmL ii c1
ll kk c2

ff M γm(m) = αmL kk c2
ff M L ii c1

ll M γm(m) ‖ definition of L · M

v αmL kk c2
ff M γmαmL ii c1

ll M γm(m) ‖ extensivity of γmαm

v L kk c2
ff MρL

ii c1
ll Mρ(m) ‖ inductive hypothesis

= L ii c1
ll kk c2

ff Mρ(m) ‖ definition of L · Mρ

With the abstract semantics we can define an effective verification method for Abstract
Non-Interference ANIρτ . Recall that the classic NI coincides with ANIιτ , meaning that our
verification method can be used to approximate also Non-Interference (we will see in detail
the abstract hypersemantics for NI in the next section).

Theorem 25 (ANI Verification). We have that P |= ANIρτ if LPMρmρ v mρ.

Proof. Note that αm(I2
ρ,τ) v mρ since I2

ρ,τ contains only sets of memories agreeing on L
variables, modulo ρ. This means that αm(I2

ρ,τ)(x) E Aρ = mρ(x), for each L variable x.
For H variables y, αm(I2

ρ,τ)(y) E > = mρ(y) trivially holds. Then the proof is given by the
following chain of implications.

LPMρm
ρ v mρ

⇓ ‖ monotonicity of LP Mρ and αm(I2
ρ,τ )vmρ

LPMραm(I2

ρ,τ) v LPMρm
ρ v mρ

⇓ ‖ soundness of LP Mρ (Theorem 24) and αm,γm adjunction: ∀X∈℘(℘(Mem)) . αmLP M XvLP Mρ αm(X )

αm(LPM I2

ρ,τ) v LPMραm(I2

ρ,τ) v LPMρm
ρ v mρ

⇓ ‖ Theorem 23

P |= ANIρτ

This means that we can check Abstract Non-Interference simply by checking that each
set of computations, starting from L-equivalent memories, modulo ρ, provides only results
indistinguishable by ρ.

Termination and Precision. The finite height of the hyperdomain Cρ guarantees the termi-
nation of the analysis and the structure of the domain allows us to compute loops fixpoints
quickly. Hence there is no need for a widening operator in order to speed-up the analysis
or to force termination.

For what concerns precision, we tested our abstract semantics schemata, defining an ana-
lyzer for ANISgnτ . This latter is quite precise in general but, unfortunately, it raises false alarms
in some trivial situations. For instance is not able to say that the program P = a := x− x
does not leak sensitive information when a is public and x is private. The main source of
imprecision of our semantics schemata is the lack of relational information between vari-
ables. Indeed, our analysis is not-relational, meaning that we do not explicitly track relations
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between different variables. We can increase the precision pairing Memρ with a relational ab-
straction of ℘(℘(Mem)). For instance we can define an abstract domain tracking equalities
between variables. This latter, combined with a numerical domain such as the one for in-
tervals will improve the precision w.r.t. implicit flows and with programs like P introduced
above. We have to mention that our choice to approximate the set of modified variables in
a very simple syntactic way surely increases the number of false alarms. With a more se-
mantic analysis we can gain a lot of precision. We will discuss more about precision at the
end of the next section, after introducing the abstract hypersemantics for Non-Interference.

8.2 Implementation: the NonInterfer Static Analyzer
In this section we apply the results about ANI verification in order to verify the classic Non-
Interference. Basically, we instantiate the abstract semantics with ρ = ι and φ = τ , indeed
NI = ANIιτ . The collecting hypersemantics is the same as the one proposed in the previ-
ous section, hence we give only the abstract version for the verification of Non-Interference.
We instantiate again the hyperlevel constants domain to Non-Interference. The latter, in
its original formulation, is not machine-representable, namely it has an uncountable set of
elements. Moreover, it contains infinite ascending chains (i.e. it is not ACC), inducing poten-
tial computation divergence. Hence, we approximate it in order to make its implementation
feasible. Finally we give the definition of the abstract hypersemantics.

We have implemented the abstract hypersemantics as a verifier for Non-Interference,
called nonInterfer.

Analogously to the ANI case, we can verify Non-Interference in a simpler domain, namely
we can collect states instead of input/output traces of states. We can partition NI in two sim-
pler hyperproperties:

NI= ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ×Σ

∣∣∣∣ X = {〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉} ∧
νι×τ (m1) = νι×τ (m2) ∧ νι×τ (m′1) = νι×τ (m′2)

}

NI6= ,
⋃

ii , ff ∈Lab

{
X ⊆ Σ×Σ

∣∣∣∣ X = {〈〈 ii ,m1〉,〈 ff ,m′1〉〉, 〈〈 ii ,m2〉,〈 ff ,m′2〉〉} ∧
νι×τ (m1) 6= νι×τ (m2)

}

Then we can skip the check for NI6= since it is always satisfied, by every program. Further-
more, we can note that NI= is a second-order not-relational hyperproperty, meaning that it
is equivalent to the pair 〈X ,Y〉, where:

X ,
⋃

ii ∈Lab

{X ⊆ Σ | X = {〈 ii ,m1〉, 〈 ii ,m2〉} ∧ νι×τ (m1) = νι×τ (m2)}

Y ,
⋃

ff ∈Lab

{X ⊆ Σ | X = {〈 ff ,m′1〉, 〈 ff ,m′2〉} ∧ νι
×τ (m′1) = νι×τ (m′2)}

In the definition above, control points are totally irrelevant, indeed we have that 〈X ,Y〉 is
isomorphic to 〈X ′,Y ′〉, where:

X ′ , {X ⊆ Mem | X = {m1,m2} ∧ νι×τ (m1) = νι×τ (m2)}
Y ′ , {X ⊆ Mem | X = {m′1,m′2} ∧ νι

×τ (m′1) = νι×τ (m′2)}
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This basically means that it suffices to check whether JPK X ∈ Y ′, for everyX ∈ X ′. We can
verify this at once using a post-conditions hypersemantics LPM , namely checking whether
LPM X ′ = Y ′. This observations induce the following proposition.

Proposition 15. P |= NI if and only if LPM I2
L ⊆ equiv

L
, where:

I2

L , {X ⊆ Mem | X = {m,m′} ∧ νι×τ (m) = νι×τ (m)}
equiv

L
, {X ⊆ Mem | ∀m,m′ ∈ X . νι×τ (m) = νι×τ (m′)}

As we have seen in Chapter 7, we can have different correct post-conditions hyperse-
mantics, depending on how we define the semantics for loops. We chose to adopt again the
one defined in Subsection 8.1.1.

8.2.1 Towards Abstraction

Unfortunately, LPM I2
L and equiv

L
are not computable in general, hence we need approxi-

mations. In order to compute a sound approximation of LPM I2
L , we rely on abstract inter-

pretation. The first step is to define the abstract domain used to verify Non-Interference.

8.2.1.1 The Abstract Domain for Non-Interference

The domain is an instance of the hyperlevel (abstract) constants (Section 6.2), and it checks
whether a set of sets of values contains constant sets. In the following, all abstraction func-
tions α are additive (i.e. they preserve the least upper bound of chains), hence their left
adjoint α− always exists.

The domain is an abstraction of ℘(℘(Z)). In this case, we use as inner abstraction the one
for the classic constant propagation domain: it represents precisely the singletons {n}, for
every n ∈ Z, and it abstracts to Z everything else. We have introduced this latter domain in
Example 23, with the upper closure operator Cprp. The outer abstraction checks whether
the inner abstraction always returns constant values, not necessarily the same. For instance,
{{1}, {2}} contains only constant sets, instead {{1}, {2, 3}} contains also a not-constant set
(in this case the inner abstraction maps {2, 3} to Z).

Let Cprphc , ℘({{n} | n ∈ Z}) ∪ {Cprp(℘(Z))}; αhc(X ) , X if X ⊆ {{n} | n ∈ Z} and
αhc(X ) , Cprp(℘(Z)) otherwise; and γhc , α−hc = id. Then we have the Galois insertion:

〈℘(℘(Z)),⊆〉 −−−−→−→←−−−−−
αhc

γhc

〈Cprphc,⊆〉

This domain is sufficient for Non-Interference verification but, as already pointed out, it is
not machine-representable. For this reason we need to perform a further approximation.
Since Cprphc has an uncountable set of elements, we define a simpler domain, which is
machine-representable but still able to verify Non-Interference. We can set Atm

Cprp
, Z as

the set isomorphic to AtmCprp = {{n} | n ∈ Z}, aiming at representing sets containing only
one singleton, i.e. of the form {{n}}, which is the information we want to observe precisely,
and let ¯ ∈ AtmCprp −→ Z a bijection. Furthermore, we denote by κ , ACprp the abstract
element representing the set of all singletons (i.e. the atoms). Then we define CCprp , {n̄ | n ∈
Z} ∪ {⊥,>, κ}, with the partial order E⊆ CCprp × CCprp defined as c1 E c2 , (c1 = ⊥ ∨ c1 =
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c2 ∨ (c1 = n̄ ∧ c2 = κ) ∨ c2 = >). Now consider the abstraction αCCprp ∈ Cprphc −→ CCprp and
the concretization γCCprp ∈ CCprp −→ Cprphc:

αCCprp(X ) ,


⊥ if X = ∅
n̄ if X = {{n}}
κ if X ⊆ {{n} | n ∈ Z} ∧ |X | > 1

> otherwise

γCCprp(c) ,


∅ if c = ⊥
{{n}} if c = n̄

{{n} | n ∈ Z} if c = κ

Cprp(℘(Z)) otherwise

We have the Galois insertion (Cprphc, αCCprp , γCCprp , C
Cprp). The domain 〈CCprp,E,Y,Z,⊥,>〉 is a

compete lattice where Y,Z ∈ CCprp × CCprp −→ CCprp are:

c1 Y c2 ,


> if c1 = > ∨ c2 = >
⊥ if c1 = ⊥ ∧ c2 = ⊥
n̄ if (c1 = ⊥ ∧ c2 = n̄) ∨ (c1 = n̄ ∧ c2 = ⊥) ∨ (c1 = n̄ ∧ c2 = n̄)

κ otherwise

c1 Z c2 ,


> if c1 = > ∧ c2 = >
⊥ if c1 = ⊥ ∨ c2 = ⊥ ∨ (c1 = n̄ 6= m̄ = c2)

n̄ if (c1 = n̄ ∧ c2 ∈ {κ,>}) ∨ (c2 = n̄ ∧ c1 ∈ {κ,>})
κ otherwise

By composition, αhCprp , αCCprp ◦ αhc and γhCprp , γhc ◦ γCCprp form the Galois insertion:

〈℘(℘(Z)),⊆〉 −−−−−→−→←−−−−−−
αhCprp

γhCprp 〈CCprp,E〉

This domain approximates the set of sets of values a variable may have. Finally, in order to
track information flows we need to work on memories instead of on values. Consider again
the “double” non-relational abstraction αnnr introduced in Subsection 8.1.2. Applying the
Pointwise Construction introduced in Section 2.3, we obtain the complete lattice 〈Var −→
CCprp, Ė, Ẏ, Ż, λx .⊥, λx .>〉. We can compose point-wise the hyperlevel constants abstraction
with αnnr, obtaining αm , α̇hCprp ◦ αnnr. This latter forms, paired with γm , α−m = γnnr ◦
γ̇hCprp , the Galois connection:

〈℘(℘(Mem)),⊆〉 −−−→←−−−
αm

γm 〈Var −→ CCprp, Ė〉

We denote with MemCprp the set Var −→ CCprp and we call its elements m abstract memories.
In order to simplify the notation, we letv, Ė, t , Ẏ, u , 4̇, m⊥ , λx .⊥ and m> , λx .>.

Example 25. Continuing the previous Example 24, we have that I2
L ={{ma,mb}, {mc,md}}

and αm({{ma,mb}, {mc,md}}) = [x 7→ αhCprp({{0}, {1}}) y 7→ αhCprp({{0, 1}})] = [x 7→ κ y 7→
>]. Indeed ma,mb both provide 0 to x and mc,md both provide 1 to x, while ma,mb provide
both 0 and 1 to y and mc,md provide both 0 and 1 to y. Similarly, LPM I2

L = {{mb,md}} and
αm({{mb,md}}) = [x 7→αhCprp({{0, 1}}) y 7→αhCprp({{1}})] = [x 7→> y 7→ 1̄].

It is worth noting that, given X ⊆ equiv
L
, then every set in X contains L-equivalent

memories. This implies αm(X )(x) E κ, for each L variable x. So, the Non-Interference check
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LPM I2
L ⊆ equiv

L
becomes equivalent to checking whether αm(LPM I2

L )(x) E κ, for each L
variable x. Indeed the program of Example 25 is interferent, since computing αm(LPM I2

L )
results in L variable x having value >.

Finally, we can show how the abstract domain MemCprp can be used for Non-Interference
verification, with the following theorem.

Theorem 26. Let mNI ∈ MemCprp be the abstract memory defined as mNI(x) , κ if Γ(x) = L and
mNI(x) , > otherwise. Then P |= NI if and only if αm(LPM I2

L ) v mNI.

Proof. By definition of Galois connection: αm(LPM I2
L ) v mNI if and only if LPM I2

L ⊆ γm(mNI).
It is clear that γm(mNI) ⊆ equiv

L
, since the concretization of mNI contains L-equivalent mem-

ories, by construction. Hence, due to Prop. 15, the theorem is proved.

Hence, in order to verify Non-Interference it is sufficient to have an abstract semantics,
computing on MemCprp, which approximates LPM . Indeed we can prove P |= NI by comput-
ing an over-approximation of LPM I2

L in MemCprp.

8.2.2 The Abstract Semantics for Non-Interference

Finally, we have to show how to compute a program’s hypersemantics on the proposed
abstract domain. The abstract semantics for programs relies on the abstract semantics for
arithmetic expressions, given in Figure 8.2. The abstract semantics for arithmetic expres-
sions LaMC ∈ MemCprp −→ CCprp evaluates to an abstract value and it relies on the abstract
mathematical operations given in Figure 8.2. This semantics must be such that abstract
assignments are sound approximations of the concrete ones. Since we are in a (double)
non-relational setting the soundness requirement is: {{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈
γm(m)} ⊆ γhCprpLaMCm (the proof can be found in Appendix A). We obtain this defining ab-
stract operations⊕C ∈ CCprp×CCprp −→ CCprp such that they are sound w.r.t. the concrete ones⊕,
with ⊕ ∈ {+,−, ∗}. This technically means that they satisfy the following constraint:

{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ γhCprp(c1) ∧ Y ∈ γhCprp(c2)} ⊆ γhCprp(c1 ⊕C c2)

The constraint basically requires that every possible result obtained applying the concrete
operation is contained in the concretization of the application of the abstract operator. The
proof of the soundness of the abstract mathematical operations can be found in Appendix A.

The abstract semantics for boolean expression LbMC ∈ MemCprp −→ MemCprp is an abstract
filtering function, and it relies on the abstract logical operations given in Figure 8.3. To
simplify, we assume that all negations ¬ have been removed using DeMorgan’s laws and
usual arithmetic laws: ¬(b1∨b2) ≡ (¬b1)∧(¬b2),¬(a1 < a2) ≡ (a2 ≤ a1), etc. This semantics
must be sound w.r.t. the concrete hypersemantics for booleans, namely {{m ∈ X | 〈b,m〉 ⇓B

tt} | X ∈ γm(m)} = LbM γm(m) ⊆ γmLbMCm (the proof can be found in Appendix A). Also
in this case we cannot rely, as in the standard case of classic program verification for trace
properties, on the identity function as a sound approximation: LbM is not reductive. In
order to obtain a sound semantics, we have defined the abstract comparators onC∈ CCprp ×
CCprp −→ CCprp×CCprp such that they are sound w.r.t. the concrete oneson, withon∈ {=, 6=, <,≤}.
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Arithmetic expressions: LaMC ∈ MemCprp −→ CCprp with ⊕ ∈ {+,−, ∗}

LnMCm , n̄ LxMCm , m(x) L(a)MCm , LaMCm La1 ⊕ a2 MCm , La1 MCm⊕C La2 MCm

Abstract mathematical operations: ⊕C ∈ CCprp × CCprp −→ CCprp

⊕C ⊥ n̄ κ >
⊥ ⊥ ⊥ ⊥ ⊥
m̄ ⊥ m⊕ n κ >
κ ⊥ κ κ >
> ⊥ > > >

Figure 8.2: Abstract semantics for arithmetic expressions.

This technically means that they satisfy the following constraint:

let X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ γhCprp(c1) ∧ Y ∈ γhCprp(c2)} in
〈{{n | 〈n,m〉 ∈ X} | X ∈ X}, {{m | 〈n,m〉 ∈ X} | X ∈ X}〉 ⊆2 γhρ(c1 onC c2)

The constraint basically requires that every possible pair of values making true the con-
crete comparator is contained in the concretization of the application of the abstract com-
parator. The proof of the soundness of the abstract logical operations can be found in Ap-
pendix A. In Figure 8.3, the memory

⊔
{n v m | LaMCn E c1} can be approximated with a

backward abstract semantics for arithmetic expressions BLaMC ∈ MemCprp −→ (CCprp −→ MemCprp).
BLaMC (m)(c) = m′ means that m′ is a refinement of m, i.e. m′ v m, such that LaMCm′ E c.

Example 26. Let us see how to compute Lx < 2MCm where m = [x 7→ 1̄ y 7→ κ]. We have
LxMCm = 1̄, L2MCm = 2̄ and 1̄ <C 2̄ = 〈1̄, 2̄〉. Then

⊔
{n v m | LxMCn E 1̄} = [x 7→ 1̄ y 7→ κ]

and
⊔
{n v m | L2MCn E 2̄} = [x 7→ 1̄ y 7→ κ]. Finally, [x 7→ 1̄ y 7→ κ] u [x 7→ 1̄ y 7→ κ] = [x 7→

1̄ y 7→κ], which is indeed equal to m. Suppose now to compute the negation of this boolean
expression, namely we want to compute L2 ≤ xMCm. In this case we have 2̄ ≤C 1̄ = 〈>,>〉,⊔
{n v m | L2MCn E >} = [x 7→ 1̄ y 7→κ] and

⊔
{n v m | LxMCn E >} = [x 7→ 1̄ y 7→κ]. Hence

we obtain, again, [x 7→ 1̄ y 7→κ] as result.

Finally, we need two auxiliary functions vars>m(b) and vars:=(P), returning the set of variables
occurring in b having value >when evaluated in m and the set of modified variables in P, re-
spectively. The first is straightforward to compute: vars>m(b) , {x ∈ vars(b) | m(x) = >} and
vars(b) is just a syntactic check. The second involves semantic information, hence it is not
trivial to compute. Naively, we can use a simple syntactic approach for approximating the
set of variables which may be modified during P executions. Indeed, the function vars:=(P)
returns the set of variables occurring in P on the left-hand side of an assignment, which is
easy implementable as a syntactic check. We plan to enhance our abstract semantics with a
semantic check for modified variables, in order to increase precision, as a future work.

Now we have all the ingredients needed to define the abstract hypersemantics LPMC ∈
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Boolean expressions: LbMC ∈ MemCprp −→ MemCprp with on∈ {=, 6=, <,≤}

LttMCm , m Lff MCm , m⊥ L(b)MCm , LbMCm

Lb1 ∧ b2 MCm , Lb1 MCm u Lb2 MCm

Lb1 ∨ b2 MCm ,
let n = Lb1 MCm t Lb2 MCm in
λx . (m(x) = > ∧ x ∈ vars(b1) ∩ vars(b2) ?> : n(x) )

La1 on a2 MCm ,
let 〈c1, c2〉 = La1 MCmonC La2 MCm in⊔
{n v m | La1 MCn E c1} u

⊔
{n v m | La2 MCn E c2}

Abstract logical operations: onC∈ CCprp × CCprp −→ CCprp × CCprp

c1 onC c2 ,



〈⊥,⊥〉 if c1 = ⊥ or c2 = ⊥
〈n̄, n̄〉 if c1 = c2 = n̄,on∈ {=,≤}
〈n̄, m̄〉 if c1 = n̄, c2 = m̄, n < m,on∈ {<,≤, 6=}
〈n̄, m̄〉 if c1 = n̄, c2 = m̄, n > m,on∈ {6=}
〈>,>〉 otherwise

Figure 8.3: Abstract semantics for boolean expressions.

MemCprp −→ MemCprp, which is:

LPMCm⊥ , m⊥ L ii c1
ll kk c2

ff MCm , L kk c2
ff MC L ii c1

ll MCm L ii skip ff MCm , m

L ii x := a ff MCm , m[x← [ LaMCm]

L ii if b then {P1 } else {P2 } ff MCm , w where
let n = LP1 MC LbMCm t LP2 MC L¬bMCm in

w = λx .

{
n(x) if x /∈ vars:=(P1) ∪ vars:=(P2) ∨ n(x) E κ ∨ vars>m(b) = ∅
> otherwise

L ii while kk b {P } ff MCm , L¬bMC
(
lfpvm⊥ λn .m t L ii if b then {P } else { hh skip hh } ff MCn

)
with hh fresh label (it is indeed not necessary, since the post-conditions hypersemantics does
not take into account labels). The abstract semantics is quite standard for all statements,
except for conditionals. We will explain here only this latter, which exploits the following
idea. For every variable, we make the join between its value resulting after the execution
of the true branch and its value resulting after the execution of the false branch. This is
done in order to track the forbidden flows (implicit or explicit) generated inside the two
branches. In fact, a L variable has value > after the join if in at least one of the branches it
has value > (meaning that there is a forbidden flow). After this check we need to take in
consideration the implicit flows generated by the conditional statement itself. Indeed, first
we suppose that if there is at least one variable with value > before the boolean guard is
evaluated, then all variables modified in the conditional branches have a forbidden flow (a
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variable has value > only if it is a H variable or if it has been “influenced” by a H variable).
This is done by setting to> all modified variables. Note that if, for some reasons, a H variable
is not > during this check, the flow is correctly not set. This procedure is sound but not so
precise. In order to enhance precision, we exploit our abstract domain. In particular, we
do not set to > the variables which have the same constant value n̄ in both branches (this
is the condition n(x) E κ) because this means that at the end of the conditional statement
the variable has always a constant value. If there are no >-valued variables into the guard
b (this is the condition vars>m(b) = ∅), then no variables are set to >: the resulting flows are
those generated into the two branches of the conditional.

We proved that our abstract semantics is sound w.r.t. the concrete hypersemantics, and
that it can be used for Non-Interference verification. This is stated in the following two
theorems.
Theorem 27 (Soundness). The abstract hypersemantics is sound w.r.t. the concrete hyperseman-
tics: for every m ∈ MemCprp we have LPM γm(m) ⊆ γmLPMCm.

Proof. (Sketch) We just have to prove that the abstract hypersemantics approximates the best
correct approximation of the concrete hypersemantics in MemCprp, namely αm ◦ LPM ◦ γm v̇
LPMC . The proof relies on the soundness of the abstract semantics for arithmetic and boolean
expressions and it is done by structural induction. We omit here the full proof, we just show
as example the case for assignments (the full proof can be found in Appendix A).

αmL ii x := a ff M γm(m)

= ‖ definition of L · M

αm({{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)})
= ‖αm=α̇hCprp◦αnnr and definition of αnnr

α̇hCprp ◦ (λy . {{m(y) | m ∈ X} | X ∈ {{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)}})
=

α̇hCprp ◦ (λy . ( y = x ? {{n |∃m ∈ X . 〈a,m〉 ⇓Z n}|X∈γm(m)} : {{m(y) |m ∈ X}|X∈γm(m)}))
v ‖ soundness of La MC

α̇hCprp ◦ (λy . ( y = x ? γhCprpLaMCm : {{m(y) | m ∈ X} | X ∈ γm(m)} ))

= ‖ definition of α̇hCprp

λy . ( y = x ?αhCprpγhCprpLaMCm :αhCprp({{m(y) | m ∈ X} | X ∈ γm(m)}) )

= ‖ definition of γm

λy . ( y = x ?αhCprpγhCprpLaMCm :αhCprpγhCprp(m(y)) )

v ‖ reductivity of αhCprpγhCprp

λy . ( y = x ? LaMCm :m(y) )

=

m[x← [ LaMCm]

= ‖ definition of L · MC

L ii x := a ff MCm
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With the abstract semantics just introduced we can define an effective verification method
for Non-Interference.

Theorem 28 (NI Verification). We have that P |= NI if LPMCmNI v mNI.

Proof. Note that αm(I2
L ) v mNI since I2

L contains only sets of memories agreeing on L vari-
ables. This means that αm(I2

L )(x) E κ = mNI(x), for each L variable x. For H variables y,
αm(I2

L )(y) E > = mNI(y) trivially holds. Then the proof is given by the following implica-
tions:

LPMCm
NI v mNI

⇓ ‖ monotonicity of LP MC and αm(I2
L )vmNI

LPMCαm(I2

L ) v LPMCm
NI v mNI

⇓ ‖ soundness of LP MC (Theprem 27) and αm,γm adjunction: ∀X∈℘(℘(Mem)) . αmLP M XvLP MC αm(X )

αm(LPMCI2

L ) v LPMCαm(I2

L ) v LPMCm
NI v mNI

⇓ ‖ Theorem 26

P |= NI

This means that we can check Non-Interference simply by checking that each set of com-
putations, starting from L-equivalent memories, provides only singletons as results.

8.2.3 The Prototype Analyzer
With the only aim of proving the feasibility of the proposed approach, and in particular
of the abstract hypersemantics, we have written a prototype analyzer, called nonInterfer, in
Java SE 10 for Imp programs, which implements the abstract hypersemantics of the previous
subsection.

8.2.3.1 Validation

Since our analyzer is built for a toy language, there are no benchmark tests sets. So we have
measured speed and precision of the tool building our own tests set. We have written 25
non-interferent programs and 25 interferent programs, with different levels of complexity.
As expected, the prototype does not output false negatives, i.e. all interferent programs
are discovered. For what concerns precision, the analyzer marks 3 programs as interferent
even if they actually satisfy Non-Interference. In Figure 8.4 we have four example programs,
where variables a, b are public and variables x, y are private. The initial abstract memorymNI

is [a 7→κ b 7→κ x 7→> y 7→>]. We have that LP1 MCmNI = [a 7→ 0̄ b 7→ 0̄ x 7→> y 7→>] v mNI,
meaning that the analyzer correctly marks P1 as non-interferent. Analyzing program P2,
the verifier is able to catch an implicit indirect flow, in fact LP2 MCmNI = [a 7→> b 7→> x 7→
> y 7→ >] 6v mNI (i.e. P2 is correctly marked as interferent). Unfortunately, our analyzer
signals a false alarm in program P3, indeed LP3 MCmNI = [a 7→> b 7→κ x 7→> y 7→>] 6v mNI,
even if the program is non-interferent. Finally, we have a precise result on the more complex
program P4, indeed LP4 MCmNI = [a 7→ 0̄ b 7→κ x 7→> y 7→>] v mNI. Note that classic security
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Program P1:
00 a := 0 11

11 if (b < x) then { 22 b := a ∗ 3 33 }
else { 44 b := a− ((2 ∗ a)− a) 55 } 66

Program P2:
00 a := x 11

11 if (b < a) then { 22 b := 2 33 }
else { 44 b := 3 55 } 66

Program P3:
00 a := x− x 11

Program P4:
00 a := 0 11

11 while 22 (x < y) {
33 x := x + 1 44

44 while 55 (a < x) { 66 a := a + 2 77 } 88

88 a := 0 99

}1010

Figure 8.4: Example programs.

type systems for information flows (derived from [Volpano, Irvine, and Smith, 1996]) are
not able to type correctly the program P4, namely they rise a false alarm in this case.

The finite height of the hyper abstract domain CCprp guarantees the termination of the
analysis. Furthermore, the structure of the domain allows us to compute loops fixpoints
quickly, hence there is no need for a widening operator in order to speed-up the analysis.
On our tests set, which comprises quite small hand-made programs, the analyzer is very
fast. The analysis time is around 120 milliseconds in average, running on a commodity hard-
ware5. We also tested the prototype on bigger programs, generated automatically with the
tool Grammarinator[Hodován and Kiss, 2018]. The analyzer is able to handle programs with
hundreds of lines of code, basically with the same speed time. As expected, the analyzer
shows some slowdowns when programs use lots of variables. Nevertheless, its running
time is lower than 600 milliseconds even on programs with more than 500 variables.

Indeed the analyzer exhibits a good trade-off between verification speed and precision
(in general). Unfortunately, our analyzer is not precise in some trivial situations, like in P3,
hence in the next paragraphs we discuss about how it is possible to obtain better results.

8.2.3.2 Improving Precision

The analyzer has a good precision overall but it signals false alarms in some, sometimes very
trivial, cases. We mentioned in the previous subsection that our current approach for the
approximation of modified variables is a very simple syntactic check. With a more semantic
analysis we can gain precision and do not rise false alarms for programs like P3 of Figure 8.4.
Apart from this detail, the sources of imprecision of our semantics are basically two: the
approximation added making the hyperlevel constants domain machine-representable and
the lack of relational information between variables. In this section we deal with these two
issues.

Tuning the Hyperlevel Constants Domain. The original hyperlevel constants domain of
Section 6.2 contains all the elements of the powerset of {{n} | n ∈ Z}, meaning that ev-
ery possible combination of constant sets is taken into account. This makes the domain

5Laptop with Arch Linux 64-bit (kernel 4.17.5-1), Intel Core i7-7700HQ CPU, 8GiB RAM and SSD storage.
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very precise but not machine-representable, as already observed. In our implementation
we have chosen to represent precisely only the singletons {{n}}, abstracted to n̄, and the
set of all singleton sets {{n} | n ∈ Z}, abstracted to κ. In order to enhance precision we
could extend our domain CCprp with pairs of constant sets, namely we can represent sets of
the form {{n}, {m}}, with n,m ∈ Z. But we can gain more precision taking into account
triples, quadruples and so on. Hence we can infinitely tune the precision of the analyzer.
Clearly the more elements we add to the domain and the more space is consumed by the
analyzer and the more abstract operations are complex. So, the trade-off between precision
and performance of the analysis depends on the analyzer’s context of application.

Add Relational Information. Our analysis is not-relational, meaning that we do not ex-
plicitly track relations between different variables. We can increase the precision pairing
MemCprp with a relational abstraction of ℘(℘(Mem)). For instance we can define an abstract
domain tracking equalities between variables. This latter, combined with a numerical do-
main such as the one for intervals will improve the precision w.r.t. implicit flows.
00 b := 1 11

11 if (b = x) then {
22 a := 3 11

22 while 33 (a 6= 1) {
44 a := a− 1 11

44 b := a 55

} 66

else { 77 a := 1 55 } 88

Take, as example, the program here on the left, where
variables a, b are L while variable x is H. Our analyzer
signals a false alarm, since the program is non-interferent
but our analysis outputs an abstract memory assigning >
to all variables. With an interval analysis we are able to
find that variable a is equal to [1, 1] at the end of the while
and with a domain tracking equalities we can deduce the
same for variable b. Hence, at the end of the program we
can improve our analysis obtaining the abstract memory
[a 7→ 1̄ b 7→ 1̄ x 7→>], allowing us to prove that the program

is non-interferent.
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Concluding Remarks
9

With this thesis we made a little step towards the verification of hyperproperties by
means of abstract interpretation. We have introduced a formal framework for mod-

eling system semantics at the same level as hyperproperties, namely at sets of sets of exe-
cutions level. These more expressive hypersemantics not only allow us to provide weaker
forms of satisfiability but provide a methodology allowing us to lift static analysis (for hy-
perproperties) directly at the hyper level. We believe that this approach could provide a
deep insight and useful formal tools also for tackling the problem of analyzing analyzers,
aiming at systematically analyzing static analyses [Giacobazzi, Logozzo, and Ranzato, 2015;
Cousot, Giacobazzi, and Ranzato, 2019]. In particular, we believe that hyperdomains, intro-
duced in Section 6.2, can be used not only for hyperproperties verification but also for this
latter purpose.

In the thesis, we also made a little step into the understanding of hyperproperties. In
particular, we reasoned on a subset of subset-closed hyperproperties, which is more suit-
able for verification. For subset-closed hyperproperties we can prove that a program does
not satisfies the specification by finding a subset of the program semantics which does not
satisfy the hyperproperty. If we can limit the cardinality of these refuting witnesses we ob-
tain the bounded subset-closed hyperproperties. These latter generalize k-hypersafety and
some hyperliveness, so they capture a lot of interesting systems specifications. In this work,
we described how it is possible to leverage the standard abstract interpretation based static
analysis framework in order to verify bounded subset-closed hyperproperties. In particular,
we showed how to lift a standard semantic operator to sets of sets and how to build hyper
abstract domains. Putting all the ingredients together, we specified the recipe for defining
an hyperanalysis, namely a static analysis for (bounded) hyperproperties.

We have also investigated the definition of systems specifications in a parametric setting.
The first parameter distinguishes if the specifications are trace properties or hyperproper-
ties. The first are simpler to check (they can be verified observing single executions) but they
lose the power to express specifications describing relations between executions. The sec-
ond parameter concerns what kind of executions denotations we are able to express: only
finite, only infinite or mixed (finite and infinite) executions. We have analyzed how the well
known safety/liveness classification of trace properties changes in relation with the latter
two parameters. Some work in this direction was already done by Roşu [Roşu, 2012], but
only for the safety part and only for trace properties.

The beauty of the safety/liveness classification is its topological interpretation, which al-
lows us to decompose every trace property in its safety part and its liveness part. This means
that we can decompose the verification process in two, more simpler, parts as well. To the
best of our knowledge, this topologies were specified only for trace properties on infinite
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executions [Manna and Pnueli, 1995] and for hyperproperties on infinite executions [Clark-
son and Schneider, 2010]. Our work gives a topological interpretation also for the others
combinations: trace properties on finite and on mixed executions, hyperproperties on finite
and on mixed executions. We proved that in each combinations the safety/hypersafety are
the closed sets in the corresponding topology and the liveness/hyperliveness are the dense
sets. This means that the “decomposition method” can be applied in all six cases, not only
in the infinite executions ones.

Finally, we showed step by step how to build a static analyzer for a particular bounded
hyperproperty, namely for (Abstract) Non-Interference, based on abstract interpretation.
The tool is sound, meaning that it will not signals false negatives, i.e. if the analyzer returns
that a program is non-interferent then it is guaranteed that it satisfies Non-Interference. We
have soundness by design, exploiting the framework of abstract interpretation. We follow
the theoretical results obtained in Chapter 7 and we made the abstract domain computer-
representable, hence we show how to make the analysis feasible. Furthermore, we simpli-
fied the process of Non-Interference verification, moving from a semantics computing on
input/output traces to a simpler semantics computing on memories.

We implemented the analyzer, called nonInterfer, in order to validate the abstract seman-
tics. The testing on the prototype has lead to very promising results, in particular w.r.t.
analysis speed. Non-Interference verification is undecidable, hence we have obviously false
negative, namely sometimes the analyzer marks as interferent a program which actually
satisfies Non-interference. Despite its simplicity and speed, the analyzer is quite precise, at
least as precise as classic (security) type systems for Non-Interference.

To the best of our knowledge, all the works about Non-Interference, except for [Assaf
et al., 2017], verify (or, more often, enforce) it “downgrading” the hyperproperty at the
standard level of sets of traces, namely at the level of the program (base) semantics. As
we have seen in Subsection 6.1.2, approximating an hyperproperty with a stronger trace
property leads to a coarse analysis. With our framework we follow the opposite direction,
namely we lift the semantics at the same level of the hyperproperty, namely at the level
of sets of sets of traces. Our idea was to build an hyper abstract interpreter for abstract
non-interference, which would be more precise, but still sound, w.r.t. actual approaches.

9.1 Related Works

To the best of our knowledge, there are very few works trying to verify (Abstract) Non-
Interference, or hyperproperties in general, without resorting to a stronger trace property
(as explained in Section 6.1.2). The closest related works are [Assaf et al., 2017] and [Urban
and Müller, 2018], which both deal with hyperproperties by means of abstract interpreta-
tion. In the second, the authors define an hyperproperty called Input Data Usage, claiming
that it generalizes a lot of notion of information flows, comprising Non-Interference. They
propose an ad-hoc hypersemantics useful to verify that hyperproperty. Then they show
how it is possible to obtain, by abstraction of their semantics, some known syntactic verifi-
cation methods for information flows. Nevertheless, they do not introduce abstract seman-
tics suitable for verifying information flows by abstract interpretation. The work of [Assaf
et al., 2017] introduces a hypercollecting semantics, i.e. the first example of what we call hyper-
semantics. Nevertheless, their work is focused on information flows, indeed they propose

134134



Chapter 9. Concluding Remarks M. Pasqua

two abstract semantics: one for qualitative Non-Interference and one for quantitative Non-
Interference. Quantitative information flows can be seen as a way of declassification, but
they are not directly comparable with Abstract Non-Interference (specifically, quantitative
information flows are not k-bounded). In fact this latter aims to check interference between
properties of data whilst quantitative information flows just allow to leak bits of confidential
information. For the qualitative case, we have that our abstract domain is not directly com-
parable with the “dependences” abstract domain of [Assaf et al., 2017]. Nevertheless our
abstract semantics is able to state correctly Non-Interference of the program in Listing 5 of
[Assaf et al., 2017] without any tuning for precision. The dependences abstract semantics of
[Assaf et al., 2017] needs to add the Intervals domain in order to reach this level of precision.
Finally, to the best of our knowledge, none of the previous works have an implementation,
even for a toy language, supporting their theoretical results.

Another related work is [Antonopoulos et al., 2017], where authors propose a methodol-
ogy for proving the absence of timing channels. This work is based on the idea of “decom-
position instead of self-composition”. The idea is to partition the program semantics and to
analyze each partition with standard methods. Their approach is similar to our method to
simplify the verification of subset-closed hyperproperties. Nevertheless, for each partition
they verify a classic trace property, instead we verify an hyperproperty. This leads us to
better results w.r.t. precision.

Concerning k-hypersafety, these hyperproperties can be verified with a classic mecha-
nism for safety trace properties on the k times self-composed system. The self-composition
can be sequential, parallel or in an interleaving manner and a lot of works applied this
methodology [Barthe, D’Argenio, and Rezk, 2004; Terauchi and Aiken, 2005]. Unfortu-
nately, this approach seems to be computationally too expensive to be used in practice, as
observed in [Antonopoulos et al., 2017]. Besides the reduction to safety, in [Agrawal and
Bonakdarpour, 2016] the authors introduce a runtime refutation method for k-hypersafety,
based on a three-valued logic. Similarly, [Finkbeiner, Rabe, and Sánchez, 2015; Clarkson
et al., 2014] define hyperlogics (HyperLTL and HyperCTL/CTL∗ ), i.e. extensions of tem-
poral logic able to quantify over multiple traces. Some algorithms for model-checking in
these extended temporal logics exist, but only for particular decidable fragments, since the
model-checking problem for these logics is, in general, undecidable.

Classic methods for Non-Interference verification, which do not take in consideration
its hyperproperty nature, comprise the type systems à la Volpano [Volpano, Irvine, and
Smith, 1996]. These latter perform just syntactic checks, with our approach we have more
precision since we can exploit semantic information. Furthermore, none of them have been
extended to Abstract Non-Interference. Some new logic-based approaches that showed up
recently seem very promising, like the epistemic temporal logic of [Balliu, Dam, and Le
Guernic, 2011] and SecLTL [Dimitrova et al., 2012]. They extend classic temporal logics
with modalities useful for the verification of Non-Interference. Again, these works focus on
Non-Interference only. It is not so easy to compare our work with these latter, we let as a
future work to deepen the link between these logics and our abstract hypersemantics.
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9.2 Future Directions
As a future work, it would be interesting to extend our theoretical work presented in Sec-
tion 4.2.2 to the safety/progress classification [Chang, Manna, and Pnueli, 1992], which is
orthogonal to the safety/liveness classification but it gives a fine-grained characterization
of not-safety specifications.

As another interesting line of work, we plan to deepen the link between hyperseman-
tics and hyperdomains with the problem of analyzing program analyses. The connection
between this latter and the work presented in this thesis seems quite strong, as argued in
Chapter 6.

Focusing on static program analysis for hyperproperties, there are still a lot of work to
do. We have investigate the problem mainly for subset-closed hyperproperties, but some in-
teresting specifications fall outside this latter. Furthermore, it could be interesting to extend
classic methods for liveness trace properties verification to the hyper level.

In Chapter 8, we showed in detail how to design static analyzers useful to verify Ab-
stract Non-Interference, based on abstract interpretation. The analyzers are sound, mean-
ing that they will not signal false negatives, i.e. if the analyzer returns that a program is
non-interferent then it is guaranteed that it satisfies ANI. We have soundness by design, ex-
ploiting the framework of abstract interpretation. We make the hyper (abstract) constants
domain of Section 6.2 computer-representable (when needed), hence we show how to make
the analysis feasible. Furthermore, we simplified the verification process for some partic-
ular subset-closed hyperproperties, moving from a semantics computing on input/output
traces to a simpler semantics computing on memories.

Abstract Non-Interference verification is undecidable, hence we have obviously false
negatives, namely sometimes the analyzer marks as interferent a program which actually
satisfies ANI. As a future work, we want to increase the precision of the abstract hyperse-
mantics, adding the possibility to track relational information between different variables.
Finally, we want to investigate how it is possible to overcome the problem pointed out in
Section 8.1.2, in order to take into account the verification of Abstract Non-Interference with
declassification. Finally, since the results on Imp are promising, we plan to start the porting
of our analyzer for Non-Interference nonInterfer to a real-world programming language, in
order to validate its performance on more challenging test sets.
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Long Proofs
A

This appendix contains the long proofs of results presented in the thesis. The proofs are
listed in order of appearance and grouped by the section/subsection in which they

are referred. Some other theorems/lemmas, which are needed by the main proofs, are
presented and proved here as well.

Subsection 4.2.2

I Lemma 3

Proof. Note that LimPrfCl(X) = prf�(X) ∪ {σ̄ ∈ Σω | ∀σ̄′ ∈ Σ+ . (σ̄′ ≤pf σ̄ ⇒ σ̄′ ∈
prf�(X)} = prf�(X) ∪ {σ̄ ∈ Σω | prf(σ̄) ⊆ prf�(X)}. The proof id divided in two cases.

Safety case

First we prove CΣ∞ ⊆ Safety∞. Let X ∈ CΣ∞ . For all σ̄ ∈ X we have that σ̄ ∈ prf�(X) or
σ̄ ∈ {σ̄ ∈ Σω | prf(σ̄) ⊆ prf�(X)} and, both cases, imply prf(σ̄) ⊆ X . In fact:

σ̄ ∈ prf�(X)⇒ prf(σ̄) ⊆ prf�(X) ⊆ X
σ̄ ∈ {σ̄ ∈ Σω | prf(σ̄) ⊆ prf�(X)} ⇒ prf(σ̄) ⊆ prf�(X) ⊆ X

For all σ̄ /∈ X we have that σ̄ /∈ prf�(X) and σ̄ /∈ {σ̄ ∈ Σω | prf(σ̄) ⊆ prf�(X)}. If σ̄ is
finite then σ̄ /∈ prf�(X) implies prf(σ̄) 6⊆ prf�(X), since σ̄ ∈ prf(σ̄). Otherwise prf(σ̄) 6⊆
prf�(X) is obvious. Note that prf�(X) = X∩Σ+ hence, in both cases, we have prf(σ̄) 6⊆ X .
All this means that X ∈ Safety∞. Now we prove Safety∞ ⊆ CΣ∞ . Let X ∈ Safety∞. For all
σ̄ ∈ X we have that prf(σ̄) ⊆ X and hence prf(σ̄) ⊆ prf�(X). If σ̄ is finite then σ̄ ∈ prf�(X)
otherwise σ̄ ∈ {σ̄ ∈ Σω | prf(σ̄) ⊆ prf�(X)}, so σ̄ ∈ LimPrfCl(X). So X ∈ CΣ∞ .

Liveness case
First we prove DΣ∞ ⊆ Liveness∞. So let X ∈ DΣ∞ . From the fact that LimPrfCl(X) = Σ∞

it follows that prf�(X) = Σ+. This implies Σ+ ⊆ prf�(X) and hence X ∈ Liveness∞.
Now we prove Liveness∞ ⊆ DΣ∞ . Let X ∈ Liveness∞. We have Σ+ ⊆ prf�(X) and hence
prf�(X) = Σ+. The set {σ̄ ∈ Σω | ∀σ̄′ ∈ Σ+ . (σ̄′ ≤pf σ̄ ⇒ σ̄′ ∈ prf�(X)} is equal to Σω

since for every σ̄ ∈ Σω and σ̄′ ∈ Σ+ we have that σ̄′ 6≤pf σ̄ or σ̄′ ∈ prf�(X) = Σ+. So
LimPrfCl(X) = Σ+ ∪ Σω = Σ∞ and hence X ∈ DΣ∞ .
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I Lemma 5

Proof. Note that slimω (X ) = {Y ∈ ℘(Σω) | sprf(Y ) ⊆ sprf�(X )}. We have two cases.

Hypersafety case

First we prove C℘(Σω) ⊆ HyperSafetyω . Let X ∈ C℘(Σω). For all X ∈ X we have sprf(X) ⊆
sprf�(X ) and hence X ∈ HyperSafetyω . For all X /∈ X exists Y ∈ ℘(Σ+) such that Y Epf

X ∧ Y 6⊆ sprf�(X ), hence sprf(X) 6⊆ sprf�(X ) and so X /∈ HyperSafetyω . Now we prove
HyperSafetyω ⊆ C℘(Σω). Let X ∈ HyperSafetyω . For all X ∈ X we have sprf(X) ⊆ sprf�(X )

which implies X ⊆ {Y ∈ ℘(Σω) | sprf(Y ) ⊆ sprf�(X )}. For all X /∈ X we have sprf(X) 6⊆
sprf�(X ) which implies X /∈ {Y ∈ ℘(Σω) | sprf(Y ) ⊆ sprf�(X )}. Hence X = SlimCl(X )
and so X ∈ C℘(Σω).

Hyperliveness case

First we prove D℘(Σω) ⊆ HyperLivenessω . So let X ∈ D℘(Σω). From SlimCl(X ) = ℘(Σω)

it follows that {Y ∈ ℘(Σω) | sprf(Y ) ⊆ sprf�(X )} is equal to ℘(Σω). This means that
sprf(Σω) ⊆ sprf�(X ), which implies that ℘(Σ+) ⊆ sprf�(X ). SoX ∈ HyperLivenessω . Now
we prove HyperLivenessω ⊆ D℘(Σω). Let X ∈ HyperLivenessω , then ℘(Σ+) ⊆ sprf�(X ). This
implies that ∀Y ∈ ℘(Σω) we have sprf(Y ) ⊆ sprf�(X ), namely {Y ∈ ℘(Σω) | sprf(Y ) ⊆
sprf�(X )} = ℘(Σω). Hence SlimCl(X ) = ℘(Σω) and X ∈ C℘(Σω).

I Lemma 6

Proof. Note: SlimSprfCl(X ) = sprf�(X ) ∪ {Y ∈ ℘(Σ∞) | ∀Y ′ ∈ ℘(Σ+) . (Y ′ Epf Y ⇒
Y ′ ∈ sprf�(X )} = {Y ∈ ℘(Σ∞) | sprf(Y ) ⊆ sprf�(X )}, since if X is in sprf�(X) then all
Y Epf X are in sprf�(X) too. The proof is divided in two cases.

Hypersafety case

First we prove C℘(Σ∞) ⊆ HyperSafety∞. Let X ∈ C℘(Σ∞). For all X ∈ X we have that
X ∈ {Y ∈ ℘(Σ∞) | sprf(Y ) ⊆ sprf�(X )} and hence sprf(X) ⊆ X . In fact, X ∈ {Y ∈
℘(Σ∞) | sprf(Y ) ⊆ sprf�(X )} implies sprf(X) ⊆ sprf�(X ) ⊆ X . For all X /∈ X we have
that X /∈ {Y ∈ ℘(Σ∞) | sprf(Y ) ⊆ sprf�(X )}. This implies that sprf(X) 6⊆ sprf�(X ) =
X ∩℘(Σ+), hence sprf(X) 6⊆ X . Hence X ∈ HyperSafety∞. Now we prove HyperSafety∞ ⊆
C℘(Σ∞). Let X ∈ HyperSafety∞. For all X ∈ X we have sprf(X) ⊆ sprf�(X ) and so X ∈
SlimSprfCl(X ). For all X /∈ X we have sprf(X) 6⊆ sprf�(X ) and so X 6∈ SlimSprfCl(X ).
Hence X ∈ C℘(Σ∞).

Hyperliveness case

First we prove D℘(Σ∞) ⊆ HyperLiveness∞. So let X ∈ D℘(Σ∞). From SlimSprfCl(X ) =

℘(Σ∞) it follows that sprf�(X ) = ℘(Σ+). This implies ℘(Σ+) ⊆ sprf�(X ) and hence
X ∈ HyperLiveness∞. Now we prove HyperLiveness∞ ⊆ D℘(Σ∞). Let X ∈ HyperLiveness∞.
Then we have ℘(Σ+) ⊆ sprf�(X ) and hence sprf�(X ) = ℘(Σ+). Now we can note that the
set {Y ∈ ℘(Σ∞) | ∀Y ′ ∈ ℘(Σ+) . (Y ′ Epf Y ⇒ Y ′ ∈ sprf�(X )} is equal to ℘(Σ∞) since for
every Y ∈ ℘(Σ∞) and Y ′ ∈ ℘(Σ+) we have that Y ′ 6Epf Y or Y ′ ∈ sprf�(X ) ⊆ ℘(Σ+). So
SlimSprfCl(X ) = ℘(Σ∞) and X ∈ D℘(Σ∞).
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Subsection 6.1.4

I Extended version of Theorem 18

Theorem 29 (Forward Kleenian Fixpoint Tranfser (Extended)). Let 〈F,O,⊥〉, withO = 〈O,v
,t〉, and 〈F ],O],⊥]〉, with O] = 〈O],v],t]〉, be concrete and abstract computational fixpoint def-
initions. Let γ ∈ O] −→ O be a strict Scott-continuous concretization function satisfying the com-
mutation condition γ ◦ F ] = F ◦ γ (i.e. forward completeness) then:

• the respective iterates F δ and F ]δ , of F and F ] from ⊥ and ⊥], are such that F δ = γ(F ]δ),
for every ordinal δ;

• γ(lfpv
]

⊥] F
]) = lfp4

⊥ F ;

• the iteration order of F ] is less than or equal to that of F .

Proof. The proof is very similar to the one of the (backward) Kleenian fixpoint transfer (The-
orem 3 of [Cousot, 2002]). Let F δ and F ]δ , for an ordinal δ, be the respective ordinal-termed
v-increasing and v]-increasing ultimately stationary chains of transfinite iterates of F and
F ]. We have γ(F ]0) = γ(⊥]) = ⊥ = F 0 by strictness of γ and definition of the iterates.
Assume γ(F ]δ) = F δ by induction hypothesis. By definition of the iterates, commuta-
tion condition and induction hypothesis, we have γ(F ]δ+1) = γ(F ](F ]δ)) = F (γ(F ]δ)) =

F (F δ) = F δ+1. Given a limit ordinal ζ, assume γ(F ]δ) = F δ for all δ < ζ. Then by def-
inition of the iterates, continuity of γ and induction hypothesis, γ(F ]ζ) = γ(

⊔]

δ<ζ F
]δ) =⊔

δ<ζ γ(F ]δ) =
⊔
δ<ζ F

δ = F ζ . By transfinite induction, we conclude that for every ordinal
δ we have γ(F ]δ) = F δ . In particular γ(lfpv

]

⊥] F
]) = γ(F ]ε) = γ(F ]max {ε,ε′}) = Fmax {ε,ε′} =

F ε
′

= lfpv⊥ F , where ε and ε′ are the respective iteration orders. F ]ε is a fixpoint of F ]

so that by the correspondence between iterates and the commutation condition, we have
F (F ε) = F (γ(F ]ε)) = γ(F ](F ]ε)) = γ(F ]ε) = F ε proving that ε′ ≤ ε.

Section 7.3

Theorem 30. For every P ∈ Imp and for every X ⊆ ℘(Mem):

{JPK X | X ∈ X} ⊆ LPMI X and {JPK X | X ∈ X} ⊆ LPMMX

Proof. Both hypersemantics LPMI and LPMM have the same definition for every command
except for loop statements. Hence, the proof for the two hypersemantics differs only for the
while construct (indeed, we will use, in the proof, the subscripts I, M only for loops). The
proof is for structural induction on P.

Cases ii skip ff , ii x := a ff and ii if b then {P1 } else {P2 } ff

We just have to apply the definition of the hypersemantics:

{J ii skip ff K X | X ∈ X} ⊆ {J ii skip ff K X | X ∈ X} = L ii skip ff M X

{J ii x := a ff K X | X ∈ X} ⊆ {{m[x←[ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ X} = L ii x := a ff M X
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{J ii if b then {P1 } else {P2 } ff K X | X ∈ X} ⊆ {JP1K JbK X ∪ JP2K J¬bK X | X ∈ X} =

= L ii if b then {P1 } else {P2 } ff M X

Case ii c ll kk c ff

{J ii c1
ll kk c2

ff K X | X ∈ X}
= ‖ definition of J·K

{J kk c2
ff K ◦ J ii c1

ll K X | X ∈ X}
⊆ ‖ inductive hypothesis on c2

L kk c2
ff M {J ii c1

ll K X | X ∈ X}
⊆ ‖ inductive hypothesis on c1and monotonicity of L · M

L kk c2
ff M ◦ L ii c1

ll M X
= ‖ definition of L · M

L ii c1
ll kk c2

ff M X

Case ii while kk b {P } ff for L ·MM

The semantics J ii while kk b {P } ff K X is defined as J¬bK (lfp⊆∅ F ) where F (T ) , X ∪
JPK JbK T , namely J¬bK

⋃
n∈N F

n
(∅). The iterates of F are:

F
0
(∅) = ∅ F

1
(∅) = X F

2
(∅) = X ∪ JPK JbK X

F
3
(∅) = X ∪ JPK JbK X ∪ JPK JbK JPK JbK X . . .

Clearly, the semantics of while coincides with J¬bK
⋃
{(JPK JbK )nX | n ∈ N}, where

(JPK JbK )0X , X and (JPK JbK )n+1X , (JPK JbK )(JPK JbK )nX . Then, by distributivity
of the union, the semantics of while is equivalent to

⋃
{J¬bK (JPK JbK )nX | n ∈ N}.

By definition, L ii while kk b {P } ff MMX = L¬bM (lfp⊆∅ HM) where the semantic operator is
HM(T ) , X ∪ {JPK JbK T ∪ J¬bK T | T ∈ T }, namely L¬bM

⋃
n∈N HM

n
(∅). The iterates of

the semantic operator HM are:

HM

0
(∅) = ∅ HM

1
(∅) = X

HM

2
(∅) = X ∪ {JPK JbK X ∪ J¬bK X | X ∈ X}

HM

3
(∅) = X ∪ {JPK JbK X ∪ J¬bK X | X ∈ X}∪

∪ {JPK JbK X ∪ J¬bK X | X ∈ {JPK JbK X ∪ J¬bK X | X ∈ X}} =

= X ∪ {JPK JbK X ∪ J¬bK X | X ∈ X}∪
∪ {JPK JbK (JPK JbK X ∪ J¬bK X) ∪ J¬bK (JPK JbK X ∪ J¬bK X) | X ∈ X} =

= X ∪ {JPK JbK X ∪ J¬bK X | X ∈ X} ∪ {JPK JbK JPK JbK X | X ∈ X}∪
∪ {JPK JbK J¬bK X ∪ J¬bK JPK JbK X ∪ J¬PK J¬bK X | X ∈ X} =
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= X ∪ {JPK JbK X ∪ J¬bK X | X ∈ X}∪
∪ {JPK JbK JPK JbK X ∪ J¬bK JPK JbK X ∪ J¬bK X | X ∈ X} . . .

The hypersemantics of while coincides with

L¬bM (X ∪ {
⋃
k≤n{(JPK JbK )k+1X ∪ J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N})

Then, by simple algebraic manipulations, we have that

L¬bM (X ∪ {
⋃
k≤n{(JPK JbK )k+1X ∪ J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N})

= ‖ distributivity of ∪

L¬bM X ∪ L¬bM {
⋃
k≤n{(JPK JbK )k+1X ∪ J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N}

= ‖ definition of Lb M

{J¬bK X | X ∈ X} ∪ {J¬bK
⋃
k≤n{(JPK JbK )k+1X ∪ J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N}

= ‖ distributivity of ∪ and idempotence of J¬bK

{J¬bK X | X ∈ X} ∪ {
⋃
k≤n{J¬bK (JPK JbK )k+1X ∪ J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N}

Finally, it is easy to note that for every possible n ∈ N and for every possible X ∈ X , the set⋃
{J¬bK (JPK JbK )nX | n ∈ N} is in {J¬bK X | X ∈ X} ∪ {

⋃
k≤n{J¬bK (JPK JbK )k+1X ∪

J¬bK (JPK JbK )kX | X ∈ X} | n ∈ N}. This proves that {J ii while kk b {P } ff K X | X ∈ X}
is contained in L ii while kk b {P } ff MMX .

Case ii while kk b {P } ff for L ·MI

In order to simplify the notation, we will often apply silently the following fact: LbM ({∅}∪
X ) = LbM X . The proof is straightforward, indeed, LbM ({∅} ∪ X ) = LbM {∅} ∪ LbM X =

{JbK ∅} \ {∅} ∪ LbM X = ∅ ∪ LbM X = LbM X . By definition, L ii while kk b {P } ff MI X =
L¬bM (lfp⊆∅ HI ) where the semantic operator is HI (T ) , {∅} ∪ (X tH LPMI LbM T ), namely
L¬bM

⋃
n∈N HI

n
(∅). The iterates of the semantic operator HI are:

HI

0
(∅) = ∅ HI

1
(∅) = {∅} HI

2
(∅) = {∅} ∪ X

HI

3
(∅) = {∅} ∪ (X tH LPMI LbM X ) = {∅} ∪ {X ∪ Y | X ∈ X ∧ Y ∈ LPMI LbM X}

HI

4
(∅) = {∅} ∪ (X tH LPMI LbM {X ∪ Y | X ∈ X ∧ Y ∈ LPMI LbM X}) =

= {∅} ∪ {X ∪ Y | X ∈ X ∧ Y ∈ LPMI LbM {X ′ ∪ Y ′ | X ′ ∈ X ∧ Y ′ ∈ LPMI LbM X}}
. . .

The hypersemantics of while coincides with L¬bM ({∅} ∪
⋃
n∈N(X tH LPMI LbM )nX , where

(X tH LPMI LbM )0X , X and (X tH LPMI LbM )n+1 , (X tH LPMI LbM )(X tH LPMI LbM )nX . Then,
by simple algebraic manipulations, we have that

L¬bM ({∅} ∪
⋃
n∈N(X tH LPMI LbM )nX

= ‖ definition of Lb M
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L¬bM
⋃
n∈N(X tH LPMI LbM )nX

⊆ ‖ inductive hypothesis on P and definition of Lb M

L¬bM
⋃
n∈N(λY .X tH {JPK JbK Y | Y ∈ Y})nX

⊆ ‖ and definition oftH
L¬bM

⋃
n∈N(λY . {X ∪ JPK JbK Y | X ∈ X ∧ Y ∈ Y})nX

Remark. Note that this hypersemantics performs unions for every possible combination, at
every recursive step. For example, with n = 2 we have:

{X ∪ JPK JbK Y ∪ JPK JbK JPK JbK Z | X,Y, Z ∈ X}

Finally, it is easy to observe that for every possible n ∈ N and for every X ∈ X , the set⋃
{(JPK JbK )nX | n ∈ N} is in

⋃
n∈N(λY . {X ∪ JPK JbK Y | X ∈ X ∧ Y ∈ Y})nX . Then, by

definition of LbM , we have that
⋃
{J¬bK (JPK JbK )nX | n ∈ N} is in L¬bM

⋃
n∈N(λY . {X ∪

JPK JbK Y | X ∈ X ∧ Y ∈ Y})nX . This proves that {J ii while kk b {P } ff K X | X ∈ X} is
contained in L ii while kk b {P } ff MI X .

I Theorem 20

Proof. Trivial application of Theorem 30, with X = {X}.

Subsection 8.1.3

Assumption 1. The abstract arithmetic operations ⊕ρ ∈ Cρ × Cρ −→ Cρ, with ⊕ ∈ {+,−, ∗}, are
sound:

{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ γhρ(c1) ∧ Y ∈ γhρ(c2)} ⊆ γhρ(c1 ⊕ρ c2)

Lemma 7. The abstract hypersemantics for arithmetic expression LaMρ is sound:

{{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈ γm(m)} ⊆ γhρLaMρm

Proof. The proof is for structural induction on a.

Case n

{{n | ∃m ∈ X . 〈n,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n}}
⊆ ‖ extensivity of γhραhρ

γhραhρ({{n}})
= ‖ definition of L · Mρ

γhρLnMρm
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Case x

{{n | ∃m ∈ X . 〈x,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{m(x) | m ∈ X} | X ∈ γm(m)}
⊆ ‖ extensivity of γhραhρ

γhραhρ({{m(x) | m ∈ X} | X ∈ γm(m)})
= ‖ definition of γm

γhραhρ(γhρ(m(x)))

⊆ ‖ reductivity of αhργhρ

γhρ(m(x))

= ‖ definition of L · Mρ

γhρLxMρm

Case (a)

{{n | ∃m ∈ X . 〈(a),m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈ γm(m)}
⊆ ‖ inductive hypothesis

γhρLaMρm

Case a1 ⊕ a2, with ⊕ ∈ {+,−, ∗}

{{n | ∃m ∈ X . 〈a1 ⊕ a2,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n1 ⊕ n2 | ∃m ∈ X . 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2} | X ∈ γm(m)}
⊆ ‖ set theory

{{n1 ⊕ n2 | ∃m,m′ ∈ X . 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m
′〉 ⇓Z n2} | X ∈ γm(m)}

= ‖ set theory

{{n1 ⊕ n2 | n1 ∈ {n | ∃m ∈ X . 〈a1,m〉 ⇓Z n} ∧ n2 ∈ {n | ∃m ∈ X . 〈a2,m〉 ⇓Z n}} | X ∈ γm(m)}
⊆ ‖ set theory{
{n1 ⊕ n2 | n1 ∈ X ∧ n2 ∈ Y }

∣∣∣∣ X ∈ {{n | ∃m ∈ X . 〈a1,m〉 ⇓Z n} | X ∈ γm(m)}∧
Y ∈ {{n | ∃m ∈ X . 〈a2,m〉 ⇓Z n} | X ∈ γm(m)}

}
⊆ ‖ inductive hypothesis on a1,a2

{{n1 ⊕ n2 | n1 ∈ X ∧ n2 ∈ Y } | X ∈ γhρLa1 Mρm ∧ Y ∈ γhρLa2 Mρm}
⊆ ‖ soundness of⊕ρ

γhρ(La1 Mρm⊕ρ La2 Mρm)
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= ‖ definition of L · Mρ

γhρLa1 ⊕ a2 Mρm

Assumption 2. The abstract logical operations onρ∈ Cρ × Cρ −→ Cρ × Cρ, with on∈ {=, 6=, <,≤},
are sound:

let X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ γhρ(c1) ∧ Y ∈ γhρ(c2)} in
〈{{n | 〈n,m〉 ∈ X} | X ∈ X}, {{m | 〈n,m〉 ∈ X} | X ∈ X}〉 ⊆2 γ2

hρ(c1 onρ c2)

Lemma 8. The abstract hypersemantics for boolean expression LbMρ is sound:

LbM γm(m) = {{m ∈ X | 〈b,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅} ⊆ γmLbMρm

Proof. The proof is for structural induction on b.

Case tt

{{m ∈ X | 〈tt,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

γm(m)

= ‖ definition of L · Mρ

γmLttMρm

Case ff

{{m ∈ X | 〈ff,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

{∅} \ {∅}
= ‖ set theory

∅
= ‖ definition of γm

γm(m⊥)

= ‖ definition of L · Mρ

γmLff Mρm

Case (b)

{{m ∈ X | 〈(b),m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

{{m ∈ X | 〈b,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
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⊆ ‖ inductive hypothesis

γmLbMρm

Case b1 ∧ b2

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var . (αmLb1 ∧ b2 M γm(m))(x) E (Lb1 ∧ b2 Mρm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmLb1 ∧ b2 M γm(m))(x)

= ‖ definition of Lb M

(αm({{Jb1K X ∩ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

= ‖ definition of αm

(αhρ({{m(x) | m ∈ Jb1K X ∩ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

The proof continues by cases, recalling that (Lb1 ∧ b2 Mρm)(x) = (Lb1 Mρm)(x) Z (Lb2 Mρm)(x).

Case (αmLb1 ∧ b2 M γm(m))(x) = ⊥

Since ⊥ is the minimum, ⊥ E (Lb1 ∧ b2 Mρm)(x) trivially holds.

Case (αmLb1 ∧ b2 M γm(m))(x) = ā

(αmLb1 ∧ b2 M γm(m))(x) = ā implies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩
Jb2K X} ⊆ a. Which, in turn, implies that ∃X1, X2 ∈ γm(m) such that {m(x) | m ∈
Jb1K X2} 6= ∅ and {m(x) | m ∈ Jb2K X2} 6= ∅. This excludes the possibility to have
(Lb1 Mρm)(x) = ⊥ or (Lb2 Mρm)(x) = ⊥. In fact, by inductive hypothesis, Lb1 M γm(m) ⊆
γmLb1 Mm and Lb2 M γm(m) ⊆ γmLb2 Mm. Thus, the only way to falsify the proof is that
(Lb1 Mρm)(x) = ā and (Lb2 Mρm)(x) = b̄, with a 6= b (or the symmetric case). In fact,
ā Z b̄ = ⊥ which is unsound. So, suppose to be in that case. This means that ∀X ∈
γm(m) . {m(x) | m ∈ Jb1K X} ⊆ a ∧ {m(x) | m ∈ Jb1K X} ⊆ b. But this implies that
∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is contained in a ∪ b (but not in
a), which is absurd, since we have supposed that it is a subset of a. All this proves that
ā E (Lb1 ∧ b2 Mρm)(x).

Case (αmLb1 ∧ b2 M γm(m))(x) = Aρ

(αmLb1 ∧ b2 M γm(m))(x) = Aρ implies that ∃X,Y ∈ γm(m) such that {m(x) | m ∈
Jb1K X ∩ Jb2K X} ⊆ a and {m(x) | m ∈ Jb1K Y ∩ Jb2K Y } ⊆ b, with a 6= b. As for
the previous case, (Lb1 Mρm)(x) 6= ⊥ or (Lb2 Mρm)(x) 6= ⊥. The only way to falsify the
proof is that (Lb1 Mρm)(x) = ā and (Lb2 Mρm)(x) E Aρ (or the symmetric case). In fact,
ā Z Aρ = ā, ā Z ā = ā and ā Z b̄ = ⊥ are unsound results. So, suppose (Lb1 Mρm)(x) = ā

and (Lb2 Mρm)(x) = Aρ. This means that ∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} ⊆ a and
∃X1, X2 ∈ γm(m) . {m(x) | m ∈ Jb2K X1} ⊆ a ∧ {m(x) | m ∈ Jb2K X2} ⊆ b. But this
implies that ∃X ∈ γm(m) such that the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is contained
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in a ∪ b (but not contained in a), which is absurd, since we have supposed that it is
equal to Aρ. Now, suppose (Lb1 Mρm)(x) = ā and (Lb2 Mρm)(x) = ā. This means that
∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} ⊆ a ⊇ {m(x) | m ∈ Jb2K X}. But this implies that
∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is contained in a, which is absurd,
since we have supposed that it is equal to Aρ. Finally, suppose (Lb1 Mρm)(x) = ā and
(Lb2 Mρm)(x) = b̄. This means that ∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} ⊆ a ∧ {m(x) | m ∈
Jb2K X} ⊆ b. But this implies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is
contained in a ∪ b (but not in a or b), which is absurd, since we have supposed that it is
equal to Aρ. All this proves that Aρ E (Lb1 ∧ b2 Mρm)(x).

Case (αmLb1 ∧ b2 M γm(m))(x) = >

(αmLb1 ∧ b2 M γm(m))(x) = > implies that ∃X ∈ γm(m) such that {m(x) | m ∈ Jb1K X ∩
Jb2K X} is contained in a ∪ b (but not in a or b). This trivially implies that for the same
X we have {m(x) | m ∈ Jb1K X} and {m(x) | m ∈ Jb2K X} are contained in a∪b (but not
in a of b). This is sufficient to state that (Lb1 Mρm)(x) = > and (Lb2 Mρm)(x) = >. Hence
> E (Lb1 ∧ b2 Mρm)(x).

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.

Case b1 ∨ b2

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var . (αmLb1 ∨ b2 M γm(m))(x) E (Lb1 ∨ b2 Mρm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmLb1 ∨ b2 M γm(m))(x)

= ‖ definition of Lb M

(αm({{Jb1K X ∪ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

= ‖ definition of αm

(αhρ({{m(x) | m ∈ Jb1K X ∪ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

The proof continues by cases, recalling that:

(Lb1 ∨ b2 Mρm)(x) =

{
(Lb1 Mρm)(x) Y (Lb2 Mρm)(x) if m(x) 6= > ∨ x 6∈ vars(b1) ∩ vars(b1)

> otherwise

Case (αmLb1 ∨ b2 M γm(m))(x) = ⊥

Since ⊥ is the minimum, ⊥ E (Lb1 ∨ b2 Mρm)(x) trivially holds.

Case (αmLb1 ∨ b2 M γm(m))(x) = ā

(αmLb1 ∨ b2 M γm(m))(x) = ā implies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∪
Jb2K X} ⊆ a. Which, in turn, implies that ∃X ∈ γm(m) such that {m(x) | m ∈ Jb1K X} 6=
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∅ or {m(x) | m ∈ Jb2K X2} 6= ∅, but not necessarily both. This excludes the possibil-
ity to have (Lb1 Mρm)(x) = ⊥ and (Lb2 Mρm)(x) = ⊥. In fact, by inductive hypothesis,
Lb1 M γm(m) ⊆ γmLb1 Mm and Lb2 M γm(m) ⊆ γmLb2 Mm. This is not a problem, since if
(Lb1 Mρm)(x) = ⊥ then (Lb2 Mρm)(x) must be necessarily equal to ā (or the symmetric
case). This guarantees that the result ⊥ Y ā = ā is sound. There are not other outcome
leading to ⊥ hence we have that ā E (Lb1 ∧ b2 Mρm)(x).

Case (αmLb1 ∨ b2 M γm(m))(x) = Aρ

(αmLb1 ∨ b2 M γm(m))(x) = Aρ implies that ∃X,Y ∈ γm(m) such that {m(x) | m ∈
Jb1K X ∪ Jb2K X} ⊆ a and {m(x) | m ∈ Jb1K Y ∪ Jb2K Y } ⊆ b, with a 6= b. As for
the previous case, (Lb1 Mρm)(x) 6= ⊥ and (Lb2 Mρm)(x) 6= ⊥ at the same time and if one
of the two is ⊥ then the other must be Aρ, so ⊥ Y Aρ = Aρ is sound. The only way
to falsify the proof is that (Lb1 Mρm)(x) = ā = (Lb2 Mρm)(x). In fact, ā Y ā = ā which is
unsound. So, suppose to be in that case. This means that ∀X ∈ γm(m) . {m(x) | m ∈
Jb1K X} ⊆ a ⊇ {m(x) | m ∈ Jb2K X}. But this implies that ∀X ∈ γm(m) the set
{m(x) | m ∈ Jb1K X ∪ Jb2K X} ⊆ a, which is absurd, since we have supposed that it
is equal to Aρ. All this proves that Aρ E (Lb1 ∨ b2 Mρm)(x).

Case (αmLb1 ∨ b2 M γm(m))(x) = >

(αmLb1 ∨ b2 M γm(m))(x) = > implies that ∃X ∈ γm(m) such that {m(x) | m ∈ Jb1K X ∪
Jb2K X} is contained in a∪b (but not in a or b). As for the previous cases, (Lb1 Mρm)(x) 6=
⊥ and (Lb2 Mρm)(x) 6= ⊥ at the same time and if one of the two is ⊥ then the other must
be >, so ⊥ Y > = > is sound. Then, it is easy to note that there exists X ∈ γm(m) such
that {m(x) | m ∈ Jb1K X ∪ Jb2K X} is contained in a ∪ b (but not in a or b) if and only if
m(x) = > (indeed, Jb1K X ∪ Jb2K X ⊆ X). In this case, by definition, (Lb1∨b2 Mρm)(x) =
>, hence it is sound.

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.

Case a1 on a2, with on∈ {=, 6=, <,≤}

The proof for this case is divided in three parts. First, we have to prove the following pre-
liminary result. Given m ∈ Memρ we have that:

αm(
⋃
Z∈γm(m)(℘(Z) \ {∅})) v m (A.1)

If there exists a variable x such that m(x) = ⊥, then γm(m) = ∅ and so αm(
⋃
Z∈γm(m)(℘(Z) \

{∅})) = m⊥ v m. Otherwise, take an arbitrary variable x. If m(x) = ā then for every
X ∈ γm(m) we have that {m(x) | m ∈ X} ⊆ a. But this implies that for every X ′ ⊆ X we
have {m(x) | m ∈ X ′} ⊆ a as well. Thus, (αm(

⋃
Z∈γm(m)(℘(Z)\{∅})))(x) = ā. Now suppose

m(x) = Aρ. This means that there exist X,Y ∈ γm(m) such that {m(x) | m ∈ X} ⊆ a and
{m(x) | m ∈ Y } ⊆ a, with a 6= b. Now we can reason as before: for every X ′ ⊆ X and
Y ′ ⊆ Y we have {m(x) | m ∈ X ′} ⊆ a and {m(x) | m ∈ Y ′} ⊆ b. Thus, (αm(

⋃
Z∈γm(m)(℘(Z)\

{∅})))(x) = Aρ. Finally, in the case of m(x) = >, αm(
⋃
Z∈γm(m)(℘(Z) \ {∅})))(x) E m(x)

holds. Since the variable x has been chosen arbitrarily, the proof holds for every variable.
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Now we retrieve a superset of La1 on a2 M γm(m) =
{
{m ∈ X | 〈a1 on a2,m〉 ⇓B tt}

∣∣ X ∈
γm(m)

}
\ {∅}. In the following, we let D =

⋃
Z∈γm(m)(℘(Z) \ {∅}).

{
{m ∈ X | 〈a1 on a2,m〉 ⇓B tt}

∣∣ X ∈ γm(m)
}
\ {∅}

= ‖ definition of ⇓B{
{m ∈ X | 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2 ∧ n1 on n2}

∣∣ X ∈ γm(m)
}
\ {∅}

= ‖ set theory and definition of JaK
m ∈ X

∣∣∣∣∣∣ ∃n1 ∈ Ja1K X ∃n2 ∈ Ja2K X .

 〈a1,m〉 ⇓Z n1 ∧
〈a2,m〉 ⇓Z n2 ∧
n1 on n2


∣∣∣∣∣∣ X ∈ γm(m)

 \ {∅}
⊆ ‖ set theory and definition of DX ∈ D

∣∣∣∣∣∣ ∀m ∈ X ∃n1 ∈ Ja1K X ∃n2 ∈ Ja2K X .

 〈a1,m〉 ⇓Z n1 ∧
〈a2,m〉 ⇓Z n2 ∧
n1 on n2


⊆ ‖ set theory and definition of La M

let P =


〈n1, n2〉

∣∣∣∣∣∣
n1 ∈ N1 ∧
n2 ∈ N2 ∧
n1 on n2


∣∣∣∣∣∣ N1 ∈ La1 M γm(m) ∧N2 ∈ La2 M γm(m)

 in

{
X ⊆ D

∣∣ ∃P ∈ P ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)
}

⊆ ‖ soundness of La Mρ

let P =


〈n1, n2〉

∣∣∣∣∣∣
n1 ∈ N1 ∧
n2 ∈ N2 ∧
n1 on n2


∣∣∣∣∣∣ N1 ∈ γhρLa1 Mρm ∧N2 ∈ γhρLa2 Mρm

 in

{
X ⊆ D

∣∣ ∃P ∈ P ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)
}

⊆ ‖ soundness of onCprp (i.e. P⊆{{〈n,m〉 | n∈X∧m∈Y } | 〈X ,Y〉=γ2
hρ (La1 MρmonCprpLa2 Mρm)∧X∈X∧Y ∈Y})

let P′ =

{{
〈n,m〉

∣∣ n ∈ X ∧m ∈ Y } ∣∣∣∣ 〈X ,Y〉 = γ2
hρ(La1 Mρm onCprp La2 Mρm)

∧X ∈ X ∧ Y ∈ Y

}
in{

X ⊆ D
∣∣ ∃P ∈ P′ ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)

}
⊆ ‖ set theory and definition of JaK

let 〈c1, c2〉 = La1 Mρm onCprp La2 Mρm in{
X ⊆ D

∣∣ Ja1K X ∈ γhρ(c1) ∧ Ja2K X ∈ γhρ(c2)
}

⊆ ‖ set theory and definition of La M

let 〈c1, c2〉 = La1 Mρm onCprp La2 Mρm in⋃{
X ⊆ D

∣∣ La1 M X ⊆ γhρ(c1) ∧ La2 M X ⊆ γhρ(c2)
}

⊆ ‖ set theory⋃
{X ∩ Y | X ,Y ⊆ D ∧ La1 M X ⊆ γhρ(c1) ∧ La2 M Y ⊆ γhρ(c2)}

= ‖ distributivity of ∩⋃
{X ⊆ D | La1 M X ⊆ γhρ(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆ γhρ(c2)}
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Hence La1 on a2 M γm(m) ⊆
⋃
{X ⊆ D | La1 M X ⊆ γhρ(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆ γhρ(c2)}.

Now, we can finally prove the soundness for this case.

γm(La1 on a2 Mρm)

= ‖ definition of L · Mρ

γm(
⊔
{n v m | La1 Mρn E c1} u

⊔
{n v m | La2 Mρn E c2})

= ‖ co-aditivity of γm

γm(
⊔
{n v m | La1 Mρn E c1}) ∩ γm(

⊔
{n v m | La2 Mρn E c2})

⊇ ‖ monotonicity of γm⋃
{γm(n) | n v m ∧ La1 Mρn E c1} ∩

⋃
{γm(n) | n v m ∧ La2 Mρn E c2}

⊇ ‖ monotonicity of γhρ and soundness of La Mρ⋃
{γm(n) | n v m ∧ La1 M γm(n) ⊆ γhρ(c1)} ∩

⋃
{γm(n) | n v m ∧ La2 M γm(n) ⊆ γhρ(c2)}

⊇ ‖ set theory and αm(D)vm⋃{
γm(n)

∣∣∣∣ n v αm(D)∧
La1 M γm(n) ⊆ γhρ(c1)

}
∩
⋃{

γm(n)

∣∣∣∣ n v αm(D)∧
La2 M γm(n) ⊆ γhρ(c2)

}
= ‖ Galois connection αm,γm⋃
{γm(n) ⊆ D | La1 M γm(n) ⊆ γhρ(c1)} ∩

⋃
{γm(n) ⊆ D | La2 M γm(n) ⊆ γhρ(c2)})

=⋃
{X ⊆ D | La1 M X ⊆ γhρ(c1)} ∩

⋃
{X ⊆ D | La2 M X ⊆ γhρ(c2)})

Hence we have that
⋃
{X ⊆ D | La1 M X ⊆ γhρ(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆ γhρ(c2)} ⊆

γm(La1 on a2 Mρm) which, in turn, implies La1 on a2 M γm(m) ⊆ γm(La1 on a2 Mρm) as requested.

I Theorem 24

Proof. We just have to prove that the abstract hypersemantics LPMρ approximates the best
correct approximation of the concrete hypersemantics LPM in Memρ, namely αm ◦ LPM ◦
γm v LPMρ . The proof is for structural induction on P.

Case P and m = m⊥

αmLPM γm(m⊥)

= ‖ definition of γm

αmLPM ∅
= ‖ definition of L · M

αm(∅)

= ‖ definition of αm

m⊥

= ‖ definition of L · Mρ
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LPMCm⊥

Case ii skip ff

αmL ii skip ff M γm(m)

= ‖ definition of L · M

αmγm(m)

= ‖ reductivity of αmγm

m

= ‖ definition of L · Mρ

L ii skip ff MCm

Case ii x := a ff

αmL ii x := a ff M γm(m)

= ‖ definition of L · M

αm({{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)})
= ‖αm= ˙αhρ◦αnnr and definition of αnnr

˙αhρ ◦ (λy . {{m(y) | m ∈ X} | X ∈ {{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)}})
=

˙αhρ ◦ (λy . ( y = x ? {{n |∃m ∈ X . 〈a,m〉 ⇓Z n}|X∈γm(m)} : {{m(y) |m ∈ X}|X∈γm(m)}))
v ‖ soundness of La Mρ

˙αhρ ◦ (λy . ( y = x ? γhρLaMρm : {{m(y) | m ∈ X} | X ∈ γm(m)} ))

= ‖ definition of ˙αhρ

λy . ( y = x ?αhργhρLaMρm :αhρ({{m(y) | m ∈ X} | X ∈ γm(m)}) )

= ‖ definition of γm

λy . ( y = x ?αhργhρLaMρm :αhργhρ(m(y)) )

v ‖ reductivity of αhργhρ

λy . ( y = x ? LaMρm :m(y) )

=

m[x← [ LaMρm]

= ‖ definition of L · Mρ

L ii x := a ff Mρm

Case ii c ll kk c ff

αmL ii c1
ll kk c2

ff M γm(m)
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= ‖ definition of L · M

αmL kk c2
ff M L ii c1

ll M γm(m)

v ‖ extensivity of γmαm

αmL kk c2
ff M γmαmL ii c1

ll M γm(m)

v ‖ inductive hypothesis

L kk c2
ff MC L ii c1

ll Mρm

= ‖ definition of L · Mρ

L ii c1
ll kk c2

ff Mρm

Case ii if b then {P1 } else {P2 } ff (♣)

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var .
(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E (L ii if b then {P1 } else {P2 } ff Mρm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x)

= ‖ definition of L · M

(αm({JP1K JbK X ∪ JP2K J¬bK X | X ∈ γm(m)}))(x)

= ‖ definition of αm

(αhρ({{m(x) | m ∈ JP1K JbK X ∪ JP2K J¬bK X} | X ∈ γm(m)}))(x)

The proof continues by cases, recalling that (L ii if b then {P1 } else {P2 } ff Mρm)(x) is:

( x /∈ vars:=(P1) ∪ vars:=(P2) ∨ n(x) E Aρ ∨ vars>m(b) = ∅? n(x) :> )

where n , LP1 MρLbMρm t LP2 MρL¬bMρm and E is the strict version of E.

Case x /∈ vars:=(P1) ∪ vars:=(P2)

We have that (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) is equal to m(x), since x has
not been modified (vars:= is an over-approximation). For the same reason, we have that
(αmLP1 M LbM γm(m))(x) = m(x) and (αmLP2 M L¬bM γm(m))(x) = m(x). Then, by sound-
ness of LbMρ and by inductive hypothesis on LP1 M (analogous for ¬b and P2), we have
that αmLP1 M LbM γm(m) v LP1 MρLbMρm and αmLP2 M L¬bM γm(m) v LP2 MρL¬bMρm. So,
(αmLP1 M LbM γm(m))(x) E (LP1 MρLbMρm)(x) and, similarly, (αmLP2 M L¬bM γm(m))(x) E
(LP2 MρL¬bMρm)(x). This implies m(x) E n(x) = (LP1 MρLbMρm)(x)Y (LP2 MρL¬bMρm)(x), as
we wanted.
Case n(x) = (LP1 MρLbMρm)(x) Y (LP2 MρL¬bMρm)(x) E Aρ

Since b and ¬b cannot be false at the same time, we can have (LP1 MρLbMρm)(x) = ⊥ =

(LP2 MρL¬bMρm)(x) if and only if m = m⊥. So αmL ii if b then {P1 } else {P2 } ff M γm(m) =
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m⊥ and n = m⊥, hence (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = ⊥ E ⊥ = n(x)
trivially holds. Otherwise, we have that (LP1 MρLbMρm)(x) = ā and (LP2 MρL¬bMρm)(x) E
ā (or the symmetric case). By soundness of LbMρ and inductive hypothesis on LP1 Mρ
we have that αmLP1 M LbM γm(m) v LP1 MρLbMρm. Since {JP1K X | X ∈ LbM γm(m)} ⊆
LP1 M LbM γm(m) and, by definition, LbM γm(m) = {JbK X | X ∈ γm(m)} \ {∅}, we
have that {JP1K JbK X | X ∈ γm(m)} \ {∅} ⊆ LPM LbM γm(m). By monotonicity of
αm, we have that α({JP1K JbK X | X ∈ γm(m)} \ {∅}) v LP1 MρLbMρm. Analogous
for LP2 MρL¬bMρ . From (LP1 MρLbMρm)(x) = ā we can conclude that ∀X ∈ γm(m) we
have {m(x) | m ∈ JP1K JbK X} ⊆ a. Similarly, (LP2 MρL¬bMρm)(x) = ⊥ implies that
∀X ∈ γm(m) we have {m(x) | m ∈ JP2K J¬bK X} = ∅ and (LP2 MρL¬bMρm)(x) = ā

implies that ∀X ∈ γm(m) we have {m(x) | m ∈ JP2K J¬bK X} ⊆ a. Then, we have
that {{m(x) | m ∈ JP1K JbK ∪ JP2K J¬bK X} | X ∈ γm(m)} is contained in a, in both
cases. Thus, αhρ({{m(x) | m ∈ JP1K JbK ∪ JP2K J¬bK X} | X ∈ γm(m)}) = ā, which is
approximated by Aρ, as required.
Case vars>m(b) = ∅

We have that n(x) is equal toAρ or>, otherwise we fall into the previous cases. If n(x) =

>, which is the maximum, then (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E > triv-
ially holds. If n(x) = Aρ, it could be that (LP1 MρLbMρm)(x) = ā and (LP2 MρL¬bMρm)(x) ∈
{b̄,Aρ}, with a 6= b (or the symmetric case). The only way to falsify the proof is that
(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = >. This means that there exists X ∈
γm(m) such that {m(x) | m ∈ JP1K JbK X ∪ JP2K J¬bK X} is contained in a ∪ b (but
not in a or b). Since vars>m(b) = ∅, this happens if and only if m(x) is already equal to
> and, hence, x /∈ vars(b). All these facts imply that n(x) cannot be equal to Aρ when
(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = >.
Case “otherwise”

Given that (L ii if b then {P1 } else {P2 } ff Mρm)(x) = >, which is the maximum, we have
that (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E > trivially holds.

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.

Case ii while bb k {P } ff

First, we can note that H = λT .X ∪ {JPK JbK T ∪ J¬bK T | T ∈ T } coincides with the
function λT .X ∪ L ii if b then {P } else { hh skip hh } ff M T , with hh fresh label (it is indeed
not necessary, since the post-conditions hypersemantics does not take into account labels).
Now we need to derive a correct approximation of this latter:

λn . αm(X ∪ L ii if b then {P } else { hh skip hh } ff M γm(n))

= ‖ additivity of αm

= λn . αm(X ) t αm(L ii if b then {P } else { hh skip hh } ff M γm(n))

v ‖ soundness of case ♣
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λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff Mρn

The function λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff Mρn is sound, since it approxi-
mates the bca of H . The bca is correct even at fixpoint, namely we have:

αm(lfp⊆∅ H ) v lfpvm⊥ λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff Mρn (A.2)

Now we can continue the proof as follows.

αmL ii while kk b {P } ff M γm(m)

= ‖ definition of L · M

αmL¬bM (lfp⊆∅ λT . γm(m) ∪ L ii if b then {P } else { hh skip hh } ff M T )

v ‖ soundness of Lb Mρ

L¬bMραm(lfp⊆∅ λT . γm(m) ∪ L ii if b then {P } else { hh skip hh } ff M T )

v ‖ fixpoint approximation (equation A.2)

L¬bMρ(lfpvm⊥ λn . αmγm(m) t L ii if b then {P } else { hh skip hh } ff Mρn)

= ‖ reductivity of αmγm

L¬bMρ(lfpvm⊥ λn .m t L ii if b then {P } else { hh skip hh } ff Mρn)

= ‖ definition of L · Mρ

L ii while kk b {P } ff Mρm

Subsection 8.2.2

Lemma 9. The abstract arithmetic operations ⊕Cprp ∈ CCprp × CCprp −→ CCprp, with ⊕ ∈ {+,−, ∗}, are
sound:

{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ γhCprp(c1) ∧ Y ∈ γhCprp(c2)} ⊆ γhCprp(c1 ⊕C c2)

Proof. The proof is by cases.

Case c1 = ⊥, c2 ∈ Cprp

γhCprp(⊥) = ∅ and ⊥⊕Cprp c2 = ⊥ hence:
{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ ∅ ∧ Y ∈ γhCprp(c2)} = ∅ ⊆ ∅ = γhCprp(⊥⊕C c2)

Case c1 = >, c2 ∈ Cprp \ {⊥}

γhCprp(>) = Cprp(℘(Z)) and >⊕Cprp c2 = > hence:
{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ Cprp(℘(Z)) ∧ Y ∈ γhCprp(c2)} = Cprp(℘(Z))

⊆ Cprp(℘(Z)) = γhCprp(⊥⊕C c2)
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Case c1 = n̄, c2 = m̄

γhCprp(n̄) = {{n}} and n̄⊕Cprp m̄ = ¯n⊕m hence:
{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ {{n}} ∧ Y ∈ {{m}}} = {{n⊕m}}
⊆ {{n⊕m}} = γhCprp(n̄⊕C m̄)

Case c1 = n̄, c2 = κ

γhCprp(n̄) = {{n}}, γhCprpκ = {{n} | n ∈ Z} and n̄⊕Cprp κ = κ hence:
{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ {{n}} ∧ Y ∈ {{n} | n ∈ Z}} ⊆ {{n} | n ∈ Z}
⊆ {{n} | n ∈ Z} = γhCprp(n̄⊕C κ)

Case c1 = κ = c2

γhCprp(κ) = {{n} | n ∈ Z} and κ⊕Cprp κ = κ hence:
{{n⊕m | n ∈ X ∧m ∈ Y } | X ∈ {{n} | n ∈ Z} ∧ Y ∈ {{n} | n ∈ Z}} = {{n} | n ∈ Z}
⊆ {{n} | n ∈ Z} = γhCprp(κ⊕C κ)

By symmetry, we cover all possible cases.

Lemma 10. The abstract hypersemantics for arithmetic expression LaMC is sound:

{{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈ γm(m)} ⊆ γhCprpLaMCm

Proof. The proof is for structural induction on a.

Case n

{{n | ∃m ∈ X . 〈n,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n}}
⊆ ‖ extensivity of γhCprpαhCprp

γhCprpαhCprp({{n}})
= ‖ definition of αhCprp

γhCprp(n̄)

= ‖ definition of L · MC

γhCprpLnMCm

Case x

{{n | ∃m ∈ X . 〈x,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z
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{{m(x) | m ∈ X} | X ∈ γm(m)}
⊆ ‖ extensivity of γhCprpαhCprp

γhCprpαhCprp({{m(x) | m ∈ X} | X ∈ γm(m)})
= ‖ definition of γm

γhCprpαhCprp(γhCprp(m(x)))

⊆ ‖ reductivity of αhCprpγhCprp

γhCprp(m(x))

= ‖ definition of L · MC

γhCprpLxMCm

Case (a)

{{n | ∃m ∈ X . 〈(a),m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n | ∃m ∈ X . 〈a,m〉 ⇓Z n} | X ∈ γm(m)}
⊆ ‖ inductive hypothesis

γhCprpLaMCm

Case a1 ⊕ a2, with ⊕ ∈ {+,−, ∗}

{{n | ∃m ∈ X . 〈a1 ⊕ a2,m〉 ⇓Z n} | X ∈ γm(m)}
= ‖ definition of ⇓Z

{{n1 ⊕ n2 | ∃m ∈ X . 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2} | X ∈ γm(m)}
⊆ ‖ set theory

{{n1 ⊕ n2 | ∃m,m′ ∈ X . 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m
′〉 ⇓Z n2} | X ∈ γm(m)}

= ‖ set theory

{{n1 ⊕ n2 | n1 ∈ {n | ∃m ∈ X . 〈a1,m〉 ⇓Z n} ∧ n2 ∈ {n | ∃m ∈ X . 〈a2,m〉 ⇓Z n}} | X ∈ γm(m)}
⊆ ‖ set theory{
{n1 ⊕ n2 | n1 ∈ X ∧ n2 ∈ Y }

∣∣∣∣ X ∈ {{n | ∃m ∈ X . 〈a1,m〉 ⇓Z n} | X ∈ γm(m)}∧
Y ∈ {{n | ∃m ∈ X . 〈a2,m〉 ⇓Z n} | X ∈ γm(m)}

}
⊆ ‖ inductive hypothesis on a1,a2

{{n1 ⊕ n2 | n1 ∈ X ∧ n2 ∈ Y } | X ∈ γhCprpLa1 MCm ∧ Y ∈ γhCprpLa2 MCm}
⊆ ‖ soundness of⊕Cprp

γhCprp(La1 MCm⊕Cprp La2 MCm)

= ‖ definition of L · MC

γhCprpLa1 ⊕ a2 MCm
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Lemma 11. The abstract logical operationsonC ∈ CCprp×CCprp −→ CCprp×CCprp, withon∈{=, 6=, <,≤},
are sound:

let X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ γhCprp(c1) ∧ Y ∈ γhCprp(c2)} in
〈{{n | 〈n,m〉 ∈ X} | X ∈ X}, {{m | 〈n,m〉 ∈ X} | X ∈ X}〉 ⊆2 γ2

hCprp(c1 onC c2)

Proof. We recall that, given a pair 〈X,Y 〉, we denote with 〈X,Y 〉` = X its projection on the
first element of the pair and with 〈X,Y 〉a = Y its projection on the second element. The
proof is by cases.

Case c1 = ⊥, c2 ∈ Cprp

γhCprp(⊥) = ∅ and ⊥ onC c2 = 〈⊥,⊥〉 hence:
X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ ∅ ∧ Y ∈ γhCprp(c2)} = ∅ and
{{n | 〈n,m〉 ∈ X} | X ∈ ∅} = ∅ ⊆ ∅ = (γ2

hCprp(⊥ onC c2))`

{{m | 〈n,m〉 ∈ X} | X ∈ ∅} = ∅ ⊆ ∅ = (γ2
hCprp(⊥ onC c2))a

Case c1 = n̄ = c2 and on∈ {=,≤}

γhCprp(n̄) = {{n}} and n̄ onC n̄ = 〈n̄, n̄〉 hence:
X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ {{n}} ∧ Y ∈ {{n}}} = {{〈n, n〉}} and
{{n | 〈n,m〉 ∈ X} | X ∈ {{〈n, n〉}}} = {{n}} ⊆ {{n}} = (γ2

hCprp(n̄ onC n̄))`

{{m | 〈n,m〉 ∈ X} | X ∈ {{〈n, n〉}}} = {{n}} ⊆ {{n}} = (γ2
hCprp(n̄ onC n̄))a

Case c1 = n̄, c2 = m̄, n < m and on∈ {<,≤, 6=}

γhCprp(n̄) = {{n}} and n̄ onC m̄ = 〈n̄, m̄〉 hence:
X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ {{n}} ∧ Y ∈ {{m}}} = {{〈n,m〉}} and
{{n | 〈n,m〉 ∈ X} | X ∈ {{〈n,m〉}}} = {{n}} ⊆ {{n}} = (γ2

hCprp(n̄ onC m̄))`

{{m | 〈n,m〉 ∈ X} | X ∈ {{〈n,m〉}}} = {{m}} ⊆ {{m}} = (γ2
hCprp(n̄ onC m̄))a

Case c1 = n̄, c2 = m̄, n > m and on∈ {6=}

γhCprp(n̄) = {{n}} and n̄ onC m̄ = 〈n̄, m̄〉 hence:
X = {{〈n,m〉 | n ∈ X ∧m ∈ Y ∧ n on m} | X ∈ {{n}} ∧ Y ∈ {{m}}} = {{〈n,m〉}} and
{{n | 〈n,m〉 ∈ X} | X ∈ {{〈n,m〉}}} = {{n}} ⊆ {{n}} = (γ2

hCprp(n̄ onC m̄))`

{{m | 〈n,m〉 ∈ X} | X ∈ {{〈n,m〉}}} = {{m}} ⊆ {{m}} = (γ2
hCprp(n̄ onC m̄))a

For all other cases we have c1 ⊕Cprp c2 = 〈>,>〉 hence the inclusions trivially hold.

Lemma 12. The abstract hypersemantics for boolean expression LbMC is sound:

LbM γm(m) = {{m ∈ X | 〈b,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅} ⊆ γmLbMCm
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Proof. The proof is for structural induction on b.

Case tt

{{m ∈ X | 〈tt,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

γm(m)

= ‖ definition of L · MC

γmLttMCm

Case ff

{{m ∈ X | 〈ff,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

{∅} \ {∅}
= ‖ set theory

∅
= ‖ definition of γm

γm(m⊥)

= ‖ definition of L · MC

γmLff MCm

Case (b)

{{m ∈ X | 〈(b),m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
= ‖ definition of ⇓B

{{m ∈ X | 〈b,m〉 ⇓B tt} | X ∈ γm(m)} \ {∅}
⊆ ‖ inductive hypothesis

γmLbMCm

Case b1 ∧ b2

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var . (αmLb1 ∧ b2 M γm(m))(x) E (Lb1 ∧ b2 MCm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmLb1 ∧ b2 M γm(m))(x)

= ‖ definition of Lb M

(αm({{Jb1K X ∩ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)
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= ‖ definition of αm

(αhCprp({{m(x) | m ∈ Jb1K X ∩ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

The proof continues by cases, recalling that (Lb1 ∧ b2 MCm)(x) = (Lb1 MCm)(x) Z (Lb2 MCm)(x).

Case (αmLb1 ∧ b2 M γm(m))(x) = ⊥

Since ⊥ is the minimum, ⊥ E (Lb1 ∧ b2 MCm)(x) trivially holds.
Case (αmLb1 ∧ b2 M γm(m))(x) = n̄

(αmLb1 ∧ b2 M γm(m))(x) = n̄ implies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩
Jb2K X} is {n}. Which, in turn, implies that ∃X1, X2 ∈ γm(m) such that {m(x) | m ∈
Jb1K X2} 6= ∅ and {m(x) | m ∈ Jb2K X2} 6= ∅. This excludes the possibility to have
(Lb1 MCm)(x) = ⊥ or (Lb2 MCm)(x) = ⊥. In fact, by inductive hypothesis, Lb1 M γm(m) ⊆
γmLb1 Mm and Lb2 M γm(m) ⊆ γmLb2 Mm. Thus, the only way to falsify the proof is that
(Lb1 MCm)(x) = n̄ and (Lb2 MCm)(x) = m̄, with n 6= m (or the symmetric case). In fact,
n̄ Z m̄ = ⊥ which is unsound. So, suppose to be in that case. This means that ∀X ∈
γm(m) . {m(x) | m ∈ Jb1K X} = {n} ∧ {m(x) | m ∈ Jb1K X} = {m}. But this implies that
∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is {n,m}, which is absurd, since we
have supposed that it is equal to {n}. All this proves that n̄ E (Lb1 ∧ b2 MCm)(x).
Case (αmLb1 ∧ b2 M γm(m))(x) = κ

(αmLb1∧b2 M γm(m))(x) = κ implies that ∃X,Y ∈ γm(m) such that {m(x) | m ∈ Jb1K X∩
Jb2K X} = {n} and {m(x) | m ∈ Jb1K Y ∩ Jb2K Y } = {m}, with n 6= m. As for
the previous case, (Lb1 MCm)(x) 6= ⊥ or (Lb2 MCm)(x) 6= ⊥. The only way to falsify the
proof is that (Lb1 MCm)(x) = n̄ and (Lb2 MCm)(x) E κ (or the symmetric case). In fact,
n̄ Z κ = n̄, n̄ Z n̄ = n̄ and n̄ Z m̄ = ⊥ are unsound results. So, suppose (Lb1 MCm)(x) = n̄
and (Lb2 MCm)(x) = κ. This means that ∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} = {n}
and ∃X1, X2 ∈ γm(m) . {m(x) | m ∈ Jb2K X1} = {n} ∧ {m(x) | m ∈ Jb2K X2} =
{m}. But this implies that ∃X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is
{n,m}, which is absurd, since we have supposed that it is equal to κ. Now, suppose
(Lb1 MCm)(x) = n̄ and (Lb2 MCm)(x) = n̄. This means that ∀X ∈ γm(m) . {m(x) | m ∈
Jb1K X} = {n} = {m(x) | m ∈ Jb2K X}. But this implies that ∀X ∈ γm(m) the set
{m(x) | m ∈ Jb1K X ∩ Jb2K X} is {n}, which is absurd, since we have supposed that it
is equal to κ. Finally, suppose (Lb1 MCm)(x) = n̄ and (Lb2 MCm)(x) = m̄. This means that
∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} = {n} ∧ {m(x) | m ∈ Jb2K X} = {m}. But this im-
plies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∩ Jb2K X} is {n,m}, which is absurd,
since we have supposed that it is equal to κ. All this proves that κ E (Lb1 ∧ b2 MCm)(x).
Case (αmLb1 ∧ b2 M γm(m))(x) = >

(αmLb1 ∧ b2 M γm(m))(x) = > implies that ∃X ∈ γm(m) such that {m(x) | m ∈ Jb1K X ∩
Jb2K X} ⊇ {n,m}. This trivially implies that for the same X we have {m(x) | m ∈
Jb1K X} ⊇ {n,m} and {m(x) | m ∈ Jb2K X} ⊇ {n,m}. This is sufficient to state that
(Lb1 MCm)(x) = > and (Lb2 MCm)(x) = >. Hence > E (Lb1 ∧ b2 MCm)(x).

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.
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Case b1 ∨ b2

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var . (αmLb1 ∨ b2 M γm(m))(x) E (Lb1 ∨ b2 MCm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmLb1 ∨ b2 M γm(m))(x)

= ‖ definition of Lb M

(αm({{Jb1K X ∪ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

= ‖ definition of αm

(αhCprp({{m(x) | m ∈ Jb1K X ∪ Jb2K X} | X ∈ γm(m)} \ {∅}))(x)

The proof continues by cases, recalling that:

(Lb1 ∨ b2 MCm)(x) =

{
(Lb1 MCm)(x) Y (Lb2 MCm)(x) if m(x) 6= > ∨ x 6∈ vars(b1) ∩ vars(b1)

> otherwise

Case (αmLb1 ∨ b2 M γm(m))(x) = ⊥

Since ⊥ is the minimum, ⊥ E (Lb1 ∨ b2 MCm)(x) trivially holds.
Case (αmLb1 ∨ b2 M γm(m))(x) = n̄

(αmLb1 ∨ b2 M γm(m))(x) = n̄ implies that ∀X ∈ γm(m) the set {m(x) | m ∈ Jb1K X ∪
Jb2K X} is {n}. Which, in turn, implies that ∃X ∈ γm(m) such that {m(x) | m ∈
Jb1K X} 6= ∅ or {m(x) | m ∈ Jb2K X2} 6= ∅, but not necessarily both. This excludes
the possibility to have (Lb1 MCm)(x) = ⊥ and (Lb2 MCm)(x) = ⊥. In fact, by inductive hy-
pothesis, Lb1 M γm(m) ⊆ γmLb1 Mm and Lb2 M γm(m) ⊆ γmLb2 Mm. This is not a problem,
since if (Lb1 MCm)(x) = ⊥ then (Lb2 MCm)(x) must be necessarily equal to n̄ (or the sym-
metric case). This guarantees that the result ⊥ Y n̄ = h̄ is sound. There are not other
outcome leading to ⊥ hence we have that n̄ E (Lb1 ∧ b2 MCm)(x).
Case (αmLb1 ∨ b2 M γm(m))(x) = κ

(αmLb1∨b2 M γm(m))(x) = κ implies that ∃X,Y ∈ γm(m) such that {m(x) | m ∈ Jb1K X∪
Jb2K X} = {n} and {m(x) | m ∈ Jb1K Y ∪ Jb2K Y } = {m}, with n 6= m. As for the
previous case, (Lb1 MCm)(x) 6= ⊥ and (Lb2 MCm)(x) 6= ⊥ at the same time and if one of
the two is ⊥ then the other must be κ, so ⊥ Y κ = κ is sound. The only way to falsify
the proof is that (Lb1 MCm)(x) = n̄ = (Lb2 MCm)(x). In fact, n̄ Y n̄ = n̄ which is unsound.
So, suppose to be in that case. This means that ∀X ∈ γm(m) . {m(x) | m ∈ Jb1K X} =
{n} = {m(x) | m ∈ Jb2K X}. But this implies that ∀X ∈ γm(m) the set {m(x) | m ∈
Jb1K X ∪ Jb2K X} is {n}, which is absurd, since we have supposed that it is equal to κ.
All this proves that κ E (Lb1 ∨ b2 MCm)(x).
Case (αmLb1 ∨ b2 M γm(m))(x) = >

(αmLb1 ∨ b2 M γm(m))(x) = > implies that ∃X ∈ γm(m) such that {m(x) | m ∈ Jb1K X ∪
Jb2K X} ⊇ {n,m}. As for the previous cases, (Lb1 MCm)(x) 6= ⊥ and (Lb2 MCm)(x) 6= ⊥
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at the same time and if one of the two is ⊥ then the other must be >, so ⊥ Y > = >
is sound. Then, it is easy to note that there exists X ∈ γm(m) such that {m(x) | m ∈
Jb1K X ∪ Jb2K X} ⊇ {n,m} if and only if m(x) = > (indeed, Jb1K X ∪ Jb2K X ⊆ X). In
this case, by definition, (Lb1 ∨ b2 MCm)(x) = >, hence it is sound.

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.

Case a1 on a2, with on∈ {=, 6=, <,≤}

The proof for this case is divided in three parts. First, we have to prove the following pre-
liminary result. Given m ∈ MemCprp we have that:

αm(
⋃
Z∈γm(m)(℘(Z) \ {∅})) v m (A.3)

If there exists a variable x such that m(x) = ⊥, then γm(m) = ∅ and so αm(
⋃
Z∈γm(m)(℘(Z) \

{∅})) = m⊥ v m. Otherwise, take an arbitrary variable x. If m(x) = n̄ then for every
X ∈ γm(m) we have that {m(x) | m ∈ X}{n}. But this implies that for every X ′ ⊆ X we
have {m(x) | m ∈ X ′} = {n} as well. Thus, (αm(

⋃
Z∈γm(m)(℘(Z) \ {∅})))(x) = n̄. Now

suppose m(x) = κ. This means that there exist X,Y ∈ γm(m) such that {m(x) | m ∈ X} =
{n} and {m(x) | m ∈ Y } = {m}, with n 6= m. Now we can reason as before: for every
X ′ ⊆ X and Y ′ ⊆ Y we have {m(x) | m ∈ X ′}{n} and {m(x) | m ∈ Y ′} ⊆ {m}. Thus,
(αm(

⋃
Z∈γm(m)(℘(Z) \ {∅})))(x) = κ. Finally, in the case of m(x) = >, αm(

⋃
Z∈γm(m)(℘(Z) \

{∅})))(x) E m(x) holds. Since the variable x has been chosen arbitrarily, the proof holds for
every variable.

In any case we have that (αm(
⋃
Z∈γm(m)(℘(Z) \ {∅})))(x) E m(x), as requested by A.3.

Now we retrieve an superset of La1 on a2 M γm(m) =
{
{m ∈ X | 〈a1 on a2,m〉 ⇓B tt}

∣∣ X ∈
γm(m)

}
\ {∅}. In the following, we let D =

⋃
Z∈γm(m)(℘(Z) \ {∅}).{

{m ∈ X | 〈a1 on a2,m〉 ⇓B tt}
∣∣ X ∈ γm(m)

}
\ {∅}

= ‖ definition of ⇓B{
{m ∈ X | 〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2 ∧ n1 on n2}

∣∣ X ∈ γm(m)
}
\ {∅}

= ‖ set theory and definition of JaK
m ∈ X

∣∣∣∣∣∣ ∃n1 ∈ Ja1K X ∃n2 ∈ Ja2K X .

 〈a1,m〉 ⇓Z n1 ∧
〈a2,m〉 ⇓Z n2 ∧
n1 on n2


∣∣∣∣∣∣ X ∈ γm(m)

 \ {∅}
⊆ ‖ set theory and definition of DX ∈ D

∣∣∣∣∣∣ ∀m ∈ X ∃n1 ∈ Ja1K X ∃n2 ∈ Ja2K X .

 〈a1,m〉 ⇓Z n1 ∧
〈a2,m〉 ⇓Z n2 ∧
n1 on n2


⊆ ‖ set theory and definition of La M

let P =


〈n1, n2〉

∣∣∣∣∣∣
n1 ∈ N1 ∧
n2 ∈ N2 ∧
n1 on n2


∣∣∣∣∣∣ N1 ∈ La1 M γm(m) ∧N2 ∈ La2 M γm(m)

 in

{
X ⊆ D

∣∣ ∃P ∈ P ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)
}
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⊆ ‖ soundness of La MC

let P =


〈n1, n2〉

∣∣∣∣∣∣
n1 ∈ N1 ∧
n2 ∈ N2 ∧
n1 on n2


∣∣∣∣∣∣ N1 ∈ γhCprpLa1 MCm ∧N2 ∈ γhCprpLa2 MCm

 in

{
X ⊆ D

∣∣ ∃P ∈ P ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)
}

⊆ ‖ soundness of onCprp (i.e. P⊆{{〈n,m〉 | n∈X∧m∈Y } | 〈X ,Y〉=γ2
hCprp

(La1 MC monCprpLa2 MC m)∧X∈X∧Y ∈Y})

let P′ =

{{
〈n,m〉

∣∣ n ∈ X ∧m ∈ Y } ∣∣∣∣ 〈X ,Y〉 = γ2
hCprp(La1 MCm onCprp La2 MCm)

∧X ∈ X ∧ Y ∈ Y

}
in{

X ⊆ D
∣∣ ∃P ∈ P′ ∀m ∈ X ∃〈n1, n2〉 ∈ P . (〈a1,m〉 ⇓Z n1 ∧ 〈a2,m〉 ⇓Z n2)

}
⊆ ‖ set theory and definition of JaK

let 〈c1, c2〉 = La1 MCm onCprp La2 MCm in{
X ⊆ D

∣∣ Ja1K X ∈ γhCprp(c1) ∧ Ja2K X ∈ γhCprp(c2)
}

⊆ ‖ set theory and definition of La M

let 〈c1, c2〉 = La1 MCm onCprp La2 MCm in⋃{
X ⊆ D

∣∣ La1 M X ⊆ γhCprp(c1) ∧ La2 M X ⊆ γhCprp(c2)
}

⊆ ‖ set theory⋃
{X ∩ Y | X ,Y ⊆ D ∧ La1 M X ⊆ γhCprp(c1) ∧ La2 M Y ⊆ γhCprp(c2)}

= ‖ distributivity of ∩⋃
{X ⊆ D | La1 M X ⊆ γhCprp(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆ γhCprp(c2)}

Hence La1 on a2 M γm(m) ⊆
⋃
{X ⊆ D | La1 M X ⊆ γhCprp(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆

γhCprp(c2)}. Now, we can finally prove the soundness for this case.

γm(La1 on a2 MCm)

= ‖ definition of L · MC

γm(
⊔
{n v m | La1 MCn E c1} u

⊔
{n v m | La2 MCn E c2})

= ‖ co-aditivity of γm

γm(
⊔
{n v m | La1 MCn E c1}) ∩ γm(

⊔
{n v m | La2 MCn E c2})

⊇ ‖ monotonicity of γm⋃
{γm(n) | n v m ∧ La1 MCn E c1} ∩

⋃
{γm(n) | n v m ∧ La2 MCn E c2}

⊇ ‖ monotonicity of γhCprp and soundness of La MC⋃
{γm(n) | n v m ∧ La1 M γm(n) ⊆ γhCprp(c1)} ∩

⋃
{γm(n) | n v m ∧ La2 M γm(n) ⊆ γhCprp(c2)}

⊇ ‖ set theory and αm(D)vm⋃{
γm(n)

∣∣∣∣ n v αm(D)∧
La1 M γm(n) ⊆ γhCprp(c1)

}
∩
⋃{

γm(n)

∣∣∣∣ n v αm(D)∧
La2 M γm(n) ⊆ γhCprp(c2)

}
= ‖ Galois connection αm,γm⋃
{γm(n) ⊆ D | La1 M γm(n) ⊆ γhCprp(c1)} ∩

⋃
{γm(n) ⊆ D | La2 M γm(n) ⊆ γhCprp(c2)})

=
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⋃
{X ⊆ D | La1 M X ⊆ γhCprp(c1)} ∩

⋃
{X ⊆ D | La2 M X ⊆ γhCprp(c2)})

Hence we have that
⋃
{X ⊆ D | La1 M X ⊆ γhCprp(c1)} ∩

⋃
{Y ⊆ D | La2 M Y ⊆ γhCprp(c2)} ⊆

γm(La1 on a2 MCm) which, in turn, implies La1 on a2 M γm(m) ⊆ γm(La1 on a2 MCm) as requested.

I Theorem 27

Proof. We just have to prove that the abstract hypersemantics LPMC approximates the best
correct approximation of the concrete hypersemantics LPM in MemCprp, namely αm ◦ LPM ◦
γm v LPMC . The proof is for structural induction on P.

Case P and m = m⊥

αmLPM γm(m⊥)

= ‖ definition of γm

αmLPM ∅
= ‖ definition of L · M

αm(∅)

= ‖ definition of αm

m⊥

= ‖ definition of L · MC

LPMCm⊥

Case ii skip ff

αmL ii skip ff M γm(m)

= ‖ definition of L · M

αmγm(m)

= ‖ reductivity of αmγm

m

= ‖ definition of L · MC

L ii skip ff MCm

Case ii x := a ff

αmL ii x := a ff M γm(m)

= ‖ definition of L · M

αm({{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)})
= ‖αm=α̇hCprp◦αnnr and definition of αnnr

α̇hCprp ◦ (λy . {{m(y) | m ∈ X} | X ∈ {{m[x← [ n] | m ∈ X ∧ 〈a,m〉 ⇓Z n} | X ∈ γm(m)}})
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=

α̇hCprp ◦ (λy . ( y = x ? {{n |∃m ∈ X . 〈a,m〉 ⇓Z n}|X∈γm(m)} : {{m(y) |m ∈ X}|X∈γm(m)}))
v ‖ soundness of La MC

α̇hCprp ◦ (λy . ( y = x ? γhCprpLaMCm : {{m(y) | m ∈ X} | X ∈ γm(m)} ))

= ‖ definition of α̇hCprp

λy . ( y = x ?αhCprpγhCprpLaMCm :αhCprp({{m(y) | m ∈ X} | X ∈ γm(m)}) )

= ‖ definition of γm

λy . ( y = x ?αhCprpγhCprpLaMCm :αhCprpγhCprp(m(y)) )

v ‖ reductivity of αhCprpγhCprp

λy . ( y = x ? LaMCm :m(y) )

=

m[x← [ LaMCm]

= ‖ definition of L · MC

L ii x := a ff MCm

Case ii c ll kk c ff

αmL ii c1
ll kk c2

ff M γm(m)

= ‖ definition of L · M

αmL kk c2
ff M L ii c1

ll M γm(m)

v ‖ extensivity of γmαm

αmL kk c2
ff M γmαmL ii c1

ll M γm(m)

v ‖ inductive hypothesis

L kk c2
ff MC L ii c1

ll MCm
= ‖ definition of L · MC

L ii c1
ll kk c2

ff MCm

Case ii if b then {P1 } else {P2 } ff (♣)

In order to prove this case we prove the equivalent formulation:

∀x ∈ Var .
(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E (L ii if b then {P1 } else {P2 } ff MCm)(x)

Take an arbitrary x ∈ Var. Then we have:

(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x)

= ‖ definition of L · M

(αm({JP1K JbK X ∪ JP2K J¬bK X | X ∈ γm(m)}))(x)

163163



M. Pasqua

= ‖ definition of αm

(αhCprp({{m(x) | m ∈ JP1K JbK X ∪ JP2K J¬bK X} | X ∈ γm(m)}))(x)

The proof continues by cases, recalling that (L ii if b then {P1 } else {P2 } ff MCm)(x) is:

( x /∈ vars:=(P1) ∪ vars:=(P2) ∨ n(x) E κ ∨ vars>m(b) = ∅? n(x) :> )

where n , LP1 MC LbMCm t LP2 MC L¬bMCm and E is the strict version of E.

Case x /∈ vars:=(P1) ∪ vars:=(P2)

We have that (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) is equal to m(x), since x has
not been modified (vars:= is an over-approximation). For the same reason, we have that
(αmLP1 M LbM γm(m))(x) = m(x) and (αmLP2 M L¬bM γm(m))(x) = m(x). Then, by sound-
ness of LbMC and by inductive hypothesis on LP1 M (analogous for ¬b and P2), we have
that αmLP1 M LbM γm(m) v LP1 MC LbMCm and αmLP2 M L¬bM γm(m) v LP2 MC L¬bMCm. So,
(αmLP1 M LbM γm(m))(x) E (LP1 MC LbMCm)(x) and, similarly, (αmLP2 M L¬bM γm(m))(x) E
(LP2 MC L¬bMCm)(x). This implies m(x) E n(x) = (LP1 MC LbMCm)(x)Y (LP2 MC L¬bMCm)(x), as
we wanted.
Case n(x) = (LP1 MC LbMCm)(x) Y (LP2 MC L¬bMCm)(x) E κ

Since b and ¬b cannot be false at the same time, we can have (LP1 MC LbMCm)(x) = ⊥ =

(LP2 MC L¬bMCm)(x) if and only if m = m⊥. So αmL ii if b then {P1 } else {P2 } ff M γm(m) =

m⊥ and n = m⊥, hence (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = ⊥ E ⊥ = n(x)
trivially holds. Otherwise, we have that (LP1 MC LbMCm)(x) = n̄ and (LP2 MC L¬bMCm)(x) E
n̄ (or the symmetric case). By soundness of LbMC and inductive hypothesis on LP1 MC
we have that αmLP1 M LbM γm(m) v LP1 MC LbMCm. Since {JP1K X | X ∈ LbM γm(m)} ⊆
LP1 M LbM γm(m) and, by definition, LbM γm(m) = {JbK X | X ∈ γm(m)} \ {∅}, we
have that {JP1K JbK X | X ∈ γm(m)} \ {∅} ⊆ LPM LbM γm(m). By monotonicity of
αm, we have that α({JP1K JbK X | X ∈ γm(m)} \ {∅}) v LP1 MC LbMCm. Analogous
for LP2 MC L¬bMC . From (LP1 MC LbMCm)(x) = n̄ we can conclude that ∀X ∈ γm(m) we
have {m(x) | m ∈ JP1K JbK X} = {n}. Similarly, (LP2 MC L¬bMCm)(x) = ⊥ implies that
∀X ∈ γm(m) we have {m(x) | m ∈ JP2K J¬bK X} = ∅ and (LP2 MC L¬bMCm)(x) = n̄
implies that ∀X ∈ γm(m) we have {m(x) | m ∈ JP2K J¬bK X} = {n}. Then, we have
that {{m(x) | m ∈ JP1K JbK ∪ JP2K J¬bK X} | X ∈ γm(m)} is equal to {{n}} in both
cases. Thus, αhCprp({{m(x) | m ∈ JP1K JbK ∪ JP2K J¬bK X} | X ∈ γm(m)}) = n̄, which
is approximated by κ, as required.
Case vars>m(b) = ∅

We have that n(x) is equal to κ or>, otherwise we fall into the previous cases. If n(x) = >,
which is the maximum, then (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E > triv-
ially holds. If n(x) = κ, it could be that (LP1 MC LbMCm)(x) = n̄ and (LP2 MC L¬bMCm)(x) ∈
{m̄, κ}, with n 6= m (or the symmetric case). The only way to falsify the proof is that
(αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = >. This means that there exists X ∈
γm(m) such that {m(x) | m ∈ JP1K JbK X ∪ JP2K J¬bK X} ⊇ {n,m}. Since vars>m(b) = ∅,
this happens if and only if m(x) is already equal to > and, so x /∈ vars(b). All these facts
imply that n(x) cannot be κ when (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) = >.
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Case “otherwise”
Given that (L ii if b then {P1 } else {P2 } ff MCm)(x) = >, which is the maximum, we have
that (αmL ii if b then {P1 } else {P2 } ff M γm(m))(x) E > trivially holds.

Since the variable x has been chosen arbitrarily, the proof holds for every variable. This
terminates the case.

Case ii while bb k {P } ff

First, we can note that H = λT .X ∪ {JPK JbK T ∪ J¬bK T | T ∈ T } coincides with the
function λT .X ∪ L ii if b then {P } else { hh skip hh } ff M T , with hh fresh label (it is indeed
not necessary, since the post-conditions hypersemantics does not take into account labels).
Now we need to derive a correct approximation of this latter:

λn . αm(X ∪ L ii if b then {P } else { hh skip hh } ff M γm(n))

= ‖ additivity of αm

= λn . αm(X ) t αm(L ii if b then {P } else { hh skip hh } ff M γm(n))

v ‖ soundness of case ♣

λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff MCn

The function λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff MCn is sound, since it approxi-
mates the bca of H . The bca is correct even at fixpoint, namely we have:

αm(lfp⊆∅ H ) v lfpvm⊥ λn . αm(X ) t L ii if b then {P } else { hh skip hh } ff MCn (A.4)

Now we can continue the proof as follows.

αmL ii while kk b {P } ff M γm(m)

= ‖ definition of L · M

αmL¬bM (lfp⊆∅ λT . γm(m) ∪ L ii if b then {P } else { hh skip hh } ff M T )

v ‖ soundness of Lb MC

L¬bMCαm(lfp⊆∅ λT . γm(m) ∪ L ii if b then {P } else { hh skip hh } ff M T )

v ‖ fixpoint approximation (equation A.4)

L¬bMC (lfpvm⊥ λn . αmγm(m) t L ii if b then {P } else { hh skip hh } ff MCn)

= ‖ reductivity of αmγm

L¬bMC (lfpvm⊥ λn .m t L ii if b then {P } else { hh skip hh } ff MCn)

= ‖ definition of L · MC

L ii while kk b {P } ff MCm
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